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Figure S1 (related to Fig 1 and Supplementary Methods). Data normalization 

against RNA amount and extension of mapped reads beyond annotated sequences. 

(A) Extension of mapped reads beyond annotated 5′ or 3′ UTRs observed in several 

genes. Light brown bars indicate gene structure, blue bars at the top of each panel 

indicate di-tag mapping. Black arrows indicate the site of extended reads mapping.(B) 



The amount of total RNA measured per embryo is reduced from the egg to the 1-cell 

stage (0 hpf), and remains stable until post-MBT, where it increases again. 

(C) The amount of poly(A)+ RNA shows a distinct pattern from the total RNA content. It 

increases gradually from the 1-cell (0.2%) to the MBT stage (0.5%), whereby it decreases 

again. 

(D) We compared the poly(A) content derived from direct measurement with a global 

fold change factor (TMM) and found very good correlation (r = 0.90). The average of 

these values (green dotted line) was used in the normalization procedure. 

 

 

Figure S2 (related to Fig 2). Statistical testing using the R package DEGseq, with the 

method MARS.  

We performed successive pairwise testing (i.e. Egg vs 1-cell, 1-cell vs 16-cell, and so 

forth). Many transcript appeared twice or more after the initial test. We kept only one 

observation (with the lowest p-value). This revealed two time points with major changes 

in poly(A) + RNA levels (up and down regulation); between the 1-cell and 16-cell 

(comparison 2) and between 3.5hpf and 5.3hpf (comparison 5). The figure shows the 

number of transcripts with a significant change between the groups compared.





Figure S3 (related to Fig 3). Real-time PCR validation of pre-MBT super-cluster 

genes.  

Good correlation was observed between mRNA-seq and RT-qPCR using oligo d(T) 

primers, but not with RT-qPCR using r.p.. Of 29 genes tested, 24 showed such pattern 

(10 shown here). Y-axis indicates relative enrichment value against egg stage as the 

baseline (2-∆∆Ct) in RT-qPCR and read counts in mRNA-seq. WISH at 1-cell to 8-cell 

stages performed on two of the tested pre-MBT transcripts: otx1 and taf1a, showed 

positive expression.  
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Figure S4 (related to Fig 4). Inhibition of polyadenylation by cordycepin. Poly(A) 

tails of gtf2h4 and xbp1 transcripts from control (C) and 3’-dA-treated (3’-dA) embryos 

were measured before (at 1-cell stage) and after (at 5.3 hpf) treatment. A longer smear 

representing longer poly(A) tail could be seen in the control as compared to the treated 

samples. S – fragment amplified using gene-specific internal primers.  
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 Figure S5. Enrichment of GO terms in individual clusters.  

The top-six GO terms based on p-values are depicted. Number in each slice 

represents –log(p-value) (top) and percentage of genes within cluster (bottom, represents 

slice size). Cluster names are indicated at the top of each chart. Color representations of 

different GO terms are collectively indicated below the charts. 
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Figure S6. Representation of gene clusters into different functional groups. 

(A) Proportion of different clusters enriched in various biological function groups. 

(B) Enrichment of clusters in various canonical pathways involved in development. 

 

 

 

 



 

Figure S7 (related to Fig 5). RT-PCR validation of several NTRs located near 

annotated genes. 

Primers (black arrows, F – forward, R – reverse) were designed spanning one annotated 

exon and the tested NTR (box). RT-PCR analysis was performed in 1-cell (1c), 16-cell 

(16c), 128-cell (128c), 3.5 hpf (3.5h), and 5.3 hpf (5.3h) samples.  
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Figure S8 (related to Fig 6). GLI2 and YY1 gene regulatory networks. 

(A) Splice variant analysis in tp53 at 5.3 hpf. Di-tags (red bars with arrowheads) are 

shown on top of each panel. Red horizontal lines indicate junction mapping. Reads 

spanning exons 1 and 3 (skipping exon 2), 2 and 11 (skipping exons 3-10), 5 and 9 

(skipping exons 6-8), as well as exons 6 and 8 (skipping exon 7) imply several isoforms 

(blue arrows). 

 (B) Comparison of the observed (red bars) and expected (blue bars) read count for each 

of the 14 exons of gli2a at 16-cell and 5.3 hpf, indicating the presence of two isoforms 

which differ in the presence of exon 14, encoding a short and a long Gli2a protein variant 

respectively. A shift towards the longer isoform was observed at 5.3 hpf.  

(C) Transcriptional network for GLI1 and GLI2. Both gli1 and gli2a transcripts increase 

at pre-MBT stages, however gli1 decreases again post-MBT while gli2a continues to 

increase, suggesting that Gli1 may have a more restrictive role in zebrafish. Their 

downstream targets are shown in light green (pre-MBT2, MBT and post-MBT cluster 

genes). All relationships are direct (e.g. physical) and shown to increase the expression of 

the downstream targets. SUFU is an upstream regulator of the activator/suppressor form 

of Gli. sufu decrease in expression as the 14th exon inclusion isoform increase. ZIC2  

which is part of the "Gli-code"  and important in cell differentiation interacts with both 

GLI1 and GLI2a. 

(D) Gene regulatory network of Yin and yang 1 (yy1a in zebrafish). This gene increased 

in expression from 3.5 hpf  and onwards. Red symbols are upstream inhibitors of YY1 

expression, and their decrease in expression coincides with the onset of yy1a expression. 

Figures in green are possible downstream targets of YY1, and their expression decreases 



after the onset of yy1a expression (pre-MBT1 or Degradation 3 cluster). For better clarity 

only 9 of 19 IPA predicted downstream targets are shown. Among the excluded genes 

were HSPA5, SCARB1, FDPS and SREBF1 (physical interactions, Protein-DNA 

binding). Figures in yellow are proteins which YY1 has been shown to interact with. The 

PRC1 and PRC2 interactions are custom made (no color). Our findings suggest that 

transcription is changed towards more specific inhibition and induction around MBT.  

 

Supplementary Tables 

Table S1 (related to Fig 1). Distribution of sequencing reads across all 6 libraries. A: 

Count of reads with number of mappings in proper range (1 <= N <= 10). B: Count of 

reads with number of mappings in proper range (1 <= N <= 10) and align score >= 26. C: 

Count of reads uniquely aligned (minScoreGapToSecondBestAlignment = 4) with align 

score >= 26. 

 Total Reads Filter A B C 

Tags 
mapping to 
Ensembl 

Egg 31,323,986 105,587 19,462,743 17875474 16,616,142 14,105,191 
1-cell 23,506,971 84,840 15,337,433 14246586 13,307,726 11,435,032 
16-cell 35,844,766 131,951 23,841,732 21798579 20,475,830 17809,822 
128-cell 27,119,026 104,501 18,682,912 17239656 16,213,755 14,132,828 
3.5 hpf 37,886,769 255,605 25,330,558 23412248 21,989,690 18,939,525 
5.3 hpf 55,560,167 1,384,159 30,068,339 27070756 25,021,063 21,076,918 

 

Table S2 (related to Fig 3). List of all genes validated by RT-qPCR and their primer 

sequences. Highlighted in yellow are genes from maternal super-cluster, non-highlighted 

are genes from pre-MBT super-cluster, while those in green are genes from zygotic 

super-cluster. bnip3l was used as reference. 

Gene  Forward primer Reverse primer 
cldnd CCAGAGCACCGGACAGATG GGTCTTGAGGTAGAGCCAGCAT 
ybx1 AGGAAGATGTCTTTGTGCATCAG CCCAACGCTACGGAGATATTTC 
ccnb1 TCGACTGGCTTGTGCAAGTCCA GCCTTCCAAAACCAAAGTTGAGGA



cldng TGCAAGCTCATCTGTAGGTCACA CAAGAGTGCCTAGTGTTGTTCCA 
plk1 GCCAAGCCGTCTGATAGAGACT CAGGAATACAAGCAGGGTCTTCA 
eml2 CATTTGTGTGCGGTTGACG ACAGTCCTTGGCGTTTAGTGAGA 
gtf2h4 GGTAGCCCTGTGGGTTAAAAAA CCAGAGCCGTAGCCCAGTTA 
taf1a GAAAACGAGGAGCTGAGCAGTAA AGAGTCACTGACGCCTGTCTGA 
otx1 AGGAGAAGGACGGAGTGTTTTG CCCCGATGTTGCAGTTTGAC 
xbp1 TGGAGCTGGAGAATCAGAAACTT CACTGAGCAGATCACTCGTCTTG 
etv5 CCACCCCTGAACCGTGAA TGAAAGTTGCCGCTGAAACC 
dnaja2 TCCCAGACAACAACTGGTTGAG GAGCATCGGCCCGTGTAG 
ncl AAGGAGGGCCTTGAAATTCAG CAACGTAGCCGAATTTCTTTGTT 
fam53b TCGCTGGACCTGCTCAAGAT CCTGGACAGCTGAGACTGTGAA 
myst2 CCAGGACGCCAACAGGAA GGCTGGATATGTCGATGTCTGA 
nlk1 GGTGCCAAGTCCTGCTGAA AAACGCCCCGTAACCGATA 
zgc:158138 GGATGTTTGAGAAGATCGAGAAGTC CAAGGCACGATCCATTAATAGCA 
zgc:171708 TCACGACTGAACCTGCTTTCC CTGGTTAATACCTGGCTCTGTGTCT
irf2a AGAGAGCACATACAGTGAAGAAGAC AAAGACAGGTCCTGAGGAAGC 
dnmt3 TAATTCCTTCGCTACAGTAATGGC AACATTCTACTGCGTCTGGAAGC 
phf6 TCAGTTACTGGTGGCAGAGAGCC GTGACCAAGGCTGATGAGAATAGC
aldoaa CCCTGGCAAAGGCATCCTTG CGGTTCTCCTCTGTGTTCTCAGC 
rtkn2 AGGAAGAAAATAAGGGAAAGCATG CTCTCATTCGCATCTCAAACTCC 
hdlbp GGACGGATTATCTGGTAACTGACC TCCCACGTTTACACGGAGTCC 
phc2 GAGGGATTCGTGATTCAGGAGG TCGATCAGCAAGGACGGACG 
lrpap1 AACATTGTCATGGACACTGTCAGC ACATCCCCCTCCAGAGGACTG 
herpud1 CTGGACAACCTGCTTATCAGAGATG GGTGAAGAGTGGGTTTGGTATCTG
asz1 CAACGCTGACCCCAATGTCTG CGAGCATCAAACACGTCATACTGC
gpsm2 GACATTTAGATATTGCCAGGGAAC TTCCAAAATTGTAAAGTGCTCTGG 
taf5l GCACAGGAAACACCAGCTCTT TCCTTCTGAACCGTCCACTGA 
sf3b3 GGGTATCGTTGCCATTTCCA CGGCACCCAGTTTCTCAAGA 
bmi1 GAGAAGCAAAATGGATATACCTCC TAATCCTTCAAAGGCTCATCCTC 
gmcl1 TACAGCCACGACGACATCTAGC ACTGCAAACCACTTTTCCACTGC 
zw10 CTCTGTCGCCAGCAAAGCTATCAG CTTTTCCCAACCTCCGCAGC 
nudcd1 GTGTGTACTTTGTGGACAGCAAGG TCGAAATGAAACATCTCACGAGG 
her5  AGAAACTCAAAAACCCTAAAGTGGAA GCACAACACTTTCCAGGATTTCA 
apoeb GCAGAGAGCTTGACACACTAATTACTG GGGTTTGGAGATTTTCACTGTATGA
klf4 ACGAAAAGCTCCCATTTGAAAG TGCAGTGGTAGGGCTTCTCA 
sox19a ACCGCACAGACCTACATGAATG CTGTGGAGTGCTGCTATAGGACAT
id1 TGTGGAGAACGGCTGTTCAG CCACCGGGAGTATCTGCTTTAAC 
cirbp TCGCATGATTCGCGTTGAT GGAACCCCCTCTGAAACCA 
hspb1 GGAGATCACTGGCAAACATGAG TGGTGAAGCATCTGGAAATGAA 
atf4 CGCTCTGCTGCCATCGA GGAGGAGAAGCTGCGGTATTT 
anxa1a CGCCAAAGCCATTGACCTA CATTTCACAACAGCAATCAAGCA 
foxa3 CGCTCGGAGAGGAATAC AGTGGAATCCTTTCTACAGTGAG 
bnip3l CGCATGGCAGACTGGTCGAGTA TCCTCATGCTAAGAGTCACTGAACG

 



Table S3 (related to Fig 3). List of Genbank ID of clones used for WISH probe 

synthesis. 

Gene  Clone number 
taf1a CK693445 
otx1 CK692061 
xbp1 CK712552.1 
etv5 CK690842 
apoeb CK670601 
klf4 EH604045 
sox19a CK691764 
id1 CK711535 
hspb1 CK711069 
cldng CK711236 

 
 

Table S4 (related to Fig 3). List of gene-specific primers used for poly(A) tail 

measurements. 

Gene  Forward primer Reverse primer 
xbp1 AACGTGACCCAGTATTTTTGTC ATTATGATTGATGAGAGCATTTAC
otx1 GTGACGCACTCAAGGAATGG TGTGTAACATCTCACATGAGCTG 
taf1a GTATATGTTCTTGAATATGCCAG AGTGTGAGGATATACACAGATGC 
gtf2h4 GCATTTTACTGCAAGTTGATCTG ACCTTGGACACAAACGTGTAG 
dnaja2 GTCAGCAATCCAGGTGCATG TTCACAGAAGATAAGCCTAAAGG 
ncl GGATACAGACCGAAAACAGC TCAAAATGGTTCTTTACATCATG 
ybx1 TTGGGGAAACAGCAGATG AAATGTCAAACTGACCAGATATC 

 
 
Table S5 (related to Fig. 4). List of motifs enriched in pre-MBT cluster with degradation 

1 cluster as discriminant, generated by DREME. 

MOTIF AAAAWAG 2.60E-18 
MOTIF GAAAANA 2.70E-11 
MOTIF CATTNCA 5.70E-10 
MOTIF RAAAAA 1.40E-07 
MOTIF GAACB 5.50E-09 
MOTIF ACAGMT 1.50E-06 
MOTIF TCTTTAMA 2.30E-06 
MOTIF AAAGKA 6.20E-06 
MOTIF STCRA 4.30E-06 
MOTIF GGGRS 1.70E-05 



MOTIF ATTHTG 1.80E-05 
MOTIF CHTAAC 1.10E-05 
MOTIF HTGTAGA 1.20E-04 
MOTIF ACKTCC 9.00E-05 
MOTIF TCCAGCCA 1.40E-04 
MOTIF TCCAGCCA 1.40E-04 

 

 

 

 

 

 

Table S6 (related to Fig 5). Number of putative NTRs discovered by the WTAP 1.2 

NTR module. Number of putative NTRs reduced significantly after intersection with 

other known annotations (see Supplementary Methods). 

 
 
  Egg 1-cell 16-cell  128-cell 3.5 hpf 5.3 hpf 
Putative 
Transcribed 
Regions 85987 82448 118351 115141 124610 122751 
Putative 
Transcribed 
Regions with 
no annotation 
support 2329 2064 3899 3380 4590 8140 

 

Supplementary Methods 

Mapping of sequence tags and data analysis 

Reference Genome assemblies and gene annotation were downloaded from Ensembl 

(Ensembl Genes 60, Zv9). Prior to aligning the sequence reads to the reference genome, 

reads were filtered against Repbase (Jurka et al. 2005) to remove repeats. mRNA-seq 



reads were mapped using Bioscope version 1.3.1 (Applied Biosystems) and the Whole 

Transcriptome Analysis Pipeline version 1.2 (WTAP 1.2) with default settings. Using 

uniquely mapped reads from Bioscope, read counts per exon were obtained using 

Bioscope count module and read counts per gene were obtained by summarizing the read 

counts for all exons within a gene for all Ensembl Gene IDs. Perl scripts were used to 

generate coverage data for visual display in the UCSC browser (http://genome.ucsc.edu).  

Novel Transcribed Regions (NTRs) were identified by the NTR Finder module in WTAP 

1.2 using reads mapped by WTAP. We used a window size of 100bp and minimum 

window coverage of 4 as parameters. Newly identified NTRs were subsequently 

subjected to intersection with data from the UCSC genome browser (all mRNA and EST 

data) using BEDTools (Quinlan and Hall, 2010) to discover exons with no annotation 

support.  

 

Data normalization and expression clustering 

All analyses were performed in the R-environment (http://cran.r-project.org/) unless 

specified. We modified the normalization strategy presented by Robinson and Oshlack 

(2010) to obtain data adjusted for the amount of polyA RNA per embryo (see below for 

detailed description). Statistical tests were performed by successive pair wise 

comparisons using the R-package DEGseq with the method MARS (MA-plot-based 

method with random sampling model) (Wang et al. 2008). We applied cut-offs for both 

absolute change (read count change > 50), q-value (< 0.001) (Storey and Tibshirani 2003) 

and fold change (>2). Read counts for each transcript were subsequently length 

normalized by dividing against transcript length in kilobases. Using the genes within the 



thresholds from statistical testing we designed clusters using a combination of K-means 

clustering (k=30), subjectively merging similar groups, searching for transcripts with 

specific gene expression profiles and finally applying cut offs for correlation to the 

cluster mean (Pearson's correlation coefficient >0.90) and coverage (average of >50 reads 

across all samples). A total of 5,278 genes were included in the clustering analysis. Genes 

were subjected to functional annotation using Ingenuity Pathway Analysis (IPA; 

http://www.ingenuity.com). P-values were calculated using Fischer’s exact test and a 

threshold p-value of  <0.01 was used to define significantly enriched terms. 

 

Splice junction mapping & detection 

For detection of splice variants we implemented the strategy proposed by Richard and 

colleagues (2010) included in the R-package SolaS. Due to the low-throughput layout of 

this package we reimplemented it in a custom R-script. We selected ~1600 multi-exon 

transcripts (≥2) with high read coverage in each library (>150 reads) without known 

isoforms. We removed exons below 50 bp and calculated a z-score for each exon. A low 

z-score is indicative of a exon skipping event or alternative 5' or 3' splice sites depending 

on exon position. For genes with known isoforms we used Cufflinks version 0.9.3 

(Trapnell et al. 2010) to estimate the relative abundance of each isoform. We inspected 

the fraction value for a subset of genes expressed at all stages (>50 reads) and with 

multiple isoforms. We interpreted a low major fraction (<0.80) as evidence for the 

presence of multiple isoforms.    

 

Motif search for cytoplasmic polyadenylation elements 



Using BioMart (http://www.ensembl.org/biomart/), we downloaded the 3' UTRs of 

transcripts associated with the different genes. For the pre-MBT clusters we applied a 

stringent cut off (>500 reads increase and >5-fold increase) to reduce the computational 

load. We used three different programs in the MEME-suite; MEME (Multiple Em for 

Motif Elicitation) for de novo motif discovery, DREME (Discriminative Regular 

Expression Motif Elicitation) to look for differences between groups, and FIMO (Find 

Individual motif Occurrences) in the search of specific motifs. Shortest distance between 

any HEX and CPE motif was found using a custom python script.  

 

Normalization of developmental data 

Several approaches have been proposed to normalize RNA-Seq data (e.g. RPKM, 

median, quantile) (reviewed in Bullard et al., 2010). All of these assume that there is 

equal amounts of RNA in each experimental unit (per cell, per embryo, per organism). 

However, it has been pointed out previously that during development there are global 

shifts in the levels of mRNA (van de Peppel et al, 2003; Gilbert et al., 2009; Thelie et al., 

2009; Evsikov and Evsikova, 2009). We measured the levels of total RNA and the polyA 

RNA fraction per embryo of each stage and observed substantial differences in the polyA 

content during development (Figure S.1C). A factor for each stage was calculated as 

follows: 

Y
Y

r

j
jZ 

 

Where Zj is the estimated adjustment factor for sample j, Yj is the amount of poly(A) 

RNA in sample j and Yr is the amount of poly(A) RNA in the reference sample. 



 Furthermore, Robinson and Oshlack (2010) presented a method to asses global 

shifts in gene expression based on gene expression values (TMM, Trimmed Mean of M 

values), which is implemented in the excellent R package edgeR (Robinson et al., 2010). 

Basically this is a "global fold-change". We found that this estimated factor was in 

harmony with our experimentally derived factor (Figure S.1D).  

 Due to the uncertainty in the experimentally derived factor, and because the TMM 

was estimated only on known genes, we chose a robust middle path, taking the average of 

the two values. These were calculated relative to the egg levels and gave the following 

values; 1, 0.95, 1.21, 1.32, 1.38 and 1.15  for the egg, 1-cell, 16-cell, 128-cell, MBT and 

post-MBT respectively. These values represent a measurement of the poly(A) RNA 

levels at each stage relative to the egg stage.  

 The implication of this observation is obvious; we can not compare the respective 

stages without taking this into consideration. If we make an arbitrary example; Gene A is 

equally expressed in the egg and at the MBT stage, 10 transcripts (that is per embryo, per 

cell it is of course far less abundant since there is 999 more cells at the MBT stage). 

However, the total number of transcripts has increased from 1,000 to 1, 500. For 

simplicity, lets say that we get 1 read per transcript. If we normalize under the 

assumption of equal amounts of RNA per embryo we get the expression values (dividing 

total reads by 1000 for clarity): 

Egg: 10/1 = 10  

MBT: 10/1.5 = 7.5 

The gene seems down regulated. However in a typical experimental design it is a bit 

more complicated than this. Using microarrays and RNA-Seq it is common to use the 



same amount of cDNA. However, the problem still persist. Following the example above, 

if we used 1000 transcripts from both samples these would come from a different number 

of eggs/embryos, and our gene A would be represented with 10 transcripts and 7.5 

transcripts for the egg and MBT sample respectively. 

 In order to normalize our data we first estimated the relative abundance of each 

transcript as the number of reads for transcript i divided by the total number of reads in 

sample j. 

j

ij
ij R

R
E ][

       (1) 

Where [Eij] is the relative abundance (or the probability) of transcript i in sample j , Rij is 

the number of reads for gene i in sample j, and Rj is the total number of reads in sample j. 

If the samples are identical, changes of the [Eij] value would represent changes in 

expression levels. However, since we measured different amounts of poly(A) RNA in our 

samples we had to adjust for this. We took the average Rj for all samples to generate a 

common library size: 

n

R
j

nj j 


1

      (2) 

And made a pseudo library size by multiplying X  with the calculated poly(A) content 

factor Zj. 

jj       (3) 



Where Zj was calculated as described above based on experimentally derived data as well 

as the TMM factor (for calculation of TMM, see Robinson and Oshlack, 2010). 

 

Furthermore, we reassigned these pseudo read libraries to each gene based on the 

previously estimated [Eij] value to get the normalized dataset.  

 

jijij E  ][      (4) 

 

Our modified approach removes technical variation introduced by different amounts of 

input cDNA, but keeps the biological variation and returns a "per-embryo" estimate of 

the expression for a certain gene. This is a different implementation of the TMM factor 

suggested previously (Robinson and Oshlack, 2010), and more suitable for our type of 

data.   

 Let us extend the example from above; Gene A still have 10 copies at each of 

stages and the egg has 1,000 and MBT 1,500 transcripts in total, respectively. For 

sequencing 800 transcript were used from the egg stage and 1,200 from the MBT stage. 

Given our simple world conditions this would result in a total of 800 and 1,200 reads in 

total the egg and MBT samples respectively, and 8 reads for transcript A in both samples. 

Normalizing by the common RPKM (Reads Per Kilobase per Million) approach: 

Egg: 8/0.8= 10 

MBT: 8/1.2 =  6.67 

The approach proposed by Robinson and Oshlack (2010) with our modification: 

(1) Estimation of concentration 



8/(800) = 0.01 

8/(1,200) = 0.0066 

 

(2 and 3) Calculation of common library size and pseudo library size: 

Common library size = (800+1000)/2 = 900 

Stage specific pseudo library size: 

Egg: 900 x 1 = 900 

MBT: 900 x 1.5 = 1350 

 

(4) Generating pseudo-counts 

egg: 0.01 x 900 = 9 

MBT: 0.0067 x 1,350 = 9 

 

Thus, this approach maintains the per embryo abundance of transcript A. In the original 

approach it was suggested to implement the TMM factor prior to estimation of the 

relative abundance of transcripts. This would in our case reinforce the bias at a per-

embryo level, but would give a better view of the relative abundance of the transcripts. 

 It seems most methods of normalization is concentrating on making samples as 

similar as possible, disregarding the underlying biology of their samples. It is somewhat 

disturbing that it is only recently that the foundations of these approaches has been 

questioned (Gilbert et al., 2009; Thelie et al., 2009; Evsikov and Evsikova, 2009). 

 We validated our data using correlation with recently published microarray data 

(GSE20137; Lindeman et al., 2010). This were overall robust (r=0.72 and 0.75 for egg 



and MBT, respectively, for 9,020 genes). Moreover, expression profiles overall followed 

the same trends. 2,847 genes had a fold- change greater than 2 and a log2 intensity value 

of >3 in the microarray dataset (2,471 up-regulated genes and 376 down-regulated 

genes). Nonetheless, 309 genes (~10%) showed opposite expression patterns in our 

RNA-Seq dataset. Thus, whereas microarray data are consistent with essentially every 

differentially up-regulated gene (96% concordance), it only detected 45% concordance 

for down-regulated genes. This is consistent with the implication of assuming the same 

amounts of RNA across different stages, when there is in fact more poly(A) RNA in the 

MBT embryos (Evsikov and Evsikova, 2009); All genes at the MBT are underestimated. 

Importantly, these microarrays were only normalized within groups (quantile 

normalized). Hence the discrepancies stems from using the same amount of RNA from 

each sample. Performing a global normalization (e.g. quantile normalization) between 

groups further increased the bias of differential poly(A) RNA amounts per embryo. 

 To further validate our data, we examined recently reported RNA polymerase II 

(RNAPII) occupancy profiles during zebrafish development (Vastenhouw et al., 2010). 

We examined genes with low RNAPII occupancy at the MBT stage and assessed their 

expression values (RNA-Seq) post-MBT relative to MBT. With our normalization 

method, 164/219 genes were detected as down-regulated relative to MBT. Using RPKM 

normalization, 145/219 genes were detected as down-regulated. Many of the remaining 

genes were expressed at low levels (27 genes with <50 reads), and/or exhibited minor 

changes relative to their abundance, or showed discrepancy (14 genes) (data not shown). 

This discordance may be explained by the relatively long time span between MBT and 



post-MBT stages (2.3 h). Additional validation of our RNA-Sseq data was provided by 

quantitative RT-PCR in a developmental context (see main text).  

 Our approach is simple and do not address technical biases such as transcript 

length and base content. Or as proposed in the work by (Robinson and Oshlack, 2010), 

that high abundance gene are taking up sequencing for low abundant transcripts. Further 

work is needed to sort out these issues. 

 We hope that this approach will facilitate studies of both development and cross-

tissue comparison, and be particular beneficial in studies where the transcriptional 

activity of specific loci is of importance (e.g. effects of histone modifications). 

 

Paired end di-tag preparation and analysis 

The process of Gene Identification Signature (GIS) analysis has been thoroughly 

decribed (Ng et al., 2005). The complete procedure comprises the construction of GIS 

full-length cDNA library followed by ditagging which converts the library to a GIS 

paired-end ditag (PET) library. In principle, 18 nucleotides 5’ and 3’ signatures of full-

length cDNAs were extracted into PETs that are concatenated for efficient sequencing.A 

residual AA dinucleotide derived from the mRNA poly(A) tail was also included to 

determine orientation of the ditag. These were subsequently mapped to the genome 

sequences, allowing a demarcation of transcription boundaries of genes.  

 
 
Supplementary Text 
 
Cytoplasmic polyadenylation elements are found in the 3’UTR of pre-MBT 

transcripts 



It is generally accepted that regulation of cytoplasmic polyadenylation is mediated 

through cis elements in the 3’UTR of mRNAs. The most well studied include the nuclear 

polyadenylation element (HEX; A(A/U)UAAA), and the cytoplasmic polyadenylation 

element (CPE; UUUU(U/A)AU). In addition a dodecauridine (U12) motif, termed 

embryonic CPE (eCPE), has been described in Xenopus (Simon et al., 1992; Simon and 

Richter 1994).  

We used programs provided in the MEME-suite (Bailey and Elkan, 1994) to find 

cis elements involved in delayed cytoplasmic polyadenylation in pre-MBT transcripts. 

De-novo motif discovery with MEME (Multiple Em for Motif Elicitations) found a long 

U-rich motif (20-mer) as the most significant (Fig. 4H), which resembles the eCPE 

reported in Xenopus (Simon et al., 1992, Simon and Richter, 1994).  

Next, we applied DREME (Discriminative Regular Expression Motif Elicitation), 

which can find short motifs (≤ 8 bp) enriched relative to a discriminative group. We used 

the degradation 1 cluster as the discriminator and identified 15 motifs as significant 

(Table S5) including several A-rich and U-rich motifs. The top ranking motif was 

AAAA(A/U)AG (p = 2.6x10-18). 

To test whether the known Hex and CPE motifs were present and at what 

frequency they occur we applied FIMO (Find Individual Motif Occurrences) on three 

different groups; pre-MBT, the maternal-zygotic, and a set of randomly chosen genes. 

Surprisingly, these two elements were present in all, without overrepresentation in any of 

the groups. We also looked for a 12-mer U-rich motif (allowing 1 mismatch), and found 

that 33, 24 and 15% of the transcripts harbored this in the pre-MBT, maternal-zygotic and 

random group, respectively.  



 
Analysis of splice variants 

Through splice junction mapping we detected additional splice variants. Tumor 

protein 53 (tp53) has eleven annotated exons and is known to have splice variants 

(Khoury and Bourdon 2010). We observed reads spanning across exon 2, exons 6, 7 and 

8, and exon 7 (Fig. 7C). We found that exon 2, 7 and 9 had low z-values. This implies 

that the zebrafish tp53 has several isoforms (human TP53 expresses 9 isoforms) present 

simultaneously during development, and that both current strategies for splice variant 

detection are needed to identify all isoforms: splice junction mappings for specificity and 

exon read counts for sensitivity. Another example of alternative splicing pattern was 

observed in gli2a. Gli proteins activate or repress transcription depending on the length of 

its C-terminus (Ruel and Therond 2009). We observed during development, a shift in the 

expression of the gli2a 3′ distal exon (exon 14; Fig. S8B) coding for the C-terminus 

corresponding to its transactivation domain. Inclusion of exon 14 and the extended C-

terminus could result in the replacement of gli2a transcript encoding the transcriptional 

repressor by a longer version encoding a transcriptional activator, which might be further 

processed into repressor post-translationally. Interestingly, the appearance of exon 14 

isoform in gli2a is paralleled with a decrease in transcripts level of its suppressor sufu 

(Fig. S8C), as well as transcriptional onset of a number its target genes (Fig. S8C), 

suggesting its activity during MBT in zebrafish. 
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