Supplemental Material

A Hardness Proofs

Theorem 6. The Maximum Coverage Exclusive Submatrix Problem is NP-hard.

Proof. Given a mutation matrix A and an integer £ > 0, the Maximum Coverage Exclusive Submatrix
Problem requires to find the m X k column submatrix M with the largest number of non-zero rows. We
prove it is NP-Hard by reduction from the Maximum Weight Independent Set Problem. We consider the
Maximum Weight Independent Set Problem with positive integer weights, that is again NP-Hard, since an
algorithm for the case of positive integers weights can be use to find a solution to the Maximum Cardinality
Independents Set Problem.

In the Maximum Weight Independent Set problem we are given a graph G = (V, ), a weight function
w:V — NT, and a value & > 0, and are asked for an independent set of size k& with maximum weight.
An independent set is a set I C V' of vertices such that there is no edge between the vertices of I, i.e.
Yu,v € I,u #v: (u,v) & E.

Given an instance for the Maximum Weight Independent Set problem we build an instance of the Max-
imum Coverage Exclusive Submatrix Problem as follows. The mutation matrix A has one column for each
vertex v € V. Let §(v) be the degree of v € V in G, and A = max,cy 6(v). We define the set of rows of
the mutation matrix as: S = {s¢ : € € E} U (UyeyS,) where S, = {35,1), s ,sSJA_(S(U)er(v))}. We
define A, = 1if s = s, = S (u,v) withe € FEorif s € S,, and A, = 0 otherwise. All these operations
can be performed in polynomial time.

Note that: (i) for any two columns u,v € V, I'(u) N T'(v) # 0 if and only if (u,v) € E. (ii) Vv € V,
IT'(v)] = A 4+ w(v) (i.e, the number of rows in which column v is 1 is equal to A + w(v));

Now consider a set M = {vy,..., v} of k columns. From (i) we have that column submatrix induced
by M is exclusive if and only if M is an independent set of size k£ in G. Now, if M is an exclusive matrix, the
number of non-zero rows in it is equal to Zle |T'(v;)|. From (ii) above Zle IT(v;)| = kA + Zle w(v;).
Since k and A are fixed, the exclusive column submatrix induced by M maximizes Zle IT'(v;)| if and only
if M is the independent set of size that maximizes Zle w(v;), i.e. M is the maximum weight independent
setin G. O]

Theorem 7. The Maximum Weight Submatrix Problem is NP-Hard.

Proof. The proof is by reduction from the Independent Set Problem, a well known NP-Hard problem (Hochbaum,
1997). In the Independent Set Problem we are given a graph G = (V, E') and a value k, and we ask if there
is an independent set of size k in (G. An independent set for G is a set of vertices I C V such that there is
no edge among the vertices of I, i.e. for all pairs u,v € I,u # v: (u,v) ¢ E.

Given an instance of the Independent Set Problem, we build a mutation matrix representing the instance
of our problem as follows. We consider a column for each vertex v € V. Let §(v) be the degree of v in G, and
define A = max d(v). We define the set of rows of the mutation matrix as: S = {s. : e € E} U (UyeySy)
where S, = {sz(jl), 31(,2), e ,sq()A_é(v))}. We define A5, = 1if s = s¢ = s(,,) Withe € Forif s € S,
and A, , = 0 otherwise. All these operations can be performed in polynomial time.

Note that: (i) Vv € V, |[I'(v)| = A (i.e, the number of non-zeros entries in column v is A); (ii) for any
two vertices u, g € V, T'(u) N T'(v) # 0 if and only if (u,v) € E.

Now consider a set M = {vq,...,v;} of k columns. From (i) we have Zle IT'(v)| = kA, and
|T'(M)| < kEA. From (ii) we have that |I'(M)| = kA if and only if {v1, ve,...,vx} is an independent set
of G, thus W (M) = kA if and only if {vy, v, ..., vy} is an independent set of G. If we can solve the The
Maximum Weight Genes Set Problem on A, we can then solve the Independent Set Problem on G. O



B Analysis of Greedy Algorithm

In this section we give a proof of Theorem 3. We need to prove that: (i) the first step of the greedy algorithm
is correct, i.e. the pair M = {g1, g2} of columns that maximizes W (M) is a subset of M:; (ii) the loop in
step 2 is correct, i.e. all the subsets of size ¢ built in the loop are subsets of M.

To prove (i) and (ii), we need to lower bound the weight of the subsets that we build in the loop of step
2, assuming they are the correct ones.

Lemma 1. Let M be a subset of M with |M| = £,0 < £ < k. If W(M) > %M then there exists a gene
g € M\ M such that W (M U {g}) > “TlW(M)

Proof. The proof is by contradiction. Let assume that for a given M C M with |M| = ¢ < k, there exists
no gene g € M \ M such that W (M U {g}) > “TlW(M)

Let M\ M = {g1,...,gr—¢}, and M; = M U {gy,...,gi},i < k — £. Since W (Mj_¢) > W (M)
(in particular, W (Mj,_,) = W (M)), there exists 4 such that W (M;) < %”W(M) and W(My4q) >
Ly (M), Let i* be the minimum such i, M’ = M;«_jand ¢* = g;-.

We have
WM U{g*}) = 20(M'u{g'hl— D [T(g)
geEM'U{g*}
= 2T(M')[ = Y T(g)+2T(g") N (S\T(M))| - T(g")|

geM’
= W(M')+AM,g")

where A(M’, g%) = 2|T'(g") N (S\T'(M"))| = [L(g7)]. ‘ . L
Now, since W(M' U {g*}) = W(M') + A(M’,g*) > ZEELW (M) and W(M') < SEW (M), we
have

Moreover, since M C M’, we have I'(M) C T'(M’), that implies I'(¢*) N (S\T'(M")) CT(¢*) N (S\
I'(M)).

Thus 1

A(M,g") = AT, g) = T W(NI),
that implies
* % l - 1 ~ {+1 ~
WM U{g"}) = W(M) + A(M,g%) > L N+ W(NE) > =W (X)

that is a contradiction. O

We now prove that if the number of patients is large enough, (i) holds. Note that since in Gene Inde-
pendence Model the frequency of mutation of the genes in M and the frequency of mutation of genes not
in M can be the same, the most frequent genes are not guaranteed to be in M. Instead we prove that if the
the number of patients is large enough, the greedy algorithm, that checks sets of size 2, correctly identifies
a subset of M of size 2.

Lemma 2. Let P be the pair of genes in M with the highest weight W (P), and let W(M ) = rm. Define
the event E =“there exists a pair R M of genes such that W (R) > W (P)”. If
(2+4¢)

m > logn
= 9[2r/k — 2py — P 0




then
Pr[E] <n®.

Proof. Consider a pair of genes R = {g¢;,9;} M. We can rewrite

m
:X:ZGXZ',
=1

where Xj; is the random variable that counts the “contribution” of patient s; € S to W (R). Note that for all
i we have X; € {0;1}, since when only one gene in R is mutated the contribution of X is 1, while when
none or both genes in R are mutated in S the contribution of Xj is 0.

Let p;, pj be the frequency of mutation of g;, g; respectively. The expectation of W (R) is

E[W(R)] = E[X] = m(pi(1 — pj) + p;(1 — ps)) < |S|(2pv — 2p7).

Since the X; are independent random variables, we can use the Chernoff bound we can then derive the
probability that a particular set R has W (R) > 2|S|:

2r 2r
Pr [W(R) > km] = Pr [W(R) ~EW(R)] > -m - E[W(R)]]
< Pr {W(R) —E[W(R)] > %IS! —m(2py — 2p%)]
PRl = T )

(2+¢)
2[2r/k—2(pu —p7)]?

Now, since m > log n, we have:

Pr [W(R) > QI:m] < e (2te)lnn
S n- (2+€) .
The lemma follows by applying a union bound on all the possible pairs P. 0

Assume that at each step the greedy algorithm chooses a gene in M. With M, we denote the subset of
size of ¢ genes of M obtained from the procedure above. Note that this defines an order on the genes of
M: in particular, we denote with gy the gene in M added to Mg in order to obtain MZ+1 We now find a
lower bound to the number of patients required to guarantee that with high probability there does not exist
an iteration of the step 2 of the Greedy Algorithm in which a gene not in M is chosen.

Lemma 3. Let g; = argmaxy, W (M, U {g}). If

(2+¢)logn
2
2(M_p +4TPL)

m >

then
Pri30:g; ¢ M] <n°



Proof. We assume that the subset built at each step is MZ - M. Since at the end the theorem will hold, this
assumption will be proven correct.

Consider the set M;, that is mutated in the set F(MZ) By the assumptions of the Independence Gene
Model, its weight is bounded by W (M;) < Z”“dI/V( 7). Now consider a gene 9; ¢ M, with mutation
frequency p; € [pr;pu]. If we now add g; to M;, we have that gj contributes 1 to W (M; U {g;}) for each
patient in S \ T'(1/;) in which it is mutated, and -1 for each patient in I'(M/;) in which it is mutated.

Since g; is mutated with probability p; in a patient, we have

E[W (M; U {g;})] = W (M;) +pj(m — [D(M;)]) — p;|T(M5)| = W (M) + pym — 2pj|T(M;)]).

Now, given the assumptions on W (M;), W (M), p;, and since IT(M;)| > W (M;) we have

E[W (M; U {g;})] <

d ir 1+d 2r
rm+ pym — 2pr,—m < m r+pU—2pL? .

k k
(In the last inequality we use ¢ > 2.) X
Since for each patient s the absolute value of the contribution to W (M; U {g; }) of g in s is bounded by

1, we can use the Chernoff-Hoeffding bound to compute the probability that W (M; U { gi}) > Z+1 W (M):

. i+1 . (Htrmm(drtry-20, %))
Pr |W(M; U {g;}) > ”]; W(M)] < e o =
S 2 (7‘(1 d) U+4T‘PL>
Now, since m > (24e)logn e have

A Ee——Ty

Pr | WU {g;}) > Z?W(M) < n(249),

The total number of pairs (]\4Z7 gj) we have to consider is bounded by nk < n?, since there are n genes
g; ¢ M, and there are k sets in M;, since M contains k genes. The lemma follows by union bound. O

Theorem 3 follows from Lemma 2 and Lemma 3.
C Proof of MCMC Convergence
Our analysis applies the following simple version of path coupling adapted to our setting (see (Bubley and

Dyer, 1997) and (Mitzenmacher and Upfal, 2005)):

Theorem 8. Let ¢ = |M; — M]|, and assume that for some constant 0 < 8 < 1, E[¢i41] ¢ = 1] < B,
then the mixing time
klog(ke 1)

1-p

Using the above, we prove the following convergence result for our chain.

7(e) <

Theorem 9. The MCMC is rapidly mixing for some ¢ > 0.



Proof. Let D = maxyeg |[I'(g)|. Assume first that in the first chain v = y. The probability that the first
chain performs the switch is

W (M—{g}+{w})
ecW (M)

2 e—c(F(y)—l-F(w)) Z 6_2CD.

Similarly the probability that the second chain performs the switch is > e~2¢P. Since v = y with probability

1/k we have
1 1 4eD
P :0 :1>7—4CD>7_7
r(Pr+1 | =1) > e >
for 4cD < 1. Next assume that v € M N M’. We need to upper bound the probability that exactly one of the
chains perform the switch (otherwise ¢;11 = ¢;). The probability that exactly one chain performs a switch

is given by

Q — min[l, 6cW(M—{'u}—i—{'w})—cW(M)] _ min[l, ecW(M’—{v}—i—{w})—cW(M’)] )

Let T'y;(v) = I'(v) — (M — {v}), i.e. patients where v is altered but no other gene in M is altered. Clearly

(W(M — {v} + {w}) = W(M)) = (WM — {v} + {w}) - W(M"))| <
2|0 (v) NT(2)| + [Tar (v) N T(y)] + T (w) N Tar(y)] + T(w) N T (2))).
Thus, (using 1 —e ™ < zforz < 1,and ¢ < 1/12D)
Q < 2¢(|Tar(v) NT(2)] + [Ty (0) NT ()| + [T(w) N Tar(y)] + [T(w) N Tap(2)))-

Summing over all choices of w and v € M N M’ we compute that the probability that exactly one of
the chains performs a switch is bounded by % (% + 4eDD ) , where D = w. Setting ¢ <

m

: m 1
min {55, ep } we have

k—1 /(2D 2¢DD 1 4eD 1
Elpii1|pr =1 <142 ( )k ’ SQ'

F\k=1 " m ) &
Thus, with this value of ¢ the mixing time satisfies 7(¢) < 2k log(ke™!). O

How good is the sampling process with this value of ¢ in sampling sets of significant gene mutations?
Assume that (after removing the genes that appear in most patients) we have Dk = O(m), and that we have
two sets M and M’ such that W (M) > yW (M') for some v < 1. In that case the sampling procedure
samples M with frequency that is at least e2(¥) larger than the frequency that it samples M.



D MCMC results
D.1 Results for Lung adenocarcinoma

Table 2 reports the results obtained on the lung data with £k = 2 and £ = 3. Table 3 reports the results for
k = 2 obtained after removing the set (EGFR, KRAS, STK11). In all tables k is the size of set, M is the
set of genes, 7(M) is the frequency of the set in the sample obtained with the MCMC, and W (M) is the
weight of the set.

k. #(M) W(M) M
2 99.9% 90 EGFR KRAS
3 82% 96 STK11 EGFR KRAS
32% 94  PRKCG EGFR KRAS
2% 93 NRAS EGFR KRAS
2% 93 PFTKI EGFR KRAS

1.8% 94 EPHBI EGFR KRAS
1.7% 93 MAP3K3 EGFR KRAS

1.6% 92 VAV2 EGFR KRAS
1.5% 92 ERBB4 EGFR KRAS
1.4% 92 YESI EGFR KRAS
1.3% 92 TSC1 EGFR KRAS
1.3% 93 NTRK3 EGFR KRAS
1.2% 93 NF1 EGFR KRAS
1.1% 92 PTK2 EGFR KRAS
1.1% 92 FES EGFR KRAS
1.1% 91 KLF6 EGFR KRAS
1.1% 92 PAK6 EGFR KRAS

1.1% 91 AURKB EGFR KRAS
1.1% 92 EPHA3 EGFR KRAS

1% 92 TP73L EGFR KRAS
1% 91 TERT EGFR KRAS
1% 91 MG EGFR KRAS
1% 92 CYSLTR2 EGFR KRAS
1% 90 FLT4 EGFR KRAS

Table 2: Results for Lung mutation data with k& = 2 and k = 3. M is the set of genes, 7(M) is the frequency of
the set in the sample obtained with the MCMC, and W (M) is the weight of the set. MG is a metagene containing:
ACVR2B, MAP2KS5, RPS6KA6, EPHA2, FOXO3, STK3, CDC2L2, KSR2, CCNT2, FBXW?7.



k- w(M) W(M) M

2 56% 75  ATMTP53
1% 67  PAK4TP53
1% 66  IGFRI TP53

Table 3: Results for Lung mutation data with k = 2 after removing the set (EGFR, KRAS, STK11) from analysis. M
is the set of genes, (M) is the frequency of the set in the sample obtained with the MCMC, and W (M) is the weight
of the set.

D.2 Results for Glioblastoma

Table 4 reports the result obtained for Glioblastoma data with £ = 2 and k = 3. Table 5 reports the results
for £ = 2 obtained after removing the set (CDKN2B, RBI1, CDK4). Table 6 reports the results for k = 2
obtained after removing the sets (CDKN2B, RB1, CDK4) and the set (CDKN2A, TP53). In all tables k is the
size of set, M is the set of genes, (M) is the frequency of the set in the sample obtained with the MCMC,
and W (M) is the weight of the set.

k x(M) W(M) M

2 184% 54 CYP27B1 CDKN2B
10.9% 53 MG, CDKN2B
97% 53 TP53 CDKN2B
96% 53 CDKN2A TP53
7.2% 52 EGFR TP53
58% 52 MG, CDKN2B
5.4% 52 MTAP TP53
49% 51 0S9 CDKN2B
49% 51 RBI CDKN2B
2.6% 50 NFI EGFR
1.6% 49 PTEN CDKN2A
1.6% 48 SEC61G TP53
1.4% 49 DTX3 CDKN2B
1.2% 48 MGs CDKN2B
1.2% 48 PTEN MTAP

3 97% 62  CYP27BI RBI CDKN2B
57% 6l MG, RBI CDKN2B
31% 60 MGs RBI CDKN2B
21% 59 0S9 RBI CDKN2B

1.4% 57 MTAP CYP27B1 RBI

Table 4: Results for Glioblastoma mutation data with k = 2 and k£ = 3. M is the set of genes, 7(M ) is the frequency
of the set in the sample obtained with the MCMC, and W (M) is the weight of the set. MGy, MGy and M G5 are
metagenes corresponding to the following sets: MG, = (TSFM, MARCHY, TSPAN31, FAM119B, METTLI, CDK4,
CENTGI1); MG2 = (AVIL, CTDSP2); M G5 = (SLC26A10, GEFT, PIP4K2C).

D.3 Results for Known Mutations on Multiple Cancer Type

Table 7 and reports the results obtained on the oncogenes mutations data with £k = 8. Table 8 and reports
the results obtained on the oncogenes mutations data with £ = 10. In all tables k is the size of set, M is the



k. #(M) W(M) M

2 30.1% 53 CDKN2A TP53
19.8% 52 MTAP TP53
18.6% 52 EGFR TP53
6.8% 50 NFI EGFR
3.9% 50 PTEN CDKN2A
3.4% 49 SEC61G TP53

3% 48 CYP27B1 CDKN2A
2.6% 48 PTEN MTAP
1.7% 46 MGy CDKN2A
1.2% 47 CYP27B1 MTAP

1% 47 0S9 CDKN2A

1% 45 DTX3 CDKN2A

Table 5: Results for Glioblastoma mutation data with & = 2 after removing the set (CDKN2B, RBI, CDK4) from
analysis. M is the set of genes, 7 (M) is the frequency of the set in the sample obtained with the MCMC, and W (M)
is the weight of the set. See caption of Table 4 for the definition of M Gs.

k #(M) W(M) M
2 443 50 NFI EGFR
169 48 PTEN MTAP
9.3 47 CYP27BI1 MTAP
3.2 45 AVIL MTAP
2.4 44 PTEN EGFR
2.0 43 IFNA21 PTEN
1.8 44 0S9 MTAP
1.3 42 MTAP NFI

Table 6: Results for Glioblastoma mutation data with £k = 2 after removing the sets (CDKN2B, RB1, CDK4) and
(CDKN2A,TP53) from analysis. M is the set of genes, 7(M ) is the frequency of the set in the sample obtained with
the MCMC, and W (M) is the weight of the set. See caption of Table 4 for the definition of M Gs.

set of genes, 7(M) is the frequency of the set in the sample obtained with the MCMC, and W (M) is the
weight of the set.

D.4 Evaluation of MCMC sampling

To evaluate the MCMC sampling, we compared the distribution of weights W (M) for sets M sampled by
MCMC and randomly sampled sets. If the MCMC approach was merely performing a random walk among
the sets of size k, the two distributions would be similar. Figure 6 shows sets sampled randomly (a) and
by the MCMC approach (b) for sets of size £ = 3 from the TCGA GBM dataset (The Cancer Genome
Atlas Research Network, 2008). The two distributions are clearly different, with the value of W (M) being
typically much larger for the sets sampled with the MCMC than for randomly sampled sets.



k #(M) W(M) M
8 13.2 265 BRAF_600-601 EGFR_ECD EGFR_KD HRAS KRAS NRAS PIK3CA_HD PIK3CA_KD

6.4 264 BRAF _600-601 EGFR_ECD EGFR_KD HRAS KIT KRAS NRAS PIK3CA_HD

4.6 263 BRAF _600-601 EGFR_ECD EGFR_KD HRAS KIT KRAS NRAS PIK3CA_KD

4.5 263 BRAF_600-601 EGFR_ECD EGFR_KD HRAS JAK2 KRAS NRAS PIK3CA_HD

4.2 263 BRAF _600-601 EGFR_ECD EGFR_KD KIT KRAS NRAS PIK3CA_HD PIK3CA_KD
4.1 263 BRAF _600-601 EGFR_ECD EGFR_KD FGFRI HRAS KRAS NRAS PIK3CA_HD
3.2 262 BRAF _600-601 EGFR_ECD EGFR_KD HRAS JAK2 KRAS NRAS PIK3CA_KD

2.8 262 BRAF _600-601 EGFR_ECD EGFR_KD FGFR3 HRAS KRAS NRAS PIK3CA_HD
2.7 262 BRAF _600-601 EGFR_ECD EGFR_KD FGFRI1 KRAS NRAS PIK3CA_HD PIK3CA_KD
2.5 261 BRAF _600-601 EGFR_ECD EGFR_KD HRAS KRAS NRAS PDGFRA PIK3CA_HD
24 262 BRAF _600-601 EGFR_ECD EGFR_KD FGFRI HRAS KRAS NRAS PIK3CA_KD
2.1 262 BRAF _600-601 EGFR_ECD EGFR_KD ERBB2 HRAS KRAS NRAS PIK3CA_HD
21 261 BRAF _600-601 EGFR_ECD EGFR_KD FGFR3 HRAS KRAS NRAS PIK3CA_KD
2.0 261 BRAF _600-601 EGFR_ECD EGFR_KD JAK2 KIT KRAS NRAS PIK3CA_HD

1.9 261 BRAF_600-601 EGFR_ECD EGFR_KD FGFR3 KRAS NRAS PIK3CA_HD PIK3CA_KD
1.7 261 BRAF _600-601 EGFR_ECD EGFR_KD ERBB2 HRAS KRAS NRAS PIK3CA_KD
1.5 261 BRAF_600-601 EGFR_ECD EGFR_KD FGFRI KIT KRAS NRAS PIK3CA_HD

1.5 260 BRAF _600-601 EGFR_ECD EGFR_KD KRAS NRAS PDGFRA PIK3CA_HD PIK3CA_KD
1.5 261 BRAF _600-601 EGFR_ECD EGFR_KD ERBB2 KRAS NRAS PIK3CA_HD PIK3CA_KD
14 262 BRAF_600-601 EGFR_ECD EGFR_KD JAK2 KRAS NRAS PIK3CA_HD PIK3CA_KD
1.3 260 BRAF _600-601 EGFR_ECD EGFR_KD FGFR3 KIT KRAS NRAS PIK3CA_HD

1.1 260 BRAF _600-601 EGFR_ECD EGFR_KD ERBB2 KIT KRAS NRAS PIK3CA_HD

Table 7: Results for oncogenes mutations data with k& = 8. M is the set of genes, 77(M) is the frequency of the set in
the sample obtained with the MCMC, and W (M) is the weight of the set.

Randomly sampled sets

Sets sampled with MCMC

Percentage of sampled sets
Percentage of sampled sets

Figure 6: Distribution of number of samples with respect to W (M) for the GBM dataset with k£ = 3 for (a) randomly
sampled sets and (b) sets sampled with the MCMC.



k #(M) W(M) M
10 48% 272  BRAF.600-601 EGFR_ECD EGFR_KD FGFRI HRAS
KIT KRAS NRAS PIK3CA_HD PIK3CA_KD
3.6% 272 BRAF.600-601 EGFR_ECD EGFR_KD HRAS JAK2
KIT KRAS NRAS PIK3CA_HD PIK3CA_KD
3.4% 271 BRAF_600-601 EGFR_ECD EGFR_KD ERBB2 HRAS
KIT KRAS NRAS PIK3CA_HD PIK3CA_KD
3.4% 270 BRAF_600-601 EGFR_ECD EGFR_KD ERBB2 FGFRI
HRAS KRAS NRAS PIK3CA_HD PIK3CA_KD
32% 271  BRAF.600-601 EGFR_ECD EGFR_KD FGFRI HRAS
JAK2 KRAS NRAS PIK3CA_HD PIK3CA_KD
31% 271  BRAF.600-601 EGFR_ECD EGFR_KD FGFR3 HRAS
KIT KRAS NRAS PIK3CA_HD PIK3CA_KD
2.7% 270  BRAF.600-601 EGFR_ECD EGFR_KD FGFRI HRAS
JAK?2 KIT KRAS NRAS PIK3CA_HD
2.5% 270 BRAF_600-601 EGFR_ECD EGFR_KD HRAS KIT
KRAS NRAS PDGFRA PIK3CA_HD PIK3CA_KD
2.4% 270  BRAF.600-601 EGFR_ECD EGFR_KD ERBB2 HRAS
JAK2 KRAS NRAS PIK3CA_HD PIK3CA_KD
2.4% 270  BRAF_600-601 EGFR_ECD EGFR_KD FGFRI FGFR3
HRAS KRAS NRAS PIK3CA_HD PIK3CA_KD
1.6% 269  BRAF.600-601 EGFR_ECD EGFR_KD ERBB2 HRAS
JAK2 KIT KRAS NRAS PIK3CA_HD
1.6% 269  BRAF.600-601 EGFR_ECD EGFR_KD FGFRI FGFR3
HRAS KIT KRAS NRAS PIK3CA_HD
15% 270  BRAF_600-601 EGFR_ECD EGFR_KD FGFR3 HRAS
JAK2 KRAS NRAS PIK3CA_HD PIK3CA_KD
1.4% 269 BRAF_600-601 EGFR_ECD EGFR_KD FGFRI JAK2
KIT KRAS NRAS PIK3CA_HD PIK3CA_KD
1.4% 269 BRAF_600-601 EGFR_ECD EGFR_KD ERBB2 FGFRI
HRAS KIT KRAS NRAS PIK3CA_HD
1.3% 269  BRAF.600-601 EGFR_ECD EGFR_KD FGFR3 HRAS
JAK?2 KIT KRAS NRAS PIK3CA_HD
1.2% 269  BRAF.600-601 EGFR_ECD EGFR_KD HRAS JAK2
KRAS NRAS PDGFRA PIK3CA_HD PIK3CA_KD
1.1% 268  BRAF_600-601 EGFR_ECD EGFR_KD FGFRI HRAS
KIT KRAS NRAS PDGFRA PIK3CA_HD
1.1% 268  BRAF.600-601 EGFR_ECD EGFR KD FGFRI FGFR3
HRAS JAK2 KRAS NRAS PIK3CA_HD
1.1% 268  BRAF.600-601 EGFR_ECD EGFR_KD ERBB2 HRAS
JAK2 KIT KRAS NRAS PIK3CA_KD
1.0% 269  BRAF_600-601 EGFR_ECD EGFR_KD FGFRI HRAS

KRAS NRAS PDGFRA PIK3CA_HD PIK3CA_KD

Table 8: Results for oncogenes mutations data with k& = 10. M is the set of genes, 7 (M) is the frequency of the set

in the sample obtained with the MCMC, and W (M) is the weight of the set.



