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1 Supplemental Introduction

In the manuscript “Genome-scale phylogenetic function annotation oféaddiverse protein families”,
we presensIFTER 2.0, a new method for predicting protein molecular function based on a phyjogen
SIFTER 2.0 includes a new statistical model, chosen for its robustness to noise, thategararal than
the previous version aIFTER and creates a platform where additional biological information can be
easily incorporated to aid predictionIFSER 2.0 also includes approximate computation of posteriors,
which enables a phylogenetic-based protein function prediction methodapyhied to large and func-
tionally diverse protein families for the first time. In the main manuscript, we dimwthe new model
for SIFTER using exact computation, produces results comparable to the previmisnvef SIFTER
(where the complete details of the two supporting experiments are in this suppjemé also show
that the approximation produces equivalent results at all levels of cotigputauncation. We then apply
the new version oBIFTER using approximation to families that were previously beyond the scope of
a phylogenetic-based method for protein function prediction: the Nudix faamitia large number of
proteins fromS. pombeWe conclude that this version sfFTERis capable of genome-scale annotations.
In this Supplement to the main manuscript, we present a number of additienlisr@nd discussions,
including a complete set of results including parameter estimation results foretrainhse family,
additional truncation results for the deaminase and sulfotransferase fnailimore detailed look at
the large-scale comparison betwegATER 2.0 andsIFTER 1.1, and a discussion and short analysis of
changes in prediction based on the Pfaoy database versions. We extend the results for the Nudix
family by discussing the diversity of function in the family, detailing how we galieed the functional
annotations, and quantifying the benefit of more observations in functemigbion. We conclude with

a section that goes into depth on the model we used for transforaingnnotations to probabilities



(which has been presented before), we provide a deeper intuitiondo#t@riransition rate matrix and

the parameters, and we describe the method for estimating those paranoetessdilable data.

2 Results: supplemental information

2.1 AMP/Adenosine deaminase family: completeresults

We appliedsiFTER 2.0 to the Pfam adenosine/AMP deaminase family (PF00962), which corg&lns
proteins in Pfaml8.0. We use an older release of Pfam because of the correspondingtgolthrd
data set that has been built using these data, in conjunction with a manualitéesearch and a protein
characterization experiment (Engelhardt et al., 2005), and also $=&dam releas21.0 has1607 se-
guences, making prediction difficult for some related methods. Thesanso&nove an amine group
from the purine base of three possible substrates: adenine, aderagindMP. There are four candi-
date functions, three of which are deaminase activity with different satlestr Additionally, a subset
of proteins, known as adenosine deaminase-related growth factorsr(®aal., 2005), shows growth
factor activity. A phylogeny reconstructed for tB& proteins with experimental annotations from the
GOA database, the literature search, and the characterization experimgplie(8antal Figuré) shares
the branching structure with the phylogeny in a previous study regardengethtive positions of the
adenosine, adenine, and AMP deaminases, and adenosine deareiateskgrowth factors (Maier et al.,
2005). It is hypothesized that adenosine deaminase activity confamghgfactor activity through the
destruction of adenosine, which induces apoptosis in some types of celisr(dt al., 2001), so anno-
tations for proteins with only growth factor activity annotations may be incompBésides being an
important family in the study of human immunodeficiency disease (Hirschhatbenbogen, 1986),
this family is interesting in the context of evolution because the active site essmhe shared across
the different substrates (i.e., in all cases the substrate binds to an amiive)d(Bt al., 2003); substrate
specificity in this protein is modified by molecular changes in areas not assbeiith amine binding.
Thus a closer look at the active site will not result in better discrimination optbeein substrate but

only a general evolutionary divergence.



Gene Ontology Functions Terms for AMP/Adenosine Deaminases
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Supplemental Figure 1. Phylogeny of experimentally characterized AM P/adenosine deaminase
proteins. The phylogeny of the experimentally characterized set of proteinstimerAMP/adenosine
deaminase family. The branching structure is the same as that of the fulsedénithesIFTER
experiments at the top levels of the phylogeny. The colors indicate theiimegreally characterized
protein functions, as specified in the key.

EvaluatingsIFTER using leave-one-out cross-validation (see Methods) on this family yisl@$s
accuracy §1 out of33 proteins). Of the two proteins with incorrect predictions, one protein (QRRLUTLO)
with adenosine deaminase activity located near the growth factor activity dddcorrectly predicted
to have growth factor activity (Charlab et al., 2000), and one proteindl AATRVG) with adenosine
deaminase activity is incorrectly predicted to have activity on adenine.npadsonBLAST achieves
66.7% accuracy 22 of 33), PFP achieve$8.8% accuracy 26 of 33), conFunc achieve’l .8% accuracy
(27 of 33), FFPred achieves 0% accuracy { of 33), and Orthostrapper achieves.8% accuracy 26 of
33).

The ROC-like analysis looks at the relative rate of increase of true pesitisrsus false positives as

the cutoff threshold gets more permissive (see Methods in the manuscrgstéols). In the ROC-like



analysis,sIFTER outperforms all of the methods on this family at all error rates (Supplementaid=ig
2A). Within the area of high specificity, which is the most relevant area fantjfying performance on
biological sequence analysis,FTERS performance advantage is striking. The precision-recall analysis
(Supplemental FigureB) shows thasIFTERoutperforms all of the methods at high levels of precision
and recall, with conFunc matchirgjFTERs performance for recall close to one. FFPred has a strange

curve because so few of the proteins had functional predictions.
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Supplemental Figure 2. Function annotation methods comparisons on AM P/adenosine deaminase
family. Panel (A) shows a ROC-like analysis of results$erTERand other annotation methods on the
AMP/adenosine deaminase protein family. We did not include FFPred letieare were not sufficient
numbers of true positive predictions to show up well on this plot. Note that-hods is on a log scale.
Panel (B) shows a precision-recall analysis of resultsfererand other methods on the same family.

To assess the quality of the truncation approximation, we compared the resngsapproximation
against the results using exact computation of posteriors. As with exaqiutation (levelt), truncation
levels3 and2 achieved3.9% accuracy §1 of 33), whereas truncation leveélachieved0.9% accuracy
(30 of 33), missing one additional protein. The ROC-like analysis (Supplementald=sjwshows that
the results remain accurate at all levels of truncation. The relatively smalbsithis family and low
functional diversity enabled us to perform two additional experimentst,kire estimated the model pa-
rameters from the data itself. Second, we were able to run the previaisrvefsIFTERON this family,
and found that it produced identical predictions and near-identical-R@Curves to the predictions

using exact computation fromIFTER 2.0. These results on this small family (in addition to the broad



comparison below) serve to illustrate the equivalenceiefER2.0 to SIFTER 1.1, and the high quality

of the predictions produced by the approximation.
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Supplemental Figure 3. Truncation approximation accuracy in the AM P/adenosine deaminase
family. This figure shows the results of the ROC-like analysisSTER|eave-one-out cross-validation
runs on the AMP/adenosine deaminase family of proteins. The curvedatedsSIFTER-TV where

N is the level of truncation4(is exact computation). Recall there are four candidate functions for the
deaminase family. Level§ 3, and2 all achieved the same accura®30%), and levell achieved

90.9% accuracy for leave-one-out cross-validation, where each run ¢esirtiee model parameter using
GEM. Note that ther-axis is on a log scale.

2.1.1 Parameter Estimation

We ran GEM to estimate the parameters for the AMP/adenosine deaminase fachilglirig all of the
available experimental annotations. Leave-one-out cross-validatsoitggestimating the parameters
after leaving each protein’s annotations out) yields the same level ofaycas the standard results,
93.9% (31 of 33). Examination of the parameter estimates for this family gives no obvious irisight
how the functions evolved, and one should be wary of interpreting th&tsaated parameters in an
evolutionary light. In particular, the parameter governing the spontareggpesarance of growth factor
activity is estimated to be less than a quarter of the corresponding paraordter bther three functions

(0.288 versusl .233 for adenine1.204 for AMP, and1.275 for adenosine). It appears that the growth fac-
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Supplemental Figure 4. Truncation approximation performancein the AM P/adenosine
deaminase family. There are four candidate functions for the AMP/adenosine deaminadg, farhich
has251 proteins in our data set. Panel (a) shows the number of inconsistencies tutaofeinction
predictions for every extant protein in this family, truncating at each of tfeethossible levels for a
maximum of251 possible proteins with functions that were predicted differently than in thetex
version. This does not evaluate whether the predictions on the entire fdmpilgteins were correct or
not, only that the approximate function prediction for each protein matchezktet prediction. Panel
(b) shows the mean absolute difference between the approximate pogteliabilities and the exact
posterior probabilities, including the standard deviation of that differefbis figure also is for
proteins at the leaves of the phylogeny, and includes bars for each tfrde possible levels of
truncation as compared to exact computation. Panel (c) shows the etienego compute posterior
probabilities for all levels of truncation (including no truncation), avedagyer10 runs. The numbers
inside the bars in figure (c) indicate the number of rows and columns of thexratr

tors share a sequence motif, where two of the four conserved residuialso found in the adenosine and
adenine deaminase proteins (Maier et al., 2005). This does not diffeeethe evolutionary appearance
of growth factor activity from substrate evolution in this family. It is possibbg the parameter estimates
imply that growth factor activity should not be modeled as arising spontahgdwt instead be modeled
as evolving from a particular deaminase activity (in this family, adenosineg. stale factors;,. and

o qup did not provide any interpretable evolutionary insight, as they both cgadeguickly to the bound-
ary 0.01. On the one hand, this suggests that the role of gene duplication in phylbgsad function
prediction may be overemphasized relative to the evolutionary history ddldatuction mutations, par-
ticularly as early studies focused on families with an atypically low degree ré deplication (Eisen
and Hanawalt, 1999). On the other hand, the large number of false pagéie duplication events in

the reconciled trees produced through automated pipelines appearstangialy diminish their signal.



2.1.2 Power Set Truncation Approximation Results

We used the AMP/adenosine deaminase family to test the power set truncapimxienation. We
computed posterior probabilities based on the parameters previously estimiidted truncation from
the complete experimental data set, truncating the number of possible fungtéstisted for a single
protein atl, 2 and3. Supplemental Figuréa shows the number of predictions for ali1 proteins that
differed (regardless of correctness) from the algorithm with no tiimcdi.e., truncation level), for
each of the three possible levels of truncation. Supplemental Figuskows the mean difference and
variance in posterior probabilities for the leaf proteins at each level atation, as compared to the
posterior probabilities computed without truncation at the leaf proteins. |Smgptal Figuretc shows
the average running time for all of the four possible levels of truncation, th#mumber of rows and
columns of the transition rate matrix embedded in the bars. The impact on thagqstebabilities and
corresponding functional predictions for a fixed set of parametext lait levell appears modest.

An alternative test of the truncation approximation is to run leave-one+ogs«validation, esti-
mating the parameters with the truncated algorithm at each iteration, for edlob wéincation levels.
Truncation leveld, 3 and2 all achieve®3.9% accuracy §1 of 33), whereas truncation levélachieved
90.9% accuracy 80 of 33), missing the additional prediction for protein Q26682RPE (predicting
adenosine deaminase activity when the experimental annotation is grovahdetivity). The ROC-like
analysis comparing the different truncation approximations is illustrated iplSmental Figure3. As
with the results from the previous analysis, the impact of the truncation owtaibvel 1 appears min-
imal. Even at levell the results are comparable, and the quality of the results is superior to tratition

pairwise approaches suchm@sasT.

2.1.3 Comparison with previous SIFTER

We compared the new version efFTER (version2.0) with the previous version oIFTER (version
1.1) (Engelhardt et al., 2006) on the AMP/adenosine deaminase protein faff@lgomputed the accu-
racy for leave-one-out cross-validation on the deaminase protein fanmilgig GEM for each iteration,

with no truncation), finding thasiFTERversion1.1 had93.9% accuracy §1 of 33) andsIFTERVversion



2.0 also had93.9% accuracy §1 of 33), missing the same two proteins. The performance of the two
methods are almost identical and show no relevant differences in theliR©@nalysis (Supplemental
Figureb).

In terms of computation speesiFTERversionl.1 average@96.2ms with41.6ms standard deviation
for 10 iterations of exact computation on the deaminase family, whesga<R version2.0 averaged
455.3ms with55.3ms standard deviation for identiced runs on the same computer. The maximization

step for GEM averagetll.4ms forsiFTERversionl.1, and13.8ms forSIFTERVversion2.0.
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Supplemental Figure 5. ROC-like comparison of SIFTERversion 1.1 and SIFTERversion 2.0 on

AM P/adenosine deaminase family. A comparison ofSIFTERVersion2.0 with SIFTERversion1.1 on
the AMP/adenosine deaminase family of proteins. The curveiforerversionl1.1, as described in
(Engelhardt et al., 2006), is almost identical to thasfTER version2.0, as described here. Note that
thez-axis is on a log scale.

2.2 SIFTER 2.0 compared with SIFTER1.1 on one hundred Pfam families

To perform a more thorough comparison of the old versiorsiBfTER (version 1.1) with the new

version of SIFTER (version2.0), we built 100 Pfam families from Pfam releaskl.0, and compared
leave-one-out cross-validation prediction accuracy for the $warers on the proteins with experi-
mental evidence from theoaA UniProt 80.0 database. ThsIFTER files, including both the annota-

tion file and the reconstructed phylogeny for each of the families, are available for download at
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http://sifter. berkel ey. edu, and will work for both versions o§IFTER Note that we did not
reconcile these trees, setting each of the internal nodes to be a speciatimmather than a duplica-
tion event, for two reasons: first, the reconciliation methods produced 9y falae positive duplication
events, the actual signal is apparently overwhelmed by noise; secfamd,n® longer releases species
trees for each of their families, so these species trees are no longiy esadable. These families were
chosen to have between two and eight candidate functions, with no limit orfahdly size. We used
the Pfam-A alignments, and reconstructed the phylogenies using Fagt{Pedee et al., 2010) with the
default settings.

SIFTER version1.1 andSIFTER version2.0 made predictions fot632 proteins with experimental
annotations across th€0 families in cross-validation runs.ISTeR 2.0 achievedr2.5% accuracy {183
of 1632), whereassIFTER 1.1 achieved70.0% accuracy {142 of 1632); the two versions agreed on
95.3% of the predictions. We found thatFTER 2.0 using exact computation took approximately twice
as long assIFTER 1.1, where the bulk of the difference in tineFTER spent on the most functionally
diverse families; if we limit the families to ones withor fewer candidate functions rather than,
SIFTER2.0 takes only2% longer tharsIFTER1.1. These results illustrate that the new model§trTER
produces equivalent predictions based on exact computation as @uihtpathe specialized model in
SIFTER1.1. From this we can safely conclude that they produce generally comeaesults, perhaps

with a slight accuracy improvement in the more general model.

2.3 Sulfotransferases: additional results

We first appliedsIFTER 2.0 to the sulfotransferase family (PF00685) from Pfam0. Our gold-
standard data set includé®9 proteins andd candidate functions irsiFTER We include here the
names of the sulfotransferase proteins for wisahTER made incorrect predictions using exact compu-
tation. Theswiss-proTIidentification numbers for the incorrectly annotated proteins from exawt co
putation are STAIEHUMAN, ST2B1 HUMAN, CHST1 HUMAN, CHST3 HUMAN, CHST3.RAT,
ST1A3HUMAN, Q91W19MOUSE, ST1A1MOUSE, and Q8BT6MOUSE, which include the five

proteins with unique annotations (the first five on this list) as anticipated. Qdrifteins thatSIFTER
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could plausibly annotate correctly given the set of candidate functiongiletive-one-out type analy-
ses84.0% (21 of 25) were correct. BAST made correct predictions for six proteins that were missed by
SIFTER, including ST1IA3HUMAN, ST1E1 HUMAN, Q8BT67.MOUSE, ST2B1IHUMAN, CHST1. HUMAN,
and CHST3HUMAN, four of which are proteins with unique function annotations.

The ROC-like analysis for this family (shown in Supplemental Figi)rat different levels of trunca-
tion shows that thesiIFTERresults do not degrade quickly when truncation is increased. EVEr=at,
the ROC-like analysis shows good results on this diverse family. Furtheyrtige approximation im-
proved the run time by a significant margirs86-fold in the case of of" = 2—with minimal reduction

in results (Supplemental Figubg.

2.3.1 Non-experimental annotations

As discussed above, five proteins could not possibly be correctlyopeddysiFTERIN the leave-one-out
cross-validation, because each is the only protein with its particular expgghamnotation. We inves-
tigated whether including non-experimental annotations might enable theseptedicted correctly in
these experiments. Including non-experimental annotations as obseswdties not yield significant im-
provement in the results. We ran leave-one-out cross-validation ortloé sroteins with experimental
annotations and electronic (i.6£A, with a probability of correctness set@®) annotations at truncation
level 2, obtaining73.3% accuracy 22 of 30). This experiment predicted proteins STLARMAN and
ST2B1HUMAN correctly, and CHSTHUMAN incorrectly, as compared to the non-truncated experi-
ments using only experimental evidence. Although one would hope that inglatéctronic annotations
would mitigate the problems associated with unique experimental annotationdinimgcsome of the
same electronic annotations for the same functions in this diverse protein fduisilwvas the case for
only one of the five proteins with unique experimental annotations (ST2ZBMAN). This may be be-
cause, in certain families such as this oge,experimental evidence is often for a more specific term
in the Go hierarchy than the non-experimental evidence, thus there are still fee@ examples of the

appropriately specific term.
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Supplemental Figure 6. SIFTER truncation approximation comparisons for the sulfotransferase
family. This figure shows a comparison of different levels of truncation irstlRgER approximation
for the sulfotransferase family of proteins. Truncation level is indicaled bollowed by the truncation
level. Note that the:-axis is on a log scale.

2.3.2 Pfam/GOA versions

We can examine differences in the sulfotransferase results betwean&éase0.0 and Pfam release
24.0 to try to infer howsIFTERS results are impacted by different versions of the databases. Fovdreth
sions, we used theIFTERdefault parameters; however for the runs on rel@dsgewe did not reconcile
the gene and species trees and instead set all internal nodes to bé@pesients (we do not believe
this difference meaningfully impacted the comparison). Furthermore, fdattex release, we had to
USEeSIFTERS truncation approximatiorn{ = 1) because of the prohibitively large number of candidate
functions.

For the sulfotransferases, rele@6e) has539 proteins, and releasy.0 has2317. The more recent
version of thecoA database includes new experimental annotations for previous membeedafrity,
including for proteins fronDrosophila melanogasteeebrafish, slime mold, anéirabidopsis thaliana
The number of candidate functions $nFTERis increased frond to 15, making exact computation in
SIFTER infeasible in the latter version of the data set. The total number of proteins wagrimental

evidence rose from8 to 80. Overall, the prediction accuracy increased fra8n8% (21 of 48 with
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Supplemental Figure 7. SIFTER truncation approximation performance for the sulfotransferase
family. This graph illustrates how the time to compute posterior probabilities scales edlative size
of the transition rate matrig) for the sulfotransferase family. There i$@&-500 times speedup in going
from the complete matrig) to a matrix truncated & = 3 or 7' = 2, with no meaningful loss in
accuracy (see previous figure). The truncation levef)(and(z, y) coordinates are included at each
point for clarity.

experimental evidence, since we did not removeltfi@roteins with only the more general tersnl-
fotransferase activityn this experiment) t&2.5% (42 of 80, 22 of which have only the general term
sulfotransferase activitya far lower proportion). Overall, the prediction accuracy remainetyfsiable
for this family.

In a second example, the AMP/adenosine deaminase set of protei2§lhasgmbers in release
18.0 and 1607 members in releas24.0. With six candidate functions now instead of four, and con-
sidering only the annotations available in theA database instead of the complete collection in our
gold-standard data set, this family ha@l of 20 proteins correctly predicted for releag¢.0, missing
only AMPDZ1 RAT, for which siFTERpredicted AMP deaminase function, but the sequence did not have

this (probable) experimental annotation in theA database. As with the sulfotransferases, the over-
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all prediction accuracy did not change substantially between releasmgevidr, because of signficant
changes between versions in Pfam membership, and the difficulty ofajieimey from two examples,
there is not sufficient evidence that the Pfamcma versions will not substantially impactiFTERS

results across all families.

2.4 Nudix family: additional results

The Nudix hydrolase family (PF00293) includ®g03 proteins in Pfam releas®).0. The66 candidate
functions and large family size (compared to the other families studied hed)ged a rich phylogeny
with intriguing possibilities for further investigation. One observation is thatyypaoteins with identical
or similar functions cluster tightly in certain areas in the tree, in particular ntideesugar diphosphatase
(pink terms), diphosphoinositol polyphosphate diphosphatase (aqug)ieoenzyme A diphosphatase
(gray terms), and diadenosine polyphosphate hydrolase activities{fgreen terms). NAD diphos-
phatase activities are interestingly split into two clades, one of which is cadpafsproteins that are
predominantly specific only for NAD-related compounds, while the other isenogdof hydrolases that
are also active on ADP-ribose and other dinucleoside polyphosphatesouping of mostly ADP-
ribose diphosphatases in the middle of the tree is unique in that it clusters tigistiistant from other
nucleotide sugar diphosphatases, and, moreover, within this clade theyetik and bacterial/viral hy-
drolases are in two distinct groupings. In addition, most non-ADP-ridgdesphatases cluster distantly
from ADP-ribose diphosphatases.

A few particular proteins are worth noting. DIBRSFB?7 is the only diphosphoinositol polyphos-
phate diphosphatase that does not cluster with other proteins of the sactieriubut instead is closely
aligned with another viral hydrolase demonstrating quite different fune((686L_BPT4). Another pro-
tein of note is QIRVPDEIRA, a nucleosideliphosphate diphosphatase that is closely related to three
nucleosideri phosphate diphosphatases, perhaps pointing to a similar catalytic mechanikesg four
proteins.

In our Nudix family results foiSIFTER, the average time for computing the posterior probabilities

for all nodes in this tree wabkl6.78 seconds with a standard deviation0o62 second, as averaged over
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the 97 runs involved in leave-one-out cross-validation.

2.4.1 Functional diversity in the Nudix family

The large functional diversity in the Nudix family is the main reason for diffycun inferring molecular
function. In this family, our data set labels five proteins (Q4U4W6, Q537ERLEES, P32056, and
035013) with single, unique functions (i.e., they are the only protein in thatttrdhave that experi-
mental annotation). In the case of protein O35013, it is labeled with fowtifurs that are all unique

in the Nudix family. Furthermore, there a#& function terms that only appear once in the annotated
proteins, most of which co-occur in proteins with more common annotatiorgp(@uental Figure).
Most functional terms occur experimentally in this family once or twice, with thglsiextreme example

of ADP-ribose diphosphatase activity occurring experimentalGiproteins in the family. The small
number of proteins with common functional activity indicates that methods thdigirmolecular func-
tion via annotation transfer will encounter difficulty. It may also reflect limitagiohthe experimental

studies performed in this family to date.

2.4.2 Generalizing Functional Annotations

We wanted to examine the tradeoff between predicting molecular function atea geaeral level of
the Go hierarchy and sensitivity. Within a family, we can selectively generalize sufrttee functional
terms to improve sensitivity when, for example, there exist characterizeggays that provide a general
screen for particular types of hydrolases. Although developing a methadttmnatically determine
the appropriate level of generalization is beyond the scope of this papenanually generalized the
candidate functions for a single family to examine the impacti®mERS performance. We generalized
the leaf terms in the Nudix family candidate functional terms that grouped bitich#y in the natural
way, only collapsing branches of the tree that were descended atWeastanches from the most recent
common ancestor term. After generalization there wéreandidate molecular function$) of which
are generalized terms and the rest of which are original functional terms.

We ran leave-one-out cross-validation at truncation lévah these data, achieving.4% accuracy
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Supplemental Figure 8. Functional diversity in the Nudix family. This histogram illustrates the
number of occurrences of each of ttedifferent candidate functional terms in the experimentally
characterized proteins. Many of them occur only once; ADP-ribodsodjphatase occup$ times.

This histogram represents the available characterizations and sholie nséd to interpret the relative
counts of the functions in the entire family, as these counts may be skewditaigfty by protein
choice, assay difficulty, etc. Protein functions encountered only cenweot be predicted correctly in
the leave-one-out experiments.

(76 of 97). Because the generalization reduced the diversity of this family extdnsive also ran leave-
one-out cross-validation at truncation legehlso obtaining’8.4% accuracy 76 of 97). Performing the
same generalization f@LAST functional predictions achievel.3% accuracy 41 of 97). The ROC-
like analysis for this experiment is shown in FiguewheresIFTER predicts43.6% of the annotations
correctly at99% specificity, andBLAST predicts1.7% of the annotations correctly 80% specificity.
For comparison, the non-generalized versiors BfTER predicts24.4% of the annotations correctly at
99% specificity, and the non-generalized versiorBoAST predicts2.4% of the annotations correctly at
99% specificity.

The reason that the generalizédrsT performs poorly relative to the non-generalizd\sT at high
specificity is that a large number of general but incorrect hydrolasdigifons are made in the data set
with low corresponding E-values; although these general terms weresjmdren the candidate func-
tions were specific terms, they were counted as incorrect when the asmtlidctions were generalized.

Thus the generalized results fra@nAsT have a large number of false positives with low corresponding
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E-values. Looking at the overall graph, though, there appears taraeleoff between prediction ac-
curacy and the level of specificity of the functional term. These expetsriet us that biologists who
need general function predictions for a particular set of proteinsaaifise function term specificity in

return for more accurate predictions.

2.4.3 Evaluating the Value of Observations

To evaluatesIFTERS sensitivity to data sampling, we left out multiple characterized proteingtations
at each round of cross-validation. Specifically, we 2ar8-, 5-, 10- and20-fold cross-validation on this
data set. In this type of cross-validation experiment, the data are randolibintep K disjoint sets (or
foldg), and the experiment is performéd times, leaving out one of th& subsets on each iteration
during the posterior probability computation, and testing the accuracy digticns on the held-out set.
For 2-fold cross-validation, in which one half of the experimental annotatiomseanoved for each run,
SIFTERachieved36.2% accuracy §5.1 of 97), as averaged over ten runs. Rorfold cross-validation,
in which approximatelys of the experimental annotations are removed at random for eacSIRIER
achieved46.1% accuracy 44.7 out of 97), as averaged over ten runs. As expected, as more evidence
becomes available t®IFTER the annotations improve up to a certain point (Supplemental Fijust
20-fold cross-validation, the accuracy is slightly less than the leave-oneross-validation accuracy,

guantifying the value of four additional observations out ofqf¢otal.

2.5 S. pombe: Additional information

The fungal data set includexk00 phylogenies representing as many different Pfam-A domains within
the fungal genomes. Of the origin&27, 324 proteins from thel6 fungal genomes236, 854 proteins
contained at least one Pfam-A domain and a family with greater than four memWér include for
completeness the set &6 fungal species used in this analysis, and the phylogeny we used tailecon

each of the protein families against (Supplemental Figaje
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Supplemental Figure 9. Number of correct annotationsfor siFTERon the Nudix family of proteins
across different numbers of folds. The z-axis of this figure represents five different partitions for
cross-validation, fron2-fold to 20-fold cross-validation. Thg-axis represents the average number of
proteins for whichsIFTER correctly predicted the function for each of the different cross-vatida
tests. The bars shown are the standard deviation for each partitionofikd tine aty = 46 represents
the performance of leave-one-out cross-validation. All of the diffepartitions were run ten times.

3 Methods: supplemental information

3.1 Annotationsto probabilities

As described in Engelhardt et al. (2005), each protésnassociated with a Boolean random veckqr
where each Boolean component represents a candidate function tsavaédkel when protein has that
particular molecular function arif that function is not associated with proteinBecause the methods
we propose are exponential in the numbercahdidate functionsor the set of molecular functions
that represent random variables in the tree, we would like to make this setadlsas possible without
reducing precision. We can do this using the directed acyclic grapbAG structure, by eliminating
molecular function terms with deterministic dependencies. For every proteifaimiy, we associate
the experimental annotations with their functional terms indleDAG. In the GO DAG, we first prune
all ancestors of nodes with annotations (even if the ancestors themsakesihnotations), then we
prune all non-annotated nodes. This leaves a set of candidate funttminare neither ancestors nor
descendants of each other, ensuring there are no deterministic depiesdeetween them in terms of
the semantic network.

We definechildren as immediate descendants of a node, pakntsas immediate ancestors of a
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Chaetomium globosum
Podospora anserina
Neurospora crassa
Magnaporthe grisea
Fusarium graminearum
Fusarium verticillioides
Nectria haematococca
Trichoderma reesei
Botrytis cinerae
Sclerotinia sclerotiorum
Stagonospora nodorum
Aspergillus oryzae
Aspergillus terreus
Aspergillus niger
Aspergillus fumigatus
Aspergillus nidulans
Coccidioides immitis
Uncinocarpus reesii

Histoplasma capsulatum
Saccharomyces paradoxus
Saccharomyces cerevisiae
Saccharomyces mikatae
Saccharomyces kudriavzevii
Saccharomyces bayanus
Candida glabrata
Saccharomyces castellii
Kluyveromyces lactis

Ashbya gossypii
Saccharomyces kluyveri
Pichia stipitis

Candida guilliermondii
Debaryomyces hansenii
Candida lusitaniae

Candida albicans

Candida dubliniensis
Candida tropicalis

Yarrowia lipolytica
Schizosaccharomyces pombe

Cryptococcus neoformans JES21
Cryptococcus neoformans var grubii H99
Cryptococcus gattii

Ustilago maydis

Laccaria bicolor

Phanerochaete chrysosporium

Rhizopus oryzae

Supplemental Figure 10. Phylogeny of fully-sequenced fungal genomes. The actual branch lengths
were not estimated, as gene-species tree reconciliation does not nsk lerzgths. This tree was
derived from tree reconstruction methods based on concatenatingjtenses ofi2 genes common to
the set of fungal species, and then correcting for an instance of lamglp attraction in the Aspergillus
clade, as originally in Fitzpatrick et al. (2006). We compared this tree to floosel in two other
sources (Stajich, 2006; James and et al., 2006) to build this consersasdré correctly insert the
species in this study that were not in these original phylogenies.

node; we assume that edges between terms are all “is a” edges, as is ttraemmo®nly in the molecular
function ontology. Thus, morspecificmolecular function terms are descendants of the nyeresral
terms. Although we are aware of the limitationsa, here we assume it is both complete and accurate
in order to interpret information from theoA database in a probabilistic way.

For each protein with experimental evidence, the annotations at prunestanterms in the o DAG
are propagated to the set of descendant candidate functions byveffemarginalizing out the ancestor

terms. We gave a probability of correctnes®@fto IDA andTAS and 0f0.8 to IMP. When there were
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multiple annotations at a single term node, the annotations were combined by nmdtiply probability
of their errors. Annotations are propagated to the candidate terms hyiagsthat the probability that
children terms have a value when a parent term has vallie has probabilityﬁ. In this equation,
S| is the size of the subsét of children terms andt is the solution to the equation, g 57 = 1,
whereS is the power set of all children terms of a particular term. As a simple exampk) aiparent
node has annotations with the probabilty of correctness equiad&p and has a single child node with
no annotations, then propagating the evidence to the child node will yield reotadion at the child
node with probability of correctness equal(@®8. Note that we set the probability of the empty set
to zero, effectively assuming that if a protein has a particular function, #tralso have at least one
of the function’s descendant terms related by “is a” edges. Marginal@mingll of the non-candidate
function terms eliminates all deterministic dependencies from the random Vectach protein. The
random vectors representing observations of molecular function acrgtget to the values from this

computation for each protein with experimental evidence. These extastmavith molecular function

observations are among the leaves of the phylogeny.

3.2 Transition rate matrix: motivation

We designed the instantaneous transition rate mgtri® embody the following semantics. In a single
instant, the probability of more than one functional change (i.e., loss or garsingle function) in a
protein is zero. Of course, the probability of these transitions will be moo-when timet > 0 has
passed, according to the definition of the matrix exponential. Note in partitidathe probability of
multiple transitions (the creation of a path between the states with more than atiefiahchange) will
be non-zero when some finite period of time has passed. Furthermorestaipgeare the result of one
of multiple possible events. For example, if a parent protein in sfiateansitions to statél in the child,
the appearance of the functidrcould be a result of functiod mutating into functionl while retaining
function 2 as well (1) or the spontaneous appearance of functidia;). The total probability of a
transition is an integral over all possible transitions.

This approach thus also takes into account the possibility of a single chiarfgaction over a
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finite time period. This models the impact of various changes in protein segukat control and

modify function. An additional domain may be added to a protein in a single mutateoti é.e., a gene

duplication or exon shuffling event), conferring an additional moleculaction. Mutations of individual

nucleic acids (coding for this protein or related proteins) or a changeviroement may accumulate to
confer enzymatic activity for an additional substrate, or yield (over timejfarent chemical reaction
entirely. All of these possibilities are implicitly modeled by our particular choicenafrix ().

Other evolutionary possibilities are not modeled by our choice of méirixn particular, we have
assumed that the instantaneous rate of transition between states with moredhdiffavence, e.g., a
01 state and d0 state, has probability zero. Of course this does not reflect all biologasdibilities.
There are examples of single nucleotide mutations, an event that would$ide®d instantaneous, that
change specificity from one substrate to another. We have chosen tatlilbogase to be subsumed by
the transition paths implemented by the matrix exponential, in particular a functioricjawed by a
complementary function loss.

A more general modeling concern may be the simplification of describing aipréeforming a
certain function as a binary variable. Alternatively, we could model thisguaiontinuous variable
capturing the effectiveness of a particular enzyme to catalyze a partiealetion, such aB.q;/K,,. It
would be possible to use diffusion theory to model this variable as a contimuna,)®ut we have chosen
not to go this route for a number of reasons. The primary reason is odataf there is simply not
enough data available for particular enzymes to model this robustly. A motie swiestion is whether
this feature of a protein evolves in parallel with protein sequence, whichcitspiae appropriateness of
phylogenetic methods for this modified problem.

For a thorough discussion of continuous-time Markov chain as relatedotatienary processes,

see (Felsenstein, 2003), Chaptar

3.3 Expectation Maximization to estimate parameters

We use generalized expectation maximization (GEM) to estimate paramaters in the§ mben pa-

rameter estimation is possible. The E-step is the computation of the posteriabpitads for each
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unobserved random variable, using the standard message passiithmaldor trees (Felsenstein, 1989).
Because there is no simple analytical expression for the matrix exponamtidn of this transition
rate matrix(), we compute these values numerically for a gigeasing the jLapack library (Blount and
Chatterjee, 1998). The M-step is implemented using projected gradient §Beetsekas, 1999) for each
of the parameters, ®, andc, derived from the gradient of the expected complete log likelihood of the
model with respect to each of the parameters. Each step of the gradient &sscaled by step size
The parameter constraints mentioned above define the space onto whicadiemgsteps are projected.
The ® anda parameters are projected via normalization ontdl&dr- 1 sided cone defined by th&l
simplex, and the scale parameters are projected batktavhen they fall below that value.

In practice, we take a single projected gradient step for each iteratioklf. ®/e stop GEM itera-
tions when the sum of the absolute value of the total change in parameteistisdesome cutoff. In
our experiments, we set the step sizef the gradient ascent tb01 and the cutoft: to 0.0015, but these
may vary based on the size of the family and the number of observations.iti&kzied the parameters

to the defaults with the exception of setting,. = 0.5 andog,, = 0.8.

3.4 Methodsfor comparison
3.4.1 BLAST keyword extraction

To build theBLAST annotations based on the written descriptions of molecular function fromatie n
redundant (nr) database, we manually built a parser to map the writtenpdiess to a subset o60
terms. For eacboterm that was in the candidate functions for the protein families of intereppaamed
often in theBLAST search results for proteins in these families, we investigated the diffeay# that
term was expressed in ti AST results from the nr database; in our mapping a sirggbeterm may

be mapped from a possibly large number of keyword terms. Using this mafiygngfor each protein
we extracted the list of topLAST hits by E-value (using BioPerl (Stajich et al., 2002)), and mapped
that ranked list to the associated molecular function term. We visually inspected all of the results to
confirm that there were no importa@b terms omitted from the keyword mapping. We found the most

significant hit with a candidate function annotation and transferred that matdianction prediction to
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the query protein with its corresponditigtvalue. Because of the time-consuming nature of building this
mapping, there are a large number of omissions and errors in mappingydrothese errors are mostly
to the benefit of th& LAST method results. We wanted to include a source of annotations other than the

GOA database for a greater diversity of comparative methods.

3.4.2 Orthostrapper

We ran the Orthostrapper (Storm and Sonnhammer, 2002) version &bradry6, 2002. We reconciled
the phylogeny using eukaryotes and non-eukaryotes. We clusterddtthasing a bootstrap cutoff bf
resulting in non-statistically supported clusters (but with much better results mnalyses than using a
bootstrap cutoff of, say50). In each cluster, we transferred all available experimental annotditmms
member proteins onto the remaining proteins without experimental charatitarszalf a protein was
present in multiple clusters, we transferred all of the annotations asgbwidteeach of those clusters
to that protein. This method yields an unranked set of predictions forgatéin; multiple annotations
were resolved in favor of the correct one. We performed crossatai for each protein by removing
its annotations and transferring the remaining annotations to make a predaotibie fheld-out protein.
The ROC-like analysis was performed by determining true positive anddakigve annotations for all
clusters generated by bootstrap cutoffs betwE#1) and0. Because of the prohibitively long run time

for large families, we only ran Orthostrapper on the deaminase family.

3.5 Data set preparation
3.5.1 AMP/Adenosine deaminase family

TheGcoA Uniprot28.0 database contained experimermalannotations fot 3 proteins in the AMP/adenosine
deaminase Pfam family (PF00962) versith0, and our literature search revealed experimental anno-
tations for an additionat0 proteins, including our experimental characterization &asmodium fal-
ciparumprotein (Engelhardt et al., 2005), resultingd® proteins with experimental annotations. The
alignment for the full phylogeny was from Pfaig.0. The subset of sequences with experimental an-

notations were aligned usirfgmal i gn (Eddy, 1998) with the deaminase HMM profile from Pfam
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releasel8.0. The phylogenies were reconstructed using PAUP* vergiohl0 maximum parsimony
with the BLOSUM50 matrix (Swofford, 2001; Henikoff and Henikoff, 299 This gold-standard family
has been greatly extended relative to the family that we built for our origixgériments (Engelhardt
et al., 2005).

3.5.2 Fungal genomesdata

Gene finding was performed in each genome using a number of differémbdse including GeneWise (Bir-
ney etal., 2004), FgenesH+ (Salamov and Solovyev, 2000), and Gl(E¥ackey et al., 2008); see (Sta-

jich, 2006) for complete details.
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