

Shen et al., Supplemental Data S3

Relationship of APA and the expression levels of *trans*-acting factors

It is well known that some polyadenylation-related protein factors play crucial roles in 3'-end formation (Simpson et al. 2003; Xing et al. 2008; Zhang et al. 2008), and mRNA splicing is also known to play a role in polyadenylation (Millevoi et al. 2006; Tian et al. 2007). To further determine the basis for the different usage of APA sites in different tissue types, we examined the expression level of known polyadenylation factors and splicing factors in each MPSS-DGE library. The hypothesis was that different expression levels of these *trans*-acting factors might correspond to different APA levels among different libraries. Since Arabidopsis has more libraries showing significant differences in APA site usages (Supplemental Data S2) and the polyadenylation factors are better understood than those in rice, we only used the polyadenylation factors of Arabidopsis in this study. We did not use signatures in the five oldest libraries sequenced by the “classic” MPSS-DGE method to make sure that comparisons between libraries are not affected by sequencing methods. In 12 libraries, the TPM values were used as the expression levels of genes involved. The 24 known Arabidopsis polyadenylation factors (Hunt et al. 2008a) and expression value of 19 splicing factors (Campbell et al. 2006) were examined in the same 12 libraries obtained from Arabidopsis MPSS-DGE databases.

To find genes that are critical to the library-specific behavior of APA, we used a Spearman correlation to calculate the correlation of each gene’s expression value with different usage of APA. We further categorized APA into two conditions, APA found in exons (classes 4, 5 and 6), and APA associated with alternative splicing (classes 6 and 7). In the first case, several polyadenylation genes *PCFS1*, *U2AF65*, *PAPS4* and *PABN3*, were found to have a positive correlation with the increased usage of library-specific APA (Supplemental Table S1; detail expression value of each genes are in Supplemental Table S2). Meanwhile *CFIS25*, *SYM2* and *PABN2* have positive APA effect in introns. This result correlates with some previous findings using traditional experimental methods. For example, *PCFS4*, a homologue of yeast polyadenylation factor Protein 1 of Cleavage Factor 1 (*Pcf11p*), is the only gene on the list significantly correlated with APA (Pearson correlation test, $p < 0.05$) in exons and introns and is

also known to regulate flowering time through regulation of APA (Xing et al. 2008). The splicing factor U2AF65 was recently associated with the splicing of the last exon and polyadenylation, through its interaction with polyadenylation factor CFI-m in mammals (Millevoi et al. 2006). Moreover, the homologue of CFI-m in *Arabidopsis*, *CFIS25*, may also be implicated here as it demonstrates a positive correlation with APA in introns.

It was surprising to see there were no genes on the list for which their expression level is significantly correlated with APA (Pearson correlation test, $p<0.05$) in both exons and introns (Supplemental Table S2). This result suggests a possibility that these events could be mutually exclusive, and the expression of, rather than lack thereof, certain genes may promote APA in some tissues. While the result may also validate our analysis protocols, the correlations warrant further studies to reveal more specific relationships between polyadenylation and splicing factors and particular library preference towards APA.

Method

To study which *trans*-acting factors play a role in determination of usage of APA in *Arabidopsis*, we identified known polyadenylation and splicing factors (Campbell et al. 2006; Hunt et al. 2008b). For each library, expression levels of each factor were determined by the total number of TPMs (without considering the number of signatures each gene has) and expression values from all libraries were compared with relative distance calculated in the previous section. Spearman correlation values for each gene were calculated by comparing the expression value of the gene with the preference of APA discussed in previous paragraph. We classified the APA preference into two groups: an exon-related group that includes signatures from APA classes 4, 5 and 6 and an intron-related group from APA classes 6 and 7. Genes with p -values < 0.1 were considered significant.

Table S1. List of polyadenylation or splicing related proteins found to be correlated with the usage of APA in exons or introns. Library specific expression value of all known polyadenylation or splicing factors are compared with APA-class usages in same library (see Figure 3) using Spearman correlation method.

Gene ID	Name	<i>p</i> -value-exon ^a	<i>rho</i> -value-exon ^b	<i>p</i> -value-Intron ^a	<i>rho</i> -value-Intron ^b
<i>AT4G32850</i>	<i>PAPS4</i>	0.068	0.545	0.044	0.594
<i>AT4G36690</i>	<i>U2AF65</i>	0.017	0.670	-	-
<i>AT1G66500</i>	<i>PCFS1</i>	0.075	0.531	-	-
<i>AT5G10350</i>	<i>PABN3</i>	0.077	0.531	-	-
<i>AT5G51120</i>	<i>PABN2</i>	-	-	0.009	0.708
<i>AT1G27595</i>	<i>SYM2</i>	-	-	0.056	0.562
<i>AT4G25550</i>	<i>CFIS2</i>	-	-	0.072	0.535

^a*p*-value and ^b*rho*-value (Spearman ranking) were calculated based on expression values of the protein coding genes and APA usages in the 12 *Arabidopsis* libraries using Spearman correlation methods.

Supplemental Table S2. The expression values (tag numbers) of polyadenylation and splicing related genes in Arabidopsis associated with each library.

Gene ID	Name	AP1	AP3	AGM	INS	ROS	SAP	S04	S52	LES	GSE	CAS	SIS	p-value	rho-exon	pvalue-intrc	rho-intron
AT5G51660	<i>CPSF160</i>	26	22	11	25	15	1	51	9	48	17	25	16	0.672054	-0.1366027	0.556033	-0.189142
AT5G23880	<i>CPSF100,ESP5</i>	61	33	28	41	63	36	24	2	10	5	26	9	0.450277	0.2377622	0.477883	0.223776
AT1G61010	<i>CPSF73-1</i>	16	24	19	54	28	20	3	7	7	1	18	15	0.541214	0.1961474	0.533867	0.19965
AT1G30460	<i>CPSF30,OXT6</i>	5	16	18	16	1	31	0	0	4	0	24	0	0.587049	0.1747216	0.211804	0.388667
AT1G17760	<i>CSTF77</i>	17	12	27	21	17	48	4	20	38	12	39	29	0.786327	-0.0877198	0.695662	0.126317
AT1G71800	<i>CSTF64</i>	0	0	0	0	0	0	0	0	0	0	22	0	0.684849	-0.1310139	0.206256	0.393042
AT5G60940	<i>CSTF50</i>	40	56	22	27	24	13	14	0	48	2	64	56	0.931114	-0.0280211	0.504913	0.213661
AT5G13480	<i>FY</i>	0	4	0	2	5	0	0	0	0	0	2	5	0.799433	0.0822373	0.485576	0.223216
AT1G17980	<i>PAPS1</i>	6	6	10	6	38	8	3	5	6	0	17	0	0.732356	0.1105382	0.526366	0.203248
AT2G25850	<i>PAPS2</i>	7	37	17	29	24	23	0	18	61	0	35	12	0.347292	0.2977237	0.854155	0.059545
AT4G32850	<i>PAPS4</i>	44	75	46	74	139	107	41	17	64	49	174	29	0.068633	0.5454545	0.044262	0.594406
AT3G66652	<i>FIPS3</i>	12	19	9	6	9	0	0	0	0	0	0	0	0.518389	0.2070976	0.74418	0.105503
AT4G25550	<i>CFIS2</i>	33	36	6	28	60	59	0	0	3	0	78	45	0.539027	0.197188	0.072939	0.535225
AT4G29820	<i>CFIS1</i>	0	0	0	0	0	0	0	0	0	0	6	0	0.684849	-0.1310139	0.206256	0.393042
AT3G04680	<i>CLPS3</i>	1	4	0	16	15	5	0	0	16	0	26	3	0.387789	0.2745626	0.387789	0.274563
AT1G66500	<i>PCFS1</i>	0	8	0	5	0	0	0	5	10	14	0	0	0.075394	0.5314203	0.856417	0.058613
AT4G04885	<i>PCFS4</i>	14	6	2	9	10	0	0	0	17	1	5	22	0.810877	0.0774667	0.930749	0.02817
AT5G43620	<i>PCFS5</i>	0	0	0	0	0	0	0	0	0	0	0	4	0.333893	-0.3056992	0.8928	-0.043671
AT5G10350	<i>PABN3</i>	48	113	53	125	132	14	6	63	54	80	64	8	0.07708	0.5314685	0.313863	0.314685
AT5G51120	<i>PABN2</i>	32	47	57	41	29	55	13	19	13	52	74	32	0.518551	0.2070188	0.009865	0.708776
AT5G65260	<i>PABN1</i>	5	4	15	15	59	4	0	37	8	13	11	26	0.63974	-0.1508781	0.679528	-0.133334
AT5G01400	<i>ESP4,SYM5</i>	27	45	40	64	61	86	58	14	19	6	160	22	0.86898	-0.0559441	0.477883	0.223776
AT1G27590	<i>SYM1</i>	0	0	0	5	0	0	0	0	0	0	0	0	0.8928	-0.0436713	0.684849	-0.131014
AT1G27595	<i>SYM2</i>	38	35	8	35	11	45	0	0	38	20	170	66	0.461214	0.2355042	0.056984	0.562398
AT5G09880	<i>PUF60I</i>	18	16	13	3	1	15	0	0	2	0	0	1	0.356407	0.2923913	0.634252	0.153327
AT5G51660	<i>PUF60II</i>	26	22	11	25	15	1	51	9	48	17	25	16	0.672054	-0.1366027	0.556033	-0.189142
AT5G11170	<i>UAP56I</i>	5	6	9	11	1	2	0	43	3	22	0	0	0.375065	0.2816971	0.913488	-0.035212
AT5G11200	<i>UAP56II</i>	2	6	4	9	0	0	0	0	3	9	6	0	0.276412	0.342092	0.175728	0.418517
AT5G51300	<i>SFI</i>	54	92	73	90	18	32	2	9	21	31	68	26	0.410431	0.2587413	0.112478	0.482518
AT1G4650	<i>SF3A1</i>	20	81	40	50	46	14	3	21	27	12	33	50	0.956919	0.0175132	0.93971	0.024518
AT1G4640	<i>SF3A1II</i>	0	0	0	0	0	0	0	24	0	0	0	0	0.495367	-0.2183566	0.206256	-0.393042
AT2G32600	<i>SF3A, subunit 2</i>	19	30	49	46	20	27	23	0	76	5	86	23	0.664076	-0.1401053	0.974145	0.010508
AT5G06160	<i>SF3A60</i>	15	42	26	51	19	56	6	25	11	3	23	14	0.774731	0.0909091	0.724465	0.111888
AT5G64270	<i>SF3B, subunit 1</i>	216	103	95	140	87	53	52	12	200	99	318	59	0.360342	0.2867133	0.165145	0.426573
AT4G21660	<i>SF3B, subunit 2</i>	92	131	100	73	89	31	14	21	36	37	73	145	0.871178	0.0525395	0.341372	0.301226
AT5G40340	<i>SRm300</i>	81	140	100	148	33	123	7	4	46	0	86	24	0.643088	0.1468531	0.535464	0.195804
AT3G50670	<i>U1 70K</i>	159	165	216	169	155	120	75	70	135	66	108	99	0.92992	0.027972	0.886335	-0.048951
AT2G43370	<i>U1 70K</i>	0	1	0	1	2	1	0	0	0	0	0	0	0.094565	0.5042729	0.453361	0.23953
AT1G60900	<i>U2AF65</i>	45	101	107	114	43	21	0	5	43	0	109	85	0.616271	-0.1614045	0.671506	0.136843
AT4G36690	<i>U2AF65</i>	35	40	4	38	0	25	0	15	37	50	25	2	0.01709	0.6701796	0.10773	0.487722
AT1G27650	<i>U2AF35</i>	139	80	83	109	167	29	18	113	70	18	223	6	0.974145	0.0105079	0.736944	0.108582
AT5G42820	<i>U2AF35</i>	134	156	166	107	251	48	28	57	89	89	136	85	0.497785	0.2171632	0.347292	0.297724
AT1G10320	<i>U2AF35</i>	4	4	1	9	5	0	0	0	2	0	0	0	0.404218	0.2655249	0.826308	-0.071056