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Supplemental Materials 



 

Figures 
 
Figure S1: Module Hypothesis 
Here we present a small portion of the SGA interaction matrix that has been 
hierarchically clustered on both the query and array sides.  Large negative and 
positive blocks immediately become apparent. We call out two blocks as specific 
examples of of the postive-within and negative-between pathway models.  The 
set of genes RAD51, RAD52, RAD54, RAD55, RAD57 are involved in DNA 
repair through recombination, while REV1, REV3 and REV7 are also involved in 
DNA repair but through translesion synthesis. We see that the RAD genes form a 
positive clique among themselves (within pathway) but form a negative biclique 
with the REV genes (between pathway). 

 
 



Figure S2: Network Randomization 
The network was randomized by randomly selecting two interacting gene pairs ( 
for  example, Q1 and A1, and Q2 and A2) and switching the array genes as in 
the following figure. Thus, the connectivity of the network was randomized, but 
the degree (number of interactions) of each gene remained the same.  If the 
random interaction pairs had overlapping query or array genes a new set of 
interaction pairs was selected. Maintaining the correct degree distribution is 
essential in cases where the distribution is extremely skewed, as is the case in 
most biological networks. 
 

 



Figure S3: XMOD Flow Chart 
The following diagram describes the process of discovering biclusters with 
XMOD. First, apriori is run to discover blocks of sizes bigger or equal to 6 query 
genes X 3 array genes or 3 query X 7 array for negative interactions and bigger 
than 3 query X 3 array for positive interactions. These groups are then compared 
with a distribution of blocks found on randomized graphs. Any block whose score 
(measure of how likely the block might arise from just the degree distribution) is a 
above a .0001 p-value with respect to the randomized distribution of scores is 
removed. To produce condensed blocks, smaller blocks that have 40% overlap 
or more by area with larger blocks are discarded.  
 

 
 
 



Figure S4: Filtering Positive Biclusters 
The number of biclusters discovered for the real and randomized interaction 
network at various p-value cutoffs. The randomization and p-value assessments 
were performed separately on the positive and negative interaction networks. 

 
 



Figure S5: Size distribution of biclusters 
Here we plot the size distribution of positive and negative biclusters. Each circle 
is proportional in size to the number of biclusters with the given number of query 
and array genes. 
 

 
 
 



Figure S6: Functional coherence as measured by MEFIT while controlling 
for overlap on all methods. 
We compared XMOD to other biclustering methods where we allowed only a 
20% overlap by area among biclusters in every method. XMOD again performs 
well when compared to these other methods under this condition. 

 



Figure S7: Functional coherence as measured by semantic similarity 
We also compared XMOD to other biclustering techniques using semantic 
similarity on GO process terms as described in (Lin 1998). Again, XMOD out 
performs other methods. We opted to use the MEFIT functional network for our 
primary evaluation due to the bias of GO categories towards genetic interaction 
hubs. 
 

 



 
Figure S8: Robustness of XMOD to missing values 
To test the robustness of XMOD to missing values, we randomly changed 
measured values to missing values for 1, 2, 5, and 10 percent of the measured 
values. We plot the proportion of interactions that were covered by XMOD filtered 
biclusters after introducing random missing values as a proportion of the 
interactions covered for the real, intact network. 
 

 
  



Figure S9: Validation of module derived functions 
We investigated the functions associated with module membership by using the 
bioPIXIE functional network (Myers et al. 2005).  In short, if gene A was 
associated with process X, we considered the mean bioPIXIE score between 
gene A and the genes associated with X (not including X or other genes in the 
given module).  We then gave the association between A and X a score by 
considering the proportion of screened genes that have a lower association with 
term X than does gene A.  For example, if gene A is better associated with term 
X than any other gene, the association of A and X would have a score of 1.   

 
 



Figure S10: Proportion of q-cliques and bicliques on deletion biclusters  
We found proportion of q-cliques and bicliques on biclusters that only depend on 
deletion alleles (bigger that 3x3 without TS or DAMP alleles). 38% of positive 
biclusters are q-cliques, while 13% of negative biclusters are q-cliques. 

 



Figure S11: Coexpression enrichments on modules supported only by 
deletion alleles 
We found the average enrichments for coexpression of modules who’s support 
only depended on deletion mutants (bigger that 3x3 without TS or DAMP alleles). 
We find no striking differences in coexpression between q-cliques or bicliques. 
 

 



Figure S12: PPI enrichments on modules supported only by deletion alleles 
We found the average enrichments for protein-protein interactions of modules 
who’s support only depended on deletion alleles (bigger that 3x3 without TS or 
DAMP alleles). Here we find negative bicliques once again have a significantly 
higher mean PPI level than negative q-cliques (p < 0.002, Ranksum). 

 



 
Supplemental Tables 
 
Table S1: Enrichment of genes that appear on both sides of negative biclusters. 
See the attached file “neg_clique_enrich.txt”. 
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