
script: blastThemAll.pl

#! /usr/bin/perl -w

$dir1= $ARGV[0];#human or mouse
$dir2= $ARGV[1];# zebrafish

while (defined ($filename = glob ("$dir1\/*.fasta"))) {
 print $filename."\n";
 while (defined ($filename2 = glob ("$dir2\/*.nsi"))) {
 #print $filename2."\n";
 if ($filename2 =~ /$dir2\/(E[0-9a-z]+)_(E[a-z0-9]+)\./i) {
 $aux1= $1;
 $aux2= $2;
 $filename2= $aux1."_".$aux2;
 $aux3= $aux2."_".$aux1;
 #print $aux3."| <-- aux\n";
 }
 if ($filename =~ /$dir1\/(\S+)\./) {
 $aux= $1;
 #print $aux."| <-- aux\n"
 }
 if ($aux eq $aux3) {
 #print "entrou!!\n";
 $res = $aux.".Mblt";
 if (-e $res) {print "ja esta \n";} else {
 system ("megablast -q -1 -W 12 -D 3 -F F -v 10 -b 10 -d
".$dir2."/".$filename2." -i ".$dir1."/".$aux.".fasta -o ".$res);
 print("megablast -q -1 -W 12 -D 3 -F F -v 10 -b 10 -d
".$dir2."/".$filename2." -i ".$dir2."/".$aux.".fasta -o ".$res."\n");
 }
 }
 }
}

script: blastZThemAll.pl

#! /usr/bin/perl -w

$pairs= $ARGV[0];
$dir1= $ARGV[1];
$dir2= $ARGV[2];

$res= "not_done.txt";
if (-e $res) {
} else {
 $res= "not_done2.txt";
}
open (RES, ">$res");
open (FIL,$pairs);
while (<FIL>) {
 $linha= $_;
 chomp $linha;

 @data= split (/\t/, $linha);
 if (@data == 2) {
 $zf_gene= $data[0];
 $mm_gene= $data[1];
 #do t he blast for this pair
 $aux2= $dir2."/".$mm_gene.".fasta";
 $aux= $dir1."/".$zf_gene.".fasta";
 $aux3= $zf_gene."_".$mm_gene.".BlZ";
 print $aux."\t".$aux2."\n";
 if (-e $aux3) {
 print "ja esta!\n";
 } else {
 if ((-e $aux) && (-e $aux2)) {
 system ("blastz ".$aux." ".$aux2." H=2200 T=0 W=6 K=2200 >
".$aux3."");
 print("blastz ".$aux." ".$aux2." H=2200 T=0 W=6 K=2200 >
".$aux3."\n");
 } else {
 print RES $aux3."\n";
 }
 }
 }
}
close (FIL);
close (RES);

script: clean_empty_lines.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$res = $ARGV[1];
open (FIL, $file);
open (RES, ">$res");
while (<FIL>) {
 $linha = $_;
 if ($linha =~ /\S/) {
 print RES $linha;
 }

}
close (FIL);
close (RES);

script: compile_unig_expr_ForEnsemblIds.pl

#! /usr/bin/perl -w

$file1 = $ARGV[0];
$file2 = $ARGV[1];
$res = $ARGV[2];
$count = 0;
open (FIL, $file1);
open (RES, ">$res");
while (<FIL>) {
 $linha = $_;
 chomp $linha;
 @data1 = split (/\t/, $linha);
 $geneId = $data1[0];
 #print "\t".$geneId."\n";

 if (@data1 > 1) {
 $uniId = $data1[1];
 print"\t".$geneId."\t".$uniId."\n";
 $expr = "";
 open (FIL2, $file2);
 while (<FIL2>) {
 $linha2 = $_;
 chomp $linha2;
 @data2 = split (/\t/, $linha2);
 if ($data2[0] eq $uniId) {
 print $linha2."\n";
 $expr = $expr.$data2[1];
 print "\t".$expr."\n";
 }
 }
 close (FIL2);
 $presente = 0;
 for ($i = 1; $i <= $count; $i++) {
 if ($geneId eq $geneId[$i]) {
 $presente = 1;
 $expr[$i] = $expr[$i]."|".$expr;
 }
 }
 if ($presente == 0) {
 $count++;
 $geneId[$count] = $geneId;
 $expr[$count] = $expr;
 }
 } else {
 $presente = 0;
 for ($i = 1; $i <= $count; $i++) {
 $presente = 0;
 if ($geneId eq $geneId[$i]) {
 $presente = 1;
 }
 }
 if ($presente == 0) {
 $count++;
 $geneId[$count] = $geneId;
 $expr[$count] = "";
 }
 }

}
close (FIL);
for ($i = 1; $i <= $count; $i++) {
 print RES $geneId[$i]."\t".$expr[$i]."\n";
 print $geneId[$i]."\t".$expr[$i]."\n";
}
close (RES);

script: concatenate_bds.pl

#! /usr/bin/perl -w

while (defined($file = glob ("*.fa"))) {
 if ($file =~ /(E[0-9a-z]+_E[0-9a-z]+)_/i) {
 $res =$1.".fasta";
 }
 open (FIL, $file);
 open (RES, ">>$res");

 while (<FIL>) {
 $linha = $_;
 chomp $linha;
 if ($linha =~ /^>E[0-9a-z]+_E[0-9a-z]+_(.*)/) {
 print RES ">".$1;
 } else {
 print RES $linha."\n";
 }
 }
 close (FIL);
 close (RES);
}

script: extract_ECRs_locally.pl

#! /usr/bin/perl -w

$dirtxt= $ARGV[0];
$FA1= $ARGV[1];
$FA2= $ARGV[2];
$ECR1= $ARGV[3];
$ECR2= $ARGV[4];

#mkdir $ECR1;
#mkdir $ECR2;
$flag= 0;

while (defined ($filename = glob ("$dirtxt/*.txt"))) {
 print $filename."\n";
 $count_seq= 0;
 open (FIL, $filename);
 while (<FIL>) {
 $count_seq++;
 $linha = $_;
 chomp $linha;
 @data = split (/\t/, $linha);
 $fa1= $FA1."/".$data[0].".fasta";
 $fa2= $FA2."/".$data[1].".fasta";
 #print $fa1."\t".$fa2."\n";
 $res1=$ECR1."/".$data[0]."_".$data[1].".ECRS.fa";
 $res2=$ECR2."/".$data[1]."_".$data[0].".ECRS.fa";
 #print $res1."\t".$res2."\n";
 $ini= $data[3];
 $fim= $data[4];
 $flag= $data[2];
 $ini2= $data[6];
 $fim2= $data[7];
 $flag2= $data[5];
 $count= 0;
 open (RES1, ">>$res1");
 open (FA1, $fa1);
 RETORNOA:while (<FA1>) {
 $linha1= $_;
 #Get position (Human, they are always in the right
orientation!)
 if ($linha1 =~ /^>/) {
 if ($linha1 =~
/^>chromosome\:\S+\:(\S+)\:(\d+)\:(\d+)\:\d+/) {

 $chr= $1;
 $begin= $2;
 $end= $3;
 } elsif ($linha1 =~ /^>(.*).fa/) {
 @coordenates = split (/_/, $1);
 if (@coordenates == 4) {
 $chr= $coordenates[@coordenates - 3];
 } else {
 $chr= $coordenates[@coordenates -
4]."_".$coordenates[@coordenates - 3];
 }
 $begin= $coordenates[@coordenates - 2];
 $end= $coordenates[@coordenates - 1];
 }
 $iniF= $begin + $ini - 1;
 $fimF= $begin + $fim - 1;
 print RES1
"\n>".$count_seq."_".$chr."_".$iniF."_".$fimF."_".$flag."\n";
 }
 #Get the seq ECR
 if ($linha1 !~ /^>/) {
 $aux= $linha1;
 chomp $aux;
 while ($aux ne "") {
 #print $aux." < aux\n";
 $car= substr ($aux, 0, 1);
 $length= length ($aux);
 $length= $length - 1;
 $aux= substr ($aux, 1, $length);
 $count++;
 #print $count." < count\n";
 if (($count <= $fim) && ($count >= $ini)) {
 print RES1 $car;
 #print $car." < car\n";
 }
 if ($count > $fim) {
 last RETORNOA;
 }
 }
 }
 }
 close (FA1);
 close (RES1);

 $count= 0;
 open (RES2, ">>$res2");
 open (FA2, $fa2);
 RETORNOB:while (<FA2>) {
 $linha2= $_;
 #get the name of the ECR for Chick
 if ($linha2 =~ /^>/) {
 if ($linha2 =~
/^>chromosome\:\S+\:(\S+)\:(\d+)\:(\d+)\:\d+/) {
 $chr= $1;
 $begin= $2;
 $end= $3;
 } elsif ($linha2 =~ /^>(.*).fa/) {
 @coordenates = split (/_/, $1);
 if (@coordenates == 4) {
 $chr= $coordenates[@coordenates - 3];

 } else {
 $chr= $coordenates[@coordenates -
4]."_".$coordenates[@coordenates - 3];
 }
 $begin= $coordenates[@coordenates - 2];
 $end= $coordenates[@coordenates - 1];
 }
 if ($flag2 == 1) {
 $iniF= $end - $fim2 + 1;
 $fimF= $end - $ini2 + 1;
 $ini2 = $iniF - $begin + 1;
 $fim2 = $fimF - $begin + 1;
 } else {
 $iniF= $begin + $ini2 - 1;
 $fimF= $begin + $fim2 - 1;
 }
 print RES2
"\n>".$count_seq."_".$chr."_".$iniF."_".$fimF."_".$flag2."\n";
 }
 #Get the seq for the ECR Chick
 if ($linha2 !~ /^>/) {
 $aux= $linha2;
 chomp $aux;
 while ($aux ne "") {
 #print $aux." < aux\n";
 $car= substr ($aux, 0, 1);
 $length= length ($aux);
 $length= $length - 1;
 $aux= substr ($aux, 1, $length);
 $count++;
 #print $count." < count\n";
 if (($count <= $fim2) && ($count >= $ini2)) {
 print RES2 $car;
 #print $car." < car\n";
 }
 if ($count > $fim2) {
 last RETORNOB;
 }
 }
 }
 }
 close (FA2);
 close (RES2);
 }
 close (FIL);
}

script: extract_fastaBDS_locally.pl

#! /usr/bin/perl -w

$nonexonic= $ARGV[0];
$FA= $ARGV[1];
#$BDS= $ARGV[2];

#mkdir $BDS;

while (defined ($filename = glob ("$nonexonic/*.NonExonic"))) {

 print "\n".$filename."<- filename\n";
 if ($filename =~ /_(E[a-z0-9]+)_(E[a-z0-9]+)\.ECRS\./i) {
 $aux1= $1;
 $aux2= $2;
 $gene= $aux1;
 $name= $aux1."_".$aux2;
 }
 $count_seq= 0;
 open (FIL, $filename);
 while (<FIL>) {
 $linha = $_;
 if ($linha !~ /\S/) {} else {
 $count_seq++;
 print $linha;
 chomp $linha;
 @data = split (/\s+/, $linha);
 @data2 = split (/_/, $data[0]);
 $chr = "";
 if (@data2 > 5) {
 $chr = $data2[@data2 - 5]."_";
 }
 $chr = $chr.$data2[@data2 - 4];
 $ini = $data2[@data2 - 3];
 $fim = $data2[@data2 - 2];
 print $chr."|".$ini."|".$fim."\n";
 $fim = $ini + $data[3];
 $ini = $ini + $data[2];
 print $chr."|".$ini."|".$fim."\n";
 $ini = $ini - 40;
 $fim = $fim + 40;
 print $chr."|".$ini."|".$fim."\n";
 $fa= $FA."/".$gene.".fasta";
 $res= $name."_".$chr."_".$ini."_".$fim.".fa";
 print $res."\n";
 if (-e $res) {
 print $res." existe!\n";
 } else {
 #print $res."\n";
 $count= 0;
 open (RES, ">$res");
 open (FA, $fa);
 RETORNOA:while (<FA>) {
 $linha2= $_;
 #Get position
 #if ($linha2 =~
/^>chromosome\:\S+\:(\S+)\:(\d+)\:(\d+)\:\d+/) {
 if ($linha2 =~ /^>ENS[a-z0-
9]+_(\S+)_(\d+)_\d+.fa/i) {
 $chr= $1;
 $begin= $2;
 #print $linha." < fa\n";
 $iniF= $ini - $begin + 1;
 $fimF= $fim - $begin + 1;
 print RES
">".$name."_".$chr."_".$ini."_".$fim."\n";
 } elsif ($linha2 =~ /^>/) {
 print "\n".$filename."<- filename ERROR\n";
 }
 #Get the seq ECR
 if ($linha2 !~ /^>/) {
 $aux= $linha2;

 chomp $aux;
 while ($aux ne "") {
 #print $aux." < aux\n";
 $car= substr ($aux, 0, 1);
 $length= length ($aux);
 $length= $length - 1;
 $aux= substr ($aux, 1, $length);
 $count++;
 #print $count." < count\n";
 if (($count <= $fimF) && ($count >=
$iniF)) {
 print RES $car;
 #print $car." < car\n";
 }
 if ($count > $fimF) {
 last RETORNOA;
 }
 }
 }
 }
 close (FA);
 close (RES);
 }
 }
 }
 close (FIL);
}

script: extract_local_fast.pl

#! /usr/bin/perl -w

script: extract_ort_genes.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$res = $ARGV[1];

open (FIL, $file);
open (RES, ">$res");
while (<FIL>) {
 $linha = $_;
 chomp $linha;
 @data = split (/\t/, $linha);
 if (@data > 1) {
 print RES $data[1]."\n";
 }
}
close (FIL);
close (RES);

script: find_nice_all.pl

#! /usr/bin/perl -w

$res = $ARGV[0];
$tissue = $ARGV[1];

while (defined ($file = glob ("expr*.*"))) {
 print $file."\n";
 system ("perl
/Users/pedro/Desktop/Pax6_paper/Data1/Ensembl_181208/SCRIPTS_screen1/find_nice_g
enes.pl $file $res $tissue");
}

script: find_nice_genes.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$res = $ARGV[1];
$tissue = $ARGV[2];

$count = 0;
open (FIL, $file);
open (RES, ">>$res");
while (<FIL>) {
 $linha = $_;
 if ($linha =~ /$tissue/) {
 $count++;
 }
}
close (FIL);
print RES $file."\t".$count."\n";
close (RES);

script: find_nonOverlpBDS.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$res = $ARGV[1];
$count = 0;

open (RES, ">$res");
open (FIL, $file);
while (<FIL>) {
 $linha = $_;
 chomp $linha;
 @data = split (/\t/, $linha);
 $chr = $data[1];
 $ini = $data[2];
 $fim = $data[3];
 $new = 1;
 for ($i = 1; $i<= $count; $i++) {
 if ((($fim > $ini[$i]) && ($ini < $ini[$i])) || (($fim[$i] > $ini)
&& ($ini[$i] < $ini))) {
 $new = 0;
 print $chr[$i]." ".$ini[$i]." ".$fim[$i]."
".$linha."\n";
 }
 }
 if ($new == 1) {
 $count++;

 $chr[$count] = $chr;
 $ini[$count] = $ini;
 $fim[$count] = $fim;
 print RES $linha."\n";
 }
}
close (FIL);
close (RES);

script: fix_enhancersV2.pl

#! /usr/bin/perl -w

while (defined ($filename = glob ("*.fa"))) {
 $res= $filename."F";
 open (FIL, $filename);
 open (RES, ">$res");
 while (<FIL>) {
 $linha = $_;
 if ($linha =~ /\S/) {
 print RES $linha;
 }
 }
 close (FIL);
 close (RES);
}

script: fix_initial_gene_file_name.pl

#! /usr/bin/perl -w

while (defined ($file = glob ("*.fa"))) {
 if ($file =~ /(ENS[a-z0-9]+)/i) {
 $aux = $1.".fasta";
 system ("mv -f $file $aux");
 print $aux."\n";
 }
}

script: get_annotationForNames.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$annot = $ARGV[1];
$res = $ARGV[2];

open (FIL, $file);
open (RES, ">$res");
while (<FIL>) {
 $linha = $_;
 chomp $linha;
 open (FIL2, $annot);
 while (<FIL2>) {
 $linha2 = $_;
 if ($linha2 =~ /$linha/) {
 print RES $linha2;
 }
 }
 close (FIL2);

}
close (FIL);
close (RES);

script: get_names.pl

#! /usr/bin/perl -w

$vari = $ARGV[0];
$res = $ARGV[1];

open (RES, ">$res");
while (defined ($file = glob ("*.csv"))) {
 print $file."\n";
 if ($file =~ /(E\S+)_(E\S+)/) {
 $gene1 = $1;
 $gene2 = $2;
 if ($vari ==1) {
 print RES $gene1."\n";
 } else {
 print RES $gene2."\n";
 }
 }
}
close (RES);

script: get_proteins2.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$rel = $ARGV[1];
$res = $ARGV[2];
open (FIL, $file);
open (RES, ">$res");
while (<FIL>) {
 $linha = $_;
 chomp $linha;
 open (REL, $rel);
 RETORNO:while (<REL>) {
 $linha2 = $_;
 chomp $linha2;
 @data2 = split (/\t/,$linha2);
 if (@data2 > 1) {
 if ($data2[0] eq $linha) {
 print RES $data2[2]."\n";
 last RETORNO;
 }
 }
 }
 close (REL);
}
close (FIL);
close (RES);

script: get_proteins3.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$rel = $ARGV[1];

$res = $ARGV[2];
open (FIL, $file);
open (RES, ">$res");
while (<FIL>) {
 $linha = $_;
 chomp $linha;
 @data = split (/\t/, $linha);
 $gene = $data[0];
 open (REL, $rel);
 RETORNO:while (<REL>) {
 $linha2 = $_;
 chomp $linha2;
 @data2 = split (/\t/,$linha2);
 if (@data2 > 1) {
 if ($data2[0] eq $gene) {
 print RES $linha."\t".$data2[2]."\n";
 last RETORNO;
 }
 }
 }
 close (REL);
}
close (FIL);
close (RES);

script: hmmsearchManyAgainstMAny.pl

#! /usr/bin/perl -w

$note= "usage: hmmsearchManyAgainstMAny <dir hmm> <dir dna>";
die "$note\n" if (@ARGV!=2);

$dir_hmm= $ARGV[0];
$dir_dna= $ARGV[1];

$count_hmm= 0;
$count_dna= 0;

while (defined ($filename = glob ("$dir_hmm/*.hmm"))) {
 $count_hmm++;
 $hmm[$count_hmm]= $filename;
 #print $filename."\n";
}

while (defined ($filename = glob ("$dir_dna/*.faF"))) {
 $count_dna++;
 if ($filename =~ /$dir_dna\/(\S+.faF)/) {
 $dna[$count_dna]= $1;
 }
 #print $filename."\n";
}

for ($i = 1; $i <= $count_hmm; $i++) {
 if ($hmm[$i] =~ /([a-z0-9_\-\.]+)\.hmm/i) {
 $hmm= $1;
 }
 for ($j = 1; $j <= $count_dna; $j++) {
 if ($dna[$j] =~ /([a-z0-9_\-\.]+).faF/i) {
 $dna= $1;

 }
 $aux1= $hmm."_".$dna.".out";
 $aux2= $hmm."_".$dna.".hmmsearch_prs";
 if ((-e $aux1) || (-e $aux2)) {
 print $aux1." or ".$aux2." ja existe\n";
 } else {
 system ("hmmsearch -E 1000 $hmm[$i] $dir_dna/$dna[$j] >
$aux1");
 print ("hmmsearch -E 1000 $hmm[$i] $dir_dna/$dna[$j] >
$aux1\n");
 }
 }
}

script: intersectAndExclude.pl

#! /usr/bin/perl -w

$file1= $ARGV[0];
$file2= $ARGV[1];

$res1= $file1."_INTERSECT_".$file2;
$res2= $file1."_MINUS_".$file2;
$res3= $file2."_MINUS_".$file1;

#upload the file1

$count1= 0;
open (FIL, $file1);
while (<FIL>) {
 $linha = $_;
 $count1++;
 $ele1[$count1]= $linha;
}
close (FIL);
#upload the file2

$count2= 0;
open (FIL, $file2);
while (<FIL>) {
 $linha = $_;
 $count2++;
 $ele2[$count2]= $linha;
}
close (FIL);
#get the res

open (RES1, ">$res1");
open (RES2, ">$res2");
open (RES3, ">$res3");
for ($i = 1; $i <= $count1; $i++) {
 $presente = 0;
 RETORNOA: for ($j = 1; $j <= $count2; $j++) {
 if ($ele1[$i] eq $ele2[$j]) {
 print RES1 $ele1[$i];
 $presente = 1;
 last RETORNOA;
 }
 }

 if ($presente == 0) {
 print RES2 $ele1[$i];
 }
}
for ($i = 1; $i <= $count2; $i++) {
 $presente = 0;
 RETORNOB: for ($j = 1; $j <= $count1; $j++) {
 if ($ele2[$i] eq $ele1[$j]) {
 $presente = 1;
 last RETORNOB;
 }
 }
 if ($presente == 0) {
 print RES3 $ele2[$i];
 }
}
close (RES1);
close (RES2);
close (RES3);

script: make_bootS_files.pl

#! /usr/bin/perl -w

use warnings;

$file = $ARGV[0];
$numberF = $ARGV[1];
$numberL = $ARGV[2];
$range = $ARGV[3];

srand (time ^ $$ ^ unpack "%L*", `ps axww | gzip`);

for ($i = 1; $i <= $numberF; $i++) {
 for ($l = 1; $l <= $numberL; $l++) {
 $num[$l] = 0;
 }
 $res = $i."_".$file;
 if (-e $res) {} else {
 $count = 0;
 while ($count <= $numberL) {
 $random_number = int(rand($range)) + 1;
 #print $random_number."\n";
 $presente = 0;
 for ($k = 1; $k <= $count; $k++) {
 if ($random_number == $num[$k]) {
 $presente = 1;
 }
 }
 if ($presente == 0) {
 $count++;
 $num[$count] = $random_number;
 }
 }
 for ($k = 1 ; $k <= $numberL; $k++) {
 #print $num[$k]."\t".$k."\n";
 }
 print $res."\n";
 open (RES, ">$res");
 for ($k = 1 ; $k <= $numberL; $k++) {

 $aux = 0;
 open (FIL, $file);
 while (<FIL>) {
 $linha = $_;
 $aux++;
 if ($aux == $num[$k]) {
 print RES $linha;
 }
 }
 close (FIL);
 }
 close (RES);
 }
}

script: make_distrib_perGene.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$res = $ARGV[1];
$max = 200;

for ($i = 0; $i <= $max; $i++) {
 $countGenes[$i]= 0;
}

$count = 0;
$ultimo = "";
open (RES, ">$res");
open (FIL, $file);
while (<FIL>) {
 $linha = $_;
 chomp $linha;
 @data = split (/\t/, $linha);
 $gene = $data[0];
 if ($gene eq $ultimo) {
 $count++;
 } else {
 $countGenes[$count] = $countGenes[$count] + 1;
 $count= 1;
 $ultimo = $gene;
 }

}
close (FIL);
$countGenes[$count] = $countGenes[$count] + 1;
for ($i = 1; $i <= $max; $i++) {
 print RES $i."\t".$countGenes[$i]."\n";
}
close (RES);

script: make_distrib_perGeneNames.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$res = $ARGV[1];
$count = 0;
$ultimo = "";
open (RES, ">$res");

open (FIL, $file);
while (<FIL>) {
 $linha = $_;
 chomp $linha;
 @data = split (/\t/, $linha);
 $gene = $data[0];
 if ($gene eq $ultimo) {
 $count++;
 } else {
 print RES $ultimo."\t".$count."\n";
 $count= 1;
 $ultimo = $gene;
 }

}
close (FIL);
print RES $ultimo."\t".$count."\n";
close (RES);

script: make_pair_files.pl

#! /usr/bin/perl -w

$file= $ARGV[0];
$res1= $ARGV[1];
$res2= $ARGV[2];

open (FIL, $file);
open (RES1, ">$res1");
open (RES2, ">$res2");
while (<FIL>) {
 $linha = $_;
 @data = split (/\t/, $linha);
 if ($linha =~ /ENSG/) {
 print RES1 $data[0];
 print RES1 "\t";
 print RES1 $data[8];
 print RES1 "\n";
 }
 if ($linha =~ /ENSMUSG/) {
 print RES2 $data[0];
 print RES2 "\t";
 print RES2 $data[12];
 print RES2 "\n";
 }
}
close (FIL);
close (RES1);
close (RES2);

script: make_pos_bds_put.pl

#! /usr/bin/perl -w

while (defined ($file = glob ("*.Mblt_res_70In40"))) {
 print $file."\n";
 if ($file =~ /(\S+)\.Mblt_res_70In40/) {
 $aux = $1;
 $res = $aux."_pos_put_bds.csv";
 if ($aux =~ /(E[0-9a-z]+)_(E[0-9a-z]+)/i) {
 $gene1= $1;

 $gene2= $2;
 print $gene1."\t".$gene2."\n";
 }
 }
 open (FIL, $file);
 open (RES, ">$res");
 while (<FIL>) {
 $linha = $_;
 @data = split (/\s+/, $linha);
 @data1 = split (/_/, $data[0]);
 @data2 = split (/_/, $data[1]);
 if (@data1 > 5) {
 $chr1 = $data1[@data1 - 4]."_";
 }
 $chr1 = $data1[@data1 - 3];
 $ini1 = $data1[@data1 - 2];
 $fim1 = $ini1 + $data[7];
 $ini1 = $ini1 + $data[6];
 print $chr1."<--chr1\t".$ini1."<--ini1\t".$fim1."<--fim1\n";
 if (@data2 > 5) {
 $chr2 = $data2[@data2 - 4]."_";
 }
 $chr2 = $data2[@data2 - 3];
 $ini2 = $data2[@data2 - 2];
 $fim2 = $ini2 + $data[9];
 $ini2 = $ini2 + $data[8];
 print RES
$gene1."\t".$chr1."\t".$ini1."\t".$fim1."\t".$gene2."\t".$chr2."\t".$ini2."\t".$
fim2."\n";
 }
 close (RES);
 close (FIL);
}

script: make_pos_hmm_out.pl

#! /usr/bin/perl -w
$ending= $ARGV[0];
while (defined ($file = glob ("*.$ending"))) {
 print $file."\n";
 if ($file =~ /(\S+)\.$ending/) {
 $aux = $1;
 $res = $aux."_pos_put_bds.csv";
 if ($aux =~ /(E[0-9a-z]+)_(E[0-9a-z]+)/i) {
 $gene1= $1;
 $gene2= $2;
 print $gene1."\t".$gene2."\n";
 }
 }
 open (FIL, $file);
 open (RES, ">>$res");
 while (<FIL>) {
 $linha = $_;
 if ($linha =~ /\S/) {
 @data = split (/\s+/, $linha);
 @data1 = split (/_/, $data[0]);
 if (@data1 > 5) {
 $chr1 = $data1[@data1 - 5]."_";
 }
 $chr1 = $data1[@data1 - 4];
 $ini1 = $data1[@data1 - 3];

 $fim1 = $ini1 + $data[3];
 $ini1 = $ini1 + $data[2];
 print $chr1."<--chr1\t".$ini1."<--ini1\t".$fim1."<--fim1\n";
 print RES $gene1."\t".$chr1."\t".$ini1."\t".$fim1."\n";
 }
 }
 close (RES);
 close (FIL);
}

script: make_relat_unigExprFiles.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$unig = $ARGV[1];
$res = $ARGV[2];

open (FIL, $file);
open (RES, ">$res");
while (<FIL>) {
 $linha = $_;
 if ($linha =~ /^(\S+)/) {
 #print $1."\n";
 $geneId = $1;
 $expr= "NULL";
 open (REL, $unig);
 while (<REL>) {
 $linhaR = $_;
 chomp $linhaR;
 @dataR = split (/\t/, $linhaR);
 if ($dataR[0] eq $geneId) {
 if (@dataR > 1) {
 $expr = $dataR[1];
 }
 }
 }
 close (REL);
 print RES $geneId."\t".$expr."\n";
 }
}
close (RES);
close (FIL);

script: make_relative_all.pl

#! /usr/bin/perl -w

$unig = $ARGV[0];

while (defined ($file = glob ("*.txt"))) {
 $res = "expr_".$file;
 if ((-e $res) || ($file=~ /^expr_/)) {} else {
 system ("perl
/Users/pedro/Desktop/Pax6_paper/Data1/Ensembl_181208/SCRIPTS_screen1/make_relat_
unigExprFiles.pl $file $unig $res");
 }
}

script: make_uscs_tables.pl

#! /usr/bin/perl -w

$gene_annot= $ARGV[0];
#read the pos files
while (defined ($pos_file = glob("*.csv"))) {
 if ($pos_file =~ /(\S+)\.csv/) {
 #$res = $1.".drer_uscs_table";
 $res = $1.".mmus_uscs_table";
 }
 print $pos_file."\n";
 $s_temp= "s_temp";
 system ("sort -g $pos_file > $s_temp");
 open (FIL, $s_temp);
 $count= 0;
 while (<FIL>) {
 $linha_pos_file = $_;
 print $linha_pos_file;
 chomp $linha_pos_file;
 @data_pos_file = split (/\t/, $linha_pos_file);
 $gene_name= $data_pos_file[0];
 $count++;
 $chr = $data_pos_file[1];
 $ini[$count]= $data_pos_file[2];
 $fim[$count]= $data_pos_file[3];
 if ($fim[$count] < $ini[$count]) {
 $aux = $ini[$count];
 $ini[$count] = $fim[$count];
 $fim[$count] = $aux;
 }
 }
 print $gene_name."\n";
 print $count."\n";
 close (FIL);
 system ("rm -f $s_temp");
 #get the position of the locus
 open (GENE, $gene_annot);
 while (<GENE>) {
 $linha_gene_annot = $_;
 chomp $linha_gene_annot;
 @data_gene_annot = split (/\t/, $linha_gene_annot);
 if ($data_gene_annot[0] eq $gene_name) {
 $gene_ini = $data_gene_annot[2];
 $locus_ini = $gene_ini - 20000;
 $gene_fim = $data_gene_annot[3];
 $locus_fim = $gene_fim + 20000;
 #$strand = $data_gene_annot[4];
 }
 }
 close (GENE);
 #calculate the relative positions for the pos seqs
 open (RES, ">$res");
 print RES $chr."\t".$locus_ini."\t".$locus_fim."\n";
 for ($i = 1; $i <= $count; $i++) {
 $rel_ini[$i] = $ini[$i] - $locus_ini + 1;
 $rel_fim[$i] = $fim[$i] - $locus_ini + 1;
 $size[$i] = $rel_fim[$i] - $rel_ini[$i] + 1;
 print RES
$gene_name."\t".$rel_ini[$i]."\t".$rel_fim[$i]."\t".$size[$i]."\n";
 # make the table

 }
 close (RES);
}

script: parse_BlZ.pl

#! /usr/bin/perl -w

$dir1= $ARGV[0];

while (defined ($file1 = glob ("$dir1/*.BlZ"))) {
 if ($file1 =~ /$dir1\/(\S+)_(\S+)\.BlZ/) {
 $name1= $1;
 $name2= $2;
 print $name1."\t";
 print $name2."\n";
 $res = $name1."_".$name2.".txt";
 }
 $count1= 0;
 open (FIL1, $file1);
 open (RES, ">$res");
 while (<FIL1>) {
 $linha1 = $_;
 if ($linha1 =~ /".*$name1.*"\s+\d+\s+\d+\s+(\d+)\s+\d+/) {
 #print $linha1." 1\n";
 $flag1= $1;
 #print $flag1[$count1]."<- flag1 \n";
 }
 if ($linha1 =~ /".*$name2.*"\s+\d+\s+\d+\s+(\d+)\s+\d+/) {
 #print $linha1." 2\n";
 $flag2= $1;
 #print $flag2[$count1]."<- flag2\n";
 }
 if ($linha1 =~ /\s+b\s(\d+)\s(\d+)/) {
 $count1++;
 $flag1[$count1]= $flag1;
 $flag2[$count1]= $flag2;
 $begin1[1][$count1]= $1;
 $begin1[2][$count1]= $2;
 }
 if ($linha1 =~ /\s+e\s(\d+)\s(\d+)/) {
 $end1[1][$count1]= $1;
 $end1[2][$count1]= $2;
 if ($begin1[1][$count1] > $end1[1][$count1]) {
 print "entrou!!\n";
 $aux= $end1[1][$count1];
 $end1[1][$count1]= $begin1[1][$count1];
 $begin1[1][$count1]= $aux;
 }
 if ($begin1[2][$count1] > $end1[2][$count1]) {
 $aux= $end1[2][$count1];
 print "entrou!!\n";
 $end1[2][$count1]= $begin1[2][$count1];
 $begin1[2][$count1]= $aux;
 }
 }
 }
 close (FIL1);

 for ($i = 1; $i <= $count1; $i++) {
 print RES
$name1."\t".$name2."\t".$flag1[$i]."\t".$begin1[1][$i]."\t".$end1[1][$i]."\t".$f
lag2[$i]."\t".$begin1[2][$i]."\t".$end1[2][$i]."\n";
 }
 close (RES);

}

script: parse_fileWgeneDistPerOrgan.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$expres = $ARGV[1];
$tissue = $ARGV[2];
$res = $ARGV[3];

open (FIL, $file);
open (RES, ">$res");
while (<FIL>) {
 $linha = $_;
 @data = split (/\t/, $linha);
 $gene = $data[0];
 open (EXPRE, $expres);
 while (<EXPRE>) {
 $linha2 = $_;
 if (($linha2 =~ /$gene/) && ($linha2 =~ /$tissue/)) {
 print RES $linha;
 }
 }
 close (EXPRE);
}
close (FIL);
close (RES);

script: parse_hits_threshold2.pl

#! /usr/bin/perl -w

$file= $ARGV[0];
$thres= $ARGV[1];
$res1= $ARGV[2];
$res2= $ARGV[3];

open (FIL, $file);
open (RES1, ">$res1");
open (RES2, ">$res2");
while (<FIL>) {
 $linha= $_;
 if ($linha =~ /\S/) {
 @data = split (/\s+/, $linha);
 if ($data[@data - 2] > $thres) {
 print RES1 $linha;
 } else {
 print RES2 $linha;
 }

 }
}
close (RES1);
close (RES2);
close (FIL);

script: parse_megablast.pl

#! /usr/bin/perl -w

$alignment_size= 40;
$similarity= 70;
while (defined ($filename = glob ("*.Mblt"))) {
 $res= $filename."_res_70In40";
 print $res."\n";
 #$res= $filename."_res_75In60";
 #$res= $filename."_res_70In60";
 open (RES, ">$res");
 open (FIL, $filename);
 print $filename."\n";
 $count= 0;
 while (<FIL>) {
 $linha= $_;
 if ($linha =~ /^#/) {} else {
 @data = split (/\t/, $linha);
 if (($data[3] >= $alignment_size) && ($data[2] >=
$similarity)) {
 print RES $linha;
 }
 }
 }
 close (FIL);
 close (RES);
}

script: parse_unigenes_expPats.pl

#! /usr/bin/perl -w

$file = $ARGV[0];
$res = $ARGV[1];

open (FIL, $file);
open (RES, ">$res");
while (<FIL>) {
 $linha = $_;
 if ($linha =~/^ID\s+(\S+)/) {
 #print $1."\n";
 $uniId = $1;
 }
 if ($linha =~ /EXPRESS\s+(.*)/) {
 $expr = $1;
 print RES $uniId."\t".$expr."\n";
 print $uniId."\t".$expr."\n";
 }

}
close (FIL);
close (RES);

script: parseHmmpsearchRes.pl

#! /usr/bin/perl -w

while (defined ($filename = glob("*.out"))) {
 if ($filename =~ /(\S+)\.out/) {
 $res= $1.".hmmsearch_prs";
 }
 open (RES, ">$res") || die "can't opne $res: $!";
 open (FIL, $filename) || die "can't opne $filename: $!";
 $escreve= 0;
 $pode= 0;
 RETORNO: while (<FIL>) {
 $linha = $_;
 if ($linha =~ /Alignments of top-scoring domains/) {
 last RETORNO;
 }
 if ($linha =~ /^Parsed for domains/) {
 $pode= 1;
 next;
 }
 if (($pode == 1) && ($linha =~ /^--------/)) {
 $escreve= 1;
 next;
 }
 if ($escreve == 1) {
 print RES $linha;
 }
 }
 close (FIL) || die "can't close $filename: $!";
 close (RES) || die "can't close $res: $!";
 #system ("rm -f $filename");
}

script: prepareForblast.pl

#! /usr/bin/perl -w

$dir = $ARGV[0];
while (defined ($filename = glob ("$dir/*.fasta"))) {
 if ($filename =~ /$dir\/([a-z0-9\._]+).fasta/i) {
 $res= $1;
 }
 #PRepare for blast
 system ("formatdb -i $filename -p F -o T -n $res");
 print ("formatdb -i $filename -p F -o T -n $res\n");
}

script: remove_empty.pl

#! /usr/bin/perl -w

while (defined ($filename = glob ("*"))) {
 $count= 0;
 open (FIL, $filename);

 RETORNO:while (<FIL>) {
 $count++;
 if ($count > 0) {
 last RETORNO;
 }
 }
 close (FIL);
 if ($count == 0) {
 unlink($filename);
 }
}

script: remove_exonic.pl

#! /usr/bin/perl -w

$exon= $ARGV[0];
$aboves= $ARGV[1];

#ler os exons
$count= 0;
open (EXON, $exon);
while (<EXON>) {
 $linha = $_;
 chomp $linha;
 @data = split (/\t/, $linha);
 $count++;
 $chr[$count]= $data[1];
 $ini[$count]= $data[5];
 $fim[$count]= $data[6];
 print $count." <-- count\n";
}
close (EXON);

#parse the binding sites
while (defined ($filename = glob ("$aboves/*.above"))) {
 if ($filename =~ /$aboves\/(\S+.above)/) {
 $res = $1.".NonExonic";
 }
 print $res."\n";
 if (-e $res) {} else {
 open (FIL, $filename);
 open (RES, ">$res");
 while (<FIL>) {
 $linha = $_;
 print $linha;
 $escreve = 1;
 $chr= "";
 @data_aux = split (/\s+/,$linha);
 $pos= $data_aux[0];
 @data = split (/_/, $pos);
 if (@data > 5) {
 $chr = $data[@data - 5]."_";
 }
 $chr = $chr.$data[@data - 4];
 $ini = $data[@data - 3];
 $fim = $data[@data - 2];
 print $chr."|".$ini."|".$fim."\n";
 $fim = $ini + $data_aux[3];

 $ini = $ini + $data_aux[2];
 print $chr."|".$ini."|".$fim."\n";
 # check it
 RETORNO: for ($i = 1; $i <= $count; $i++) {
 if ($chr eq $chr[$i]) {
 if ((($ini <= $fim[$i]) && ($ini[$i] <= $ini))
||
 (($ini[$i] <= $fim) && ($ini <= $ini[$i]))
||
 (($fim <= $fim[$i]) && ($ini[$i] <= $fim))
||
 (($fim[$i] <= $fim) && ($ini <= $fim[$i])))
{
 $escreve= 0;
 #print
$linha."\t".$ini[$i]."\t".$fim[$i]."\t".$chr[$i]."\n";
 last RETORNO;
 }
 }
 }
 if ($escreve == 1) {
 print RES $linha."\n";
 }
 }
 close (RES);
 close (FIL);
 }
}

script: remove_repetitionFromSorted.pl

#! /usr/bin/perl -w

$ultimo= "";
while (<STDIN>) {
 $linha= $_;
 if ($linha eq $ultimo) {

 } else {
 print $linha;
 $ultimo= $linha;
 }
}

script: repeat_mask3V2.pl

#! /usr/bin/perl -w

$species= $ARGV[0];
#while (defined ($filename = glob ("*.fasta"))) {
while (defined ($filename = glob ("*.fa"))) {
 $res= $filename.".masked";
 if (-e $res) {

 } else {
 system ("RepeatMasker -species $species $filename");
 if (-e $res) {

 system ("rm -f *cat *out *tbl");
 } else {
 system ("cp $filename $res");
 }
 sleep 300;
 }
}

