
Supplemental Material
A Hardness Proofs
Theorem 6. The Maximum Coverage Exclusive Submatrix Problem is NP-hard.

Proof. Given a mutation matrix A and an integer k > 0, the Maximum Coverage Exclusive Submatrix

Problem requires to find the m × k column submatrix M̂ with the largest number of non-zero rows. We

prove it is NP-Hard by reduction from the Maximum Weight Independent Set Problem. We consider the

Maximum Weight Independent Set Problem with positive integer weights, that is again NP-Hard, since an

algorithm for the case of positive integers weights can be use to find a solution to the Maximum Cardinality

Independents Set Problem.

In the Maximum Weight Independent Set problem we are given a graph G = (V,E), a weight function

w : V → N
+, and a value k > 0, and are asked for an independent set of size k with maximum weight.

An independent set is a set I ⊂ V of vertices such that there is no edge between the vertices of I , i.e.

∀u, v ∈ I, u �= v : (u, v) /∈ E.

Given an instance for the Maximum Weight Independent Set problem we build an instance of the Max-

imum Coverage Exclusive Submatrix Problem as follows. The mutation matrix A has one column for each

vertex v ∈ V . Let δ(v) be the degree of v ∈ V in G, and Δ = maxv∈V δ(v). We define the set of rows of

the mutation matrix as: S = {se : e ∈ E} ∪ (∪v∈V Sv) where Sv =
{
s
(1)
v , s

(2)
v , . . . , s

(Δ−δ(v)+w(v))
v

}
. We

define As,v = 1 if s = se = s(u,v) with e ∈ E or if s ∈ Sv, and As,v = 0 otherwise. All these operations

can be performed in polynomial time.

Note that: (i) for any two columns u, v ∈ V , Γ(u) ∩ Γ(v) �= ∅ if and only if (u, v) ∈ E. (ii) ∀v ∈ V ,

|Γ(v)| = Δ+ w(v) (i.e, the number of rows in which column v is 1 is equal to Δ+ w(v));
Now consider a set M = {v1, . . . , vk} of k columns. From (i) we have that column submatrix induced

by M is exclusive if and only if M is an independent set of size k in G. Now, if M is an exclusive matrix, the

number of non-zero rows in it is equal to
∑k

i=1 |Γ(vi)|. From (ii) above
∑k

i=1 |Γ(vi)| = kΔ+
∑k

i=1w(vi).

Since k and Δ are fixed, the exclusive column submatrix induced by M maximizes
∑k

i=1 |Γ(vi)| if and only

if M is the independent set of size that maximizes
∑k

i=1w(vi), i.e. M is the maximum weight independent

set in G.

Theorem 7. The Maximum Weight Submatrix Problem is NP-Hard.

Proof. The proof is by reduction from the Independent Set Problem, a well known NP-Hard problem (Hochbaum,

1997). In the Independent Set Problem we are given a graph G = (V,E) and a value k, and we ask if there

is an independent set of size k in G. An independent set for G is a set of vertices I ⊆ V such that there is

no edge among the vertices of I , i.e. for all pairs u, v ∈ I, u �= v: (u, v) /∈ E.

Given an instance of the Independent Set Problem, we build a mutation matrix representing the instance

of our problem as follows. We consider a column for each vertex v ∈ V . Let δ(v) be the degree of v in G, and

define Δ = max δ(v). We define the set of rows of the mutation matrix as: S = {se : e ∈ E} ∪ (∪v∈V Sv)
where Sv =

{
s
(1)
v , s

(2)
v , . . . , s

(Δ−δ(v))
v

}
. We define As,v = 1 if s = se = s(u,v) with e ∈ E or if s ∈ Sv,

and As,v = 0 otherwise. All these operations can be performed in polynomial time.

Note that: (i) ∀v ∈ V , |Γ(v)| = Δ (i.e, the number of non-zeros entries in column v is Δ); (ii) for any

two vertices u, g ∈ V , Γ(u) ∩ Γ(v) �= ∅ if and only if (u, v) ∈ E.

Now consider a set M = {v1, . . . , vk} of k columns. From (i) we have
∑k

i=1 |Γ(vk)| = kΔ, and

|Γ(M)| ≤ kΔ. From (ii) we have that |Γ(M)| = kΔ if and only if {v1, v2, . . . , vk} is an independent set

of G, thus W (M) = kΔ if and only if {v1, v2, . . . , vk} is an independent set of G. If we can solve the The

Maximum Weight Genes Set Problem on A, we can then solve the Independent Set Problem on G.



B Analysis of Greedy Algorithm
In this section we give a proof of Theorem 3. We need to prove that: (i) the first step of the greedy algorithm

is correct, i.e. the pair M = {g1, g2} of columns that maximizes W (M) is a subset of M̂ ; (ii) the loop in

step 2 is correct, i.e. all the subsets of size � built in the loop are subsets of M̂ .

To prove (i) and (ii), we need to lower bound the weight of the subsets that we build in the loop of step

2, assuming they are the correct ones.

Lemma 1. Let M be a subset of M̂ with |M | = �, 0 ≤ � < k. If W (M) ≥ �
kM̂ , then there exists a gene

g ∈ M̂ \M such that W (M ∪ {g}) ≥ �+1
k W (M̂).

Proof. The proof is by contradiction. Let assume that for a given M ⊂ M̂ with |M | = � < k, there exists

no gene g ∈ M̂ \M such that W (M ∪ {g}) ≥ �+1
k W (M̂).

Let M̂ \M = {g1, . . . , gk−�}, and Mi = M ∪ {g1, . . . , gi}, i ≤ k − �. Since W (Mk−�) ≥ W (M̂)
(in particular, W (Mk−�) = W (M̂)), there exists i such that W (Mi) < �+i

k W (M̂) and W (M�+1) ≥
�+i+1

k W (M̂). Let i∗ be the minimum such i, M ′ =Mi∗−1and g∗ = gi∗ .
We have

W (M ′ ∪ {g∗}) = 2|Γ(M ′ ∪ {g∗})| −
∑

g∈M ′∪{g∗}
|Γ(g∗)|

= 2|Γ(M ′)| −
∑
g∈M ′

|Γ(g)|+ 2|Γ(g∗) ∩ (S \ Γ(M ′))| − |Γ(g∗)|

= W (M ′) + Δ(M ′, g∗)

where Δ(M ′, g∗) = 2|Γ(g∗) ∩ (S \ Γ(M ′))| − |Γ(g∗)|.
Now, since W (M ′ ∪ {g∗}) = W (M ′) + Δ(M ′, g∗) ≥ �+i+1

k W (M̂) and W (M ′) < �+i
k W (M̂), we

have

Δ(M ′, g∗) ≥ �+ i+ 1

k
W (M̂)− �+ i

k
W (M̂) ≥ 1

k
W (M̂).

Moreover, since M ⊆M ′, we have Γ(M) ⊆ Γ(M ′), that implies Γ(g∗)∩ (S \ Γ(M ′)) ⊆ Γ(g∗)∩ (S \
Γ(M)).

Thus

Δ(M, g∗) ≥ Δ(M ′, g∗) ≥ 1

k
W (M̂),

that implies

W (M ∪ {g∗}) =W (M) + Δ(M, g∗) ≥ �

k
M̂ +

1

k
W (M̂) ≥ �+ 1

k
W (M̂),

that is a contradiction.

We now prove that if the number of patients is large enough, (i) holds. Note that since in Gene Inde-

pendence Model the frequency of mutation of the genes in M̂ and the frequency of mutation of genes not

in M̂ can be the same, the most frequent genes are not guaranteed to be in M̂ . Instead we prove that if the

the number of patients is large enough, the greedy algorithm, that checks sets of size 2, correctly identifies

a subset of M̂ of size 2.

Lemma 2. Let P be the pair of genes in M̂ with the highest weight W (P ), and let W (M̂) = rm. Define
the event E =“there exists a pairR �⊆ M̂ of genes such that W (R) ≥W (P )”. If

m ≥ (2 + ε)

2[2r/k − 2(pU − p2L)]
2
log n



then
Pr[E] ≤ n−ε.

Proof. Consider a pair of genesR = {gi, gj} �⊆ M̂ . We can rewrite

W (R) = X =

m∑
i=1

∈ Xi,

where Xi is the random variable that counts the “contribution” of patient si ∈ S to W (R). Note that for all

i we have Xi ∈ {0; 1}, since when only one gene in R is mutated the contribution of Xi is 1, while when

none or both genes inR are mutated in S the contribution of Xi is 0.

Let pi, pj be the frequency of mutation of gi, gj respectively. The expectation of W (R) is

E[W (R)] = E[X] = m(pi(1− pj) + pj(1− pi)) ≤ |S|(2pU − 2p2L).

Since the Xi are independent random variables, we can use the Chernoff bound we can then derive the

probability that a particular setR has W (R) ≥ 2r
k |S|:

Pr

[
W (R) ≥ 2r

k
m

]
= Pr

[
W (R)−E[W (R)] ≥ 2r

k
m−E[W (R)]

]

≤ Pr

[
W (R)−E[W (R)] ≥ 2r

k
|S| −m(2pU − 2p2L)

]

≤ e−
2m2( 2rk −(2pU−2p2L))

2

m .

Now, since m ≥ (2+ε)
2[2r/k−2(pU−p2L)]2

log n, we have:

Pr

[
W (R) ≥ 2r

k
m

]
≤ e−(2+ε) lnn

≤ n−(2+ε).

The lemma follows by applying a union bound on all the possible pairs P .

Assume that at each step the greedy algorithm chooses a gene in M̂ . With M̂� we denote the subset of

size of � genes of M̂ obtained from the procedure above. Note that this defines an order on the genes of

M̂ : in particular, we denote with g� the gene in M̂ added to M̂� in order to obtain M̂�+1. We now find a

lower bound to the number of patients required to guarantee that with high probability there does not exist

an iteration of the step 2 of the Greedy Algorithm in which a gene not in M̂ is chosen.

Lemma 3. Let g∗� = argmaxg W (M� ∪ {g}). If

m ≥ (2 + ε) log n

2
(
r(1−d)

k − pU +
4rpL
k

)2 ,

then
Pr[∃� : g∗� /∈ M̂ ] ≤ n−ε.



Proof. We assume that the subset built at each step is M̂i ⊆ M̂ . Since at the end the theorem will hold, this

assumption will be proven correct.

Consider the set M̂i, that is mutated in the set Γ(M̂i). By the assumptions of the Independence Gene

Model, its weight is bounded by W (M̂i) ≤ i+d
k W (M̂). Now consider a gene gj /∈ M̂ , with mutation

frequency pj ∈ [pL; pU ]. If we now add gj to M̂i, we have that gj contributes 1 to W (M̂i ∪ {gj}) for each

patient in S \ Γ(M̂i) in which it is mutated, and -1 for each patient in Γ(M̂i) in which it is mutated.

Since gj is mutated with probability pj in a patient, we have

E[W (M̂i ∪ {gj})] =W (M̂i) + pj(m− |Γ(M̂i)|)− pj |Γ(M̂i)| =W (M̂i) + pjm− 2pj |Γ(M̂i)|).

Now, given the assumptions on W (M̂i), W (M̂), pj , and since |Γ(M̂i)| ≥W (M̂i) we have

E[W (M̂i ∪ {gj})] ≤ i+ d

k
rm+ pUm− 2pL

ir

k
m ≤ m

(
i+ d

k
r + pU − 2pL

2r

k

)
.

(In the last inequality we use i ≥ 2.)

Since for each patient s the absolute value of the contribution to W (M̂i ∪{gj}) of gj in s is bounded by

1, we can use the Chernoff-Hoeffding bound to compute the probability that W (M̂i ∪ {gj}) ≥ i+1
k W (M̂):

Pr

[
W (M̂i ∪ {gj}) ≥ i+ 1

k
W (M̂)

]
≤ e−2

( i+1
k

rm−m( i+d
k

r+pU−2pL
2r
k ))

2

m

≤ e
−2m

(
r(1−d)

k
−pU+ 4rpL

k

)2

.

Now, since m ≥ (2+ε) logn

2
(

r(1−d)
k

−pU+ 4rpL
k

)2 , we have

Pr

[
W (M̂i ∪ {gj}) ≥ i+ 1

k
W (M̂)

]
≤ n−(2+ε).

The total number of pairs (M̂i, gj) we have to consider is bounded by nk ≤ n2, since there are n genes

gj /∈ M̂ , and there are k sets in M̂i, since M̂ contains k genes. The lemma follows by union bound.

Theorem 3 follows from Lemma 2 and Lemma 3.

C Proof of MCMC Convergence
Our analysis applies the following simple version of path coupling adapted to our setting (see (Bubley and

Dyer, 1997) and (Mitzenmacher and Upfal, 2005)):

Theorem 8. Let φt = |Mt −M ′
t |, and assume that for some constant 0 < β < 1, E[φt+1| φt = 1] ≤ β,

then the mixing time

τ(ε) ≤ k log(kε−1)
1− β

.

Using the above, we prove the following convergence result for our chain.

Theorem 9. The MCMC is rapidly mixing for some c > 0.



Proof. Let D = maxg∈G |Γ(g)|. Assume first that in the first chain v = y. The probability that the first

chain performs the switch is

ecW (M−{y}+{w})

ecW (M)
≥ e−c(Γ(y)+Γ(w)) ≥ e−2cD.

Similarly the probability that the second chain performs the switch is≥ e−2cD. Since v = y with probability

1/k we have

Pr(φt+1 = 0 | φt = 1) ≥ 1

k
e−4cD ≥ 1

k
− 4cD

k

for 4cD < 1. Next assume that v ∈M ∩M ′. We need to upper bound the probability that exactly one of the

chains perform the switch (otherwise φt+1 = φt). The probability that exactly one chain performs a switch

is given by

Q =
∣∣∣min[1, ecW (M−{v}+{w})−cW (M)]−min[1, ecW (M ′−{v}+{w})−cW (M ′)]

∣∣∣ .
Let Γ̃M (v) = Γ(v)−Γ(M −{v}), i.e. patients where v is altered but no other gene in M is altered. Clearly

|(W (M − {v}+ {w})−W (M))− (W (M ′ − {v}+ {w})−W (M ′))| ≤

2(|Γ̃M (v) ∩ Γ(z)|+ |Γ̃M ′(v) ∩ Γ(y)|+ |Γ(w) ∩ Γ̃M (y)|+ |Γ(w) ∩ Γ̃M ′(z)|).
Thus, (using 1− e−x ≤ x for x < 1, and c ≤ 1/12D)

Q ≤ 2c(|Γ̃M (v) ∩ Γ(z)|+ |Γ̃′M (v) ∩ Γ(y)|+ |Γ(w) ∩ Γ̃M (y)|+ |Γ(w) ∩ Γ̃M ′(z)|).

Summing over all choices of w and v ∈ M ∩ M ′ we compute that the probability that exactly one of

the chains performs a switch is bounded by k−1
k

(
4cD
k−1 +

4cDD̄
m

)
, where D̄ =

∑
g∈G |Γ(g)|

n . Setting c <

min
{

m
8kDD̄

, 1
16D

}
we have

E[φt+1 | φt = 1] ≤ 1 + 2
k − 1

k

(
2cD

k − 1
+
2cDD̄

m

)
− 1

k
+
4cD

k
≤ 1

2
.

Thus, with this value of c the mixing time satisfies τ(ε) ≤ 2k log(kε−1).

How good is the sampling process with this value of c in sampling sets of significant gene mutations?

Assume that (after removing the genes that appear in most patients) we have Dk = O(m), and that we have

two sets M and M ′ such that W (M) ≥ γW (M ′) for some γ < 1. In that case the sampling procedure

samples M with frequency that is at least eΩ(k) larger than the frequency that it samples M ′.



D MCMC results
D.1 Results for Lung adenocarcinoma

Table 2 reports the results obtained on the lung data with k = 2 and k = 3. Table 3 reports the results for

k = 2 obtained after removing the set (EGFR, KRAS, STK11). In all tables k is the size of set, M is the

set of genes, π̃(M) is the frequency of the set in the sample obtained with the MCMC, and W (M) is the

weight of the set.

k π̃(M) W (M) M

2 99.9% 90 EGFR KRAS
3 8.2% 96 STK11 EGFR KRAS

3.2% 94 PRKCG EGFR KRAS
2% 93 NRAS EGFR KRAS
2% 93 PFTK1 EGFR KRAS
1.8% 94 EPHB1 EGFR KRAS
1.7% 93 MAP3K3 EGFR KRAS
1.6% 92 VAV2 EGFR KRAS
1.5% 92 ERBB4 EGFR KRAS
1.4% 92 YES1 EGFR KRAS
1.3% 92 TSC1 EGFR KRAS
1.3% 93 NTRK3 EGFR KRAS
1.2% 93 NF1 EGFR KRAS
1.1% 92 PTK2 EGFR KRAS
1.1% 92 FES EGFR KRAS
1.1% 91 KLF6 EGFR KRAS
1.1% 92 PAK6 EGFR KRAS
1.1% 91 AURKB EGFR KRAS
1.1% 92 EPHA3 EGFR KRAS
1% 92 TP73L EGFR KRAS
1% 91 TERT EGFR KRAS
1% 91 MG EGFR KRAS
1% 92 CYSLTR2 EGFR KRAS
1% 90 FLT4 EGFR KRAS

Table 2: Results for Lung mutation data with k = 2 and k = 3. M is the set of genes, π̃(M) is the frequency of

the set in the sample obtained with the MCMC, and W (M) is the weight of the set. MG is a metagene containing:

ACVR2B, MAP2K5, RPS6KA6, EPHA2, FOXO3, STK3, CDC2L2, KSR2, CCNT2, FBXW7.



k π̃(M) W (M) M

2 56% 75 ATM TP53
1% 67 PAK4 TP53
1% 66 IGFR1 TP53

Table 3: Results for Lung mutation data with k = 2 after removing the set (EGFR, KRAS, STK11) from analysis. M
is the set of genes, π̃(M) is the frequency of the set in the sample obtained with the MCMC, and W (M) is the weight

of the set.

D.2 Results for Glioblastoma

Table 4 reports the result obtained for Glioblastoma data with k = 2 and k = 3. Table 5 reports the results

for k = 2 obtained after removing the set (CDKN2B, RB1, CDK4). Table 6 reports the results for k = 2
obtained after removing the sets (CDKN2B, RB1, CDK4) and the set (CDKN2A, TP53). In all tables k is the

size of set, M is the set of genes, π̃(M) is the frequency of the set in the sample obtained with the MCMC,

and W (M) is the weight of the set.

k π̃(M) W (M) M

2 18.4% 54 CYP27B1 CDKN2B
10.9% 53 MG1 CDKN2B
9.7% 53 TP53 CDKN2B
9.6% 53 CDKN2A TP53
7.2% 52 EGFR TP53
5.8% 52 MG2 CDKN2B
5.4% 52 MTAP TP53
4.9% 51 OS9 CDKN2B
4.9% 51 RB1 CDKN2B
2.6% 50 NF1 EGFR
1.6% 49 PTEN CDKN2A
1.6% 48 SEC61G TP53
1.4% 49 DTX3 CDKN2B
1.2% 48 MG3 CDKN2B
1.2% 48 PTEN MTAP

3 9.7% 62 CYP27B1 RB1 CDKN2B
5.7% 61 MG1 RB1 CDKN2B
3.1% 60 MG2 RB1 CDKN2B
2.1% 59 OS9 RB1 CDKN2B
1.4% 57 MTAP CYP27B1 RB1

Table 4: Results for Glioblastoma mutation data with k = 2 and k = 3. M is the set of genes, π̃(M) is the frequency

of the set in the sample obtained with the MCMC, and W (M) is the weight of the set. MG1,MG2 and MG3 are

metagenes corresponding to the following sets: MG1 = (TSFM, MARCH9, TSPAN31, FAM119B, METTL1, CDK4,
CENTG1); MG2 = (AVIL, CTDSP2); MG3 = (SLC26A10, GEFT, PIP4K2C).

D.3 Results for Known Mutations on Multiple Cancer Type

Table 7 and reports the results obtained on the oncogenes mutations data with k = 8. Table 8 and reports

the results obtained on the oncogenes mutations data with k = 10. In all tables k is the size of set, M is the



k π̃(M) W (M) M

2 30.1% 53 CDKN2A TP53
19.8% 52 MTAP TP53
18.6% 52 EGFR TP53
6.8% 50 NF1 EGFR
3.9% 50 PTEN CDKN2A
3.4% 49 SEC61G TP53
3% 48 CYP27B1 CDKN2A
2.6% 48 PTEN MTAP
1.7% 46 MG2 CDKN2A
1.2% 47 CYP27B1 MTAP
1% 47 OS9 CDKN2A
1% 45 DTX3 CDKN2A

Table 5: Results for Glioblastoma mutation data with k = 2 after removing the set (CDKN2B, RB1, CDK4) from

analysis. M is the set of genes, π̃(M) is the frequency of the set in the sample obtained with the MCMC, and W (M)
is the weight of the set. See caption of Table 4 for the definition of MG2.

k π̃(M) W (M) M

2 44.3 50 NF1 EGFR
16.9 48 PTEN MTAP
9.3 47 CYP27B1 MTAP
3.2 45 AVIL MTAP
2.4 44 PTEN EGFR
2.0 43 IFNA21 PTEN
1.8 44 OS9 MTAP
1.3 42 MTAP NF1

Table 6: Results for Glioblastoma mutation data with k = 2 after removing the sets (CDKN2B, RB1, CDK4) and

(CDKN2A,TP53) from analysis. M is the set of genes, π̃(M) is the frequency of the set in the sample obtained with

the MCMC, and W (M) is the weight of the set. See caption of Table 4 for the definition of MG2.

set of genes, π̃(M) is the frequency of the set in the sample obtained with the MCMC, and W (M) is the

weight of the set.

D.4 Evaluation of MCMC sampling

To evaluate the MCMC sampling, we compared the distribution of weights W (M) for sets M sampled by

MCMC and randomly sampled sets. If the MCMC approach was merely performing a random walk among

the sets of size k, the two distributions would be similar. Figure 6 shows sets sampled randomly (a) and

by the MCMC approach (b) for sets of size k = 3 from the TCGA GBM dataset (The Cancer Genome

Atlas Research Network, 2008). The two distributions are clearly different, with the value of W (M) being

typically much larger for the sets sampled with the MCMC than for randomly sampled sets.



k π̃(M) W (M) M

8 13.2 265 BRAF 600-601 EGFR ECD EGFR KD HRAS KRAS NRAS PIK3CA HD PIK3CA KD
6.4 264 BRAF 600-601 EGFR ECD EGFR KD HRAS KIT KRAS NRAS PIK3CA HD
4.6 263 BRAF 600-601 EGFR ECD EGFR KD HRAS KIT KRAS NRAS PIK3CA KD
4.5 263 BRAF 600-601 EGFR ECD EGFR KD HRAS JAK2 KRAS NRAS PIK3CA HD
4.2 263 BRAF 600-601 EGFR ECD EGFR KD KIT KRAS NRAS PIK3CA HD PIK3CA KD
4.1 263 BRAF 600-601 EGFR ECD EGFR KD FGFR1 HRAS KRAS NRAS PIK3CA HD
3.2 262 BRAF 600-601 EGFR ECD EGFR KD HRAS JAK2 KRAS NRAS PIK3CA KD
2.8 262 BRAF 600-601 EGFR ECD EGFR KD FGFR3 HRAS KRAS NRAS PIK3CA HD
2.7 262 BRAF 600-601 EGFR ECD EGFR KD FGFR1 KRAS NRAS PIK3CA HD PIK3CA KD
2.5 261 BRAF 600-601 EGFR ECD EGFR KD HRAS KRAS NRAS PDGFRA PIK3CA HD
2.4 262 BRAF 600-601 EGFR ECD EGFR KD FGFR1 HRAS KRAS NRAS PIK3CA KD
2.1 262 BRAF 600-601 EGFR ECD EGFR KD ERBB2 HRAS KRAS NRAS PIK3CA HD
2.1 261 BRAF 600-601 EGFR ECD EGFR KD FGFR3 HRAS KRAS NRAS PIK3CA KD
2.0 261 BRAF 600-601 EGFR ECD EGFR KD JAK2 KIT KRAS NRAS PIK3CA HD
1.9 261 BRAF 600-601 EGFR ECD EGFR KD FGFR3 KRAS NRAS PIK3CA HD PIK3CA KD
1.7 261 BRAF 600-601 EGFR ECD EGFR KD ERBB2 HRAS KRAS NRAS PIK3CA KD
1.5 261 BRAF 600-601 EGFR ECD EGFR KD FGFR1 KIT KRAS NRAS PIK3CA HD
1.5 260 BRAF 600-601 EGFR ECD EGFR KD KRAS NRAS PDGFRA PIK3CA HD PIK3CA KD
1.5 261 BRAF 600-601 EGFR ECD EGFR KD ERBB2 KRAS NRAS PIK3CA HD PIK3CA KD
1.4 262 BRAF 600-601 EGFR ECD EGFR KD JAK2 KRAS NRAS PIK3CA HD PIK3CA KD
1.3 260 BRAF 600-601 EGFR ECD EGFR KD FGFR3 KIT KRAS NRAS PIK3CA HD
1.1 260 BRAF 600-601 EGFR ECD EGFR KD ERBB2 KIT KRAS NRAS PIK3CA HD

Table 7: Results for oncogenes mutations data with k = 8. M is the set of genes, π̃(M) is the frequency of the set in

the sample obtained with the MCMC, and W (M) is the weight of the set.
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Figure 6: Distribution of number of samples with respect to W (M) for the GBM dataset with k = 3 for (a) randomly

sampled sets and (b) sets sampled with the MCMC.



k π̃(M) W (M) M

10 4.8% 272 BRAF 600-601 EGFR ECD EGFR KD FGFR1 HRAS
KIT KRAS NRAS PIK3CA HD PIK3CA KD

3.6% 272 BRAF 600-601 EGFR ECD EGFR KD HRAS JAK2
KIT KRAS NRAS PIK3CA HD PIK3CA KD

3.4% 271 BRAF 600-601 EGFR ECD EGFR KD ERBB2 HRAS
KIT KRAS NRAS PIK3CA HD PIK3CA KD

3.4% 270 BRAF 600-601 EGFR ECD EGFR KD ERBB2 FGFR1
HRAS KRAS NRAS PIK3CA HD PIK3CA KD

3.2% 271 BRAF 600-601 EGFR ECD EGFR KD FGFR1 HRAS
JAK2 KRAS NRAS PIK3CA HD PIK3CA KD

3.1% 271 BRAF 600-601 EGFR ECD EGFR KD FGFR3 HRAS
KIT KRAS NRAS PIK3CA HD PIK3CA KD

2.7% 270 BRAF 600-601 EGFR ECD EGFR KD FGFR1 HRAS
JAK2 KIT KRAS NRAS PIK3CA HD

2.5% 270 BRAF 600-601 EGFR ECD EGFR KD HRAS KIT
KRAS NRAS PDGFRA PIK3CA HD PIK3CA KD

2.4% 270 BRAF 600-601 EGFR ECD EGFR KD ERBB2 HRAS
JAK2 KRAS NRAS PIK3CA HD PIK3CA KD

2.4% 270 BRAF 600-601 EGFR ECD EGFR KD FGFR1 FGFR3
HRAS KRAS NRAS PIK3CA HD PIK3CA KD

1.6% 269 BRAF 600-601 EGFR ECD EGFR KD ERBB2 HRAS
JAK2 KIT KRAS NRAS PIK3CA HD

1.6% 269 BRAF 600-601 EGFR ECD EGFR KD FGFR1 FGFR3
HRAS KIT KRAS NRAS PIK3CA HD

1.5% 270 BRAF 600-601 EGFR ECD EGFR KD FGFR3 HRAS
JAK2 KRAS NRAS PIK3CA HD PIK3CA KD

1.4% 269 BRAF 600-601 EGFR ECD EGFR KD FGFR1 JAK2
KIT KRAS NRAS PIK3CA HD PIK3CA KD

1.4% 269 BRAF 600-601 EGFR ECD EGFR KD ERBB2 FGFR1
HRAS KIT KRAS NRAS PIK3CA HD

1.3% 269 BRAF 600-601 EGFR ECD EGFR KD FGFR3 HRAS
JAK2 KIT KRAS NRAS PIK3CA HD

1.2% 269 BRAF 600-601 EGFR ECD EGFR KD HRAS JAK2
KRAS NRAS PDGFRA PIK3CA HD PIK3CA KD

1.1% 268 BRAF 600-601 EGFR ECD EGFR KD FGFR1 HRAS
KIT KRAS NRAS PDGFRA PIK3CA HD

1.1% 268 BRAF 600-601 EGFR ECD EGFR KD FGFR1 FGFR3
HRAS JAK2 KRAS NRAS PIK3CA HD

1.1% 268 BRAF 600-601 EGFR ECD EGFR KD ERBB2 HRAS
JAK2 KIT KRAS NRAS PIK3CA KD

1.0% 269 BRAF 600-601 EGFR ECD EGFR KD FGFR1 HRAS
KRAS NRAS PDGFRA PIK3CA HD PIK3CA KD

Table 8: Results for oncogenes mutations data with k = 10. M is the set of genes, π̃(M) is the frequency of the set

in the sample obtained with the MCMC, and W (M) is the weight of the set.


