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Figure S1 (related to Fig 1 and Supplementary Methods). Data normalization
against RNA amount and extension of mapped reads beyond annotated sequences.
(A) Extension of mapped reads beyond annotated 5’ or 3’ UTRs observed in several
genes. Light brown bars indicate gene structure, blue bars at the top of each panel

indicate di-tag mapping. Black arrows indicate the site of extended reads mapping.(B)



The amount of total RNA measured per embryo is reduced from the egg to the 1-cell
stage (0 hpf), and remains stable until post-MBT, where it increases again.

(C) The amount of poly(A)" RNA shows a distinct pattern from the total RNA content. It
increases gradually from the 1-cell (0.2%) to the MBT stage (0.5%), whereby it decreases
again.

(D) We compared the poly(A) content derived from direct measurement with a global
fold change factor (TMM) and found very good correlation (r = 0.90). The average of

these values (green dotted line) was used in the normalization procedure.
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Figure S2 (related to Fig 2). Statistical testing using the R package DEGseq, with the
method MARS.

We performed successive pairwise testing (i.e. Egg vs 1-cell, 1-cell vs 16-cell, and so
forth). Many transcript appeared twice or more after the initial test. We kept only one
observation (with the lowest p-value). This revealed two time points with major changes
in poly(A) © RNA levels (up and down regulation); between the 1-cell and 16-cell
(comparison 2) and between 3.5hpf and 5.3hpf (comparison 5). The figure shows the

number of transcripts with a significant change between the groups compared.
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Figure S3 (related to Fig 3). Real-time PCR validation of pre-MBT super-cluster
genes.

Good correlation was observed between mRNA-seq and RT-qPCR using oligo d(T)
primers, but not with RT-qPCR using r.p.. Of 29 genes tested, 24 showed such pattern
(10 shown here). Y-axis indicates relative enrichment value against egg stage as the
baseline (2*“") in RT-qPCR and read counts in mRNA-seq. WISH at 1-cell to 8-cell
stages performed on two of the tested pre-MBT transcripts: otx1l and tafla, showed

positive expression.

gtf2h4 xbpl

1cell C 3-dA S 1-cell C 3-dA S
5.3 hpf 5.3 hpf

Figure S4 (related to Fig 4). Inhibition of polyadenylation by cordycepin. Poly(A)
tails of gtf2h4 and xbpl transcripts from control (C) and 3’-dA-treated (3’-dA) embryos
were measured before (at 1-cell stage) and after (at 5.3 hpf) treatment. A longer smear
representing longer poly(A) tail could be seen in the control as compared to the treated

samples. S — fragment amplified using gene-specific internal primers.
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Figure S5. Enrichment of GO terms in individual clusters.

The top-six GO terms based on p-values are depicted. Number in each slice
represents —log(p-value) (top) and percentage of genes within cluster (bottom, represents
slice size). Cluster names are indicated at the top of each chart. Color representations of

different GO terms are collectively indicated below the charts.
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Figure S6. Representation of gene clusters into different functional groups.
(A) Proportion of different clusters enriched in various biological function groups.

(B) Enrichment of clusters in various canonical pathways involved in development.
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Figure S7 (related to Fig 5). RT-PCR validation of several NTRs located near
annotated genes.

Primers (black arrows, F — forward, R — reverse) were designed spanning one annotated
exon and the tested NTR (box). RT-PCR analysis was performed in 1-cell (1c), 16-cell

(16¢), 128-cell (128¢), 3.5 hpf (3.5h), and 5.3 hpf (5.3h) samples.



NEEEE ey =
- : : - tp53
L e b 1 - - L -l
B ™ 16-cell 400 - 5.3 hpf
100
é 80 | @ Observed é 300 - @ Observed
<60l B Expected 5 200 B Expected
g 2
E 100 -
2

1 2 3 4 5 6 7 8 9
Exon (5’ —3’)

10 11 12 13 14

1

2 3 4 5 6 7 8 9 10 11 12 13 14

Exon (5 —3’)

PCDH18

MAPK11

SESN3 Gup ARPCS |

RB1

SMARCA2 | PEBP1

ATF6& \ ] PRC1 t

HDAC3 \\---.. \ U A:xcz T

JUND f——————— YY1 ZNF143

RSN

ENO1 ///HI\\\\\
/ / T\ \\\\ TBP

STATSE , /l INTR! \\ W

// / ’l I\ \
s 1y
/ /
| 2 7/ /
KiF2C g !J'

mcms |/

EZH2

|
TR RN
R
1\\\\\
|\
I
|
|
|

|
|
I  }
N\

I RAD18
| \ \ X

I \ q GFER
cengz2 ¥ \* FOXM1

MC4 | | BTG2

¥

BMPE

v
(
B ™ =
PARSS2

" Growlh factor
.1 Transcription Regulator
' Unknown

= Relationship
= = Relationship

75 Kinase




Figure S8 (related to Fig 6). GLI2 and YY1 gene regulatory networks.

(A) Splice variant analysis in tp53 at 5.3 hpf. Di-tags (red bars with arrowheads) are
shown on top of each panel. Red horizontal lines indicate junction mapping. Reads
spanning exons 1 and 3 (skipping exon 2), 2 and 11 (skipping exons 3-10), 5 and 9
(skipping exons 6-8), as well as exons 6 and 8 (skipping exon 7) imply several isoforms
(blue arrows).

(B) Comparison of the observed (red bars) and expected (blue bars) read count for each
of the 14 exons of gli2a at 16-cell and 5.3 hpf, indicating the presence of two isoforms
which differ in the presence of exon 14, encoding a short and a long Gli2a protein variant
respectively. A shift towards the longer isoform was observed at 5.3 hpf.

(C) Transcriptional network for GLI1 and GLI2. Both glil and gli2a transcripts increase
at pre-MBT stages, however glil decreases again post-MBT while gli2a continues to
increase, suggesting that Glil may have a more restrictive role in zebrafish. Their
downstream targets are shown in light green (pre-MBT2, MBT and post-MBT cluster
genes). All relationships are direct (e.g. physical) and shown to increase the expression of
the downstream targets. SUFU is an upstream regulator of the activator/suppressor form
of Gli. sufu decrease in expression as the 14th exon inclusion isoform increase. ZIC2
which is part of the "Gli-code" and important in cell differentiation interacts with both
GLII and GLI2a.

(D) Gene regulatory network of Yin and yang 1 (yyla in zebrafish). This gene increased
in expression from 3.5 hpf and onwards. Red symbols are upstream inhibitors of YY1
expression, and their decrease in expression coincides with the onset of yyla expression.

Figures in green are possible downstream targets of YY1, and their expression decreases



after the onset of yyla expression (pre-MBT1 or Degradation 3 cluster). For better clarity
only 9 of 19 IPA predicted downstream targets are shown. Among the excluded genes
were HSPAS, SCARB1, FDPS and SREBF1 (physical interactions, Protein-DNA
binding). Figures in yellow are proteins which YY1 has been shown to interact with. The
PRC1 and PRC2 interactions are custom made (no color). Our findings suggest that

transcription is changed towards more specific inhibition and induction around MBT.

Supplementary Tables

Table S1 (related to Fig 1). Distribution of sequencing reads across all 6 libraries. A:
Count of reads with number of mappings in proper range (I <= N <= 10). B: Count of
reads with number of mappings in proper range (1 <= N <= 10) and align score >= 26. C:

Count of reads uniquely aligned (minScoreGapToSecondBestAlignment = 4) with align

score >= 26.
Tags
mapping
Total Reads  Filter A B C Ensembl
Egg 31,323,986 105,587 19,462,743 17875474 16,616,142 14,105,191
1-cell 23,506,971 84,840 15,337,433 14246586 13,307,726 11,435,032
16-cell 35,844,766 131,951 23,841,732 21798579 20,475,830 17809,822
128-cell 27,119,026 104,501 18,682,912 17239656 16,213,755 14,132,828
3.5 hpf 37,886,769 255,605 25,330,558 23412248 21,989,690 18,939,525
5.3 hpf 55,560,167 1,384,159 30,068,339 27070756 25,021,063 21,076,918

Table S2 (related to Fig 3). List of all genes validated by RT-qPCR and their primer
sequences. Highlighted in yellow are genes from maternal super-cluster, non-highlighted
are genes from pre-MBT super-cluster, while those in green are genes from zygotic

super-cluster. bnip3l was used as reference.

Gene Forward primer Reverse primer

cldnd CCAGAGCACCGGACAGATG GGTCTTGAGGTAGAGCCAGCAT
ybx1 AGGAAGATGTCTTTGTGCATCAG CCCAACGCTACGGAGATATTTC
ccnbl TCGACTGGCTTGTGCAAGTCCA GCCTTCCAAAACCAAAGTTGAGGA



cldng
plkl
eml2
gtf2h4
tafla
otx1l
xbpl
etvs
dnaja2
ncl
fam53b
myst2
nlkl
zgc:158138
zgc:171708
irf2a
dnmt3
phf6
aldoaa
rtkn2
hdlbp
phc2
Irpapl
herpudl
aszl
gpsm2
tafol
sf3b3
bmil
gmcll
zw10
nudcdl

bnip3l

TGCAAGCTCATCTGTAGGTCACA
GCCAAGCCGTCTGATAGAGACT
CATTTGTGTGCGGTTGACG
GGTAGCCCTGTGGGTTAAAAAA
GAAAACGAGGAGCTGAGCAGTAA
AGGAGAAGGACGGAGTGTTTTG
TGGAGCTGGAGAATCAGAAACTT
CCACCCCTGAACCGTGAA
TCCCAGACAACAACTGGTTGAG
AAGGAGGGCCTTGAAATTCAG
TCGCTGGACCTGCTCAAGAT
CCAGGACGCCAACAGGAA
GGTGCCAAGTCCTGCTGAA
GGATGTTTGAGAAGATCGAGAAGTC
TCACGACTGAACCTGCTTTCC
AGAGAGCACATACAGTGAAGAAGAC
TAATTCCTTCGCTACAGTAATGGC
TCAGTTACTGGTGGCAGAGAGCC
CCCTGGCAAAGGCATCCTTG
AGGAAGAAAATAAGGGAAAGCATG
GGACGGATTATCTGGTAACTGACC
GAGGGATTCGTGATTCAGGAGG
AACATTGTCATGGACACTGTCAGC
CTGGACAACCTGCTTATCAGAGATG
CAACGCTGACCCCAATGTCTG
GACATTTAGATATTGCCAGGGAAC
GCACAGGAAACACCAGCTCTT
GGGTATCGTTGCCATTTCCA
GAGAAGCAAAATGGATATACCTCC
TACAGCCACGACGACATCTAGC
CTCTGTCGCCAGCAAAGCTATCAG
GTGTGTACTTTGTGGACAGCAAGG

CGCATGGCAGACTGGTCGAGTA

CAAGAGTGCCTAGTGTTGTTCCA
CAGGAATACAAGCAGGGTCTTCA
ACAGTCCTTGGCGTTTAGTGAGA
CCAGAGCCGTAGCCCAGTTA
AGAGTCACTGACGCCTGTCTGA
CCCCGATGTTGCAGTTTGAC
CACTGAGCAGATCACTCGTCTTG
TGAAAGTTGCCGCTGAAACC
GAGCATCGGCCCGTGTAG
CAACGTAGCCGAATTTCTTTGTT
CCTGGACAGCTGAGACTGTGAA
GGCTGGATATGTCGATGTCTGA
AAACGCCCCGTAACCGATA
CAAGGCACGATCCATTAATAGCA
CTGGTTAATACCTGGCTCTGTGTCT
AAAGACAGGTCCTGAGGAAGC
AACATTCTACTGCGTCTGGAAGC
GTGACCAAGGCTGATGAGAATAGC
CGGTTCTCCTCTGTGTTCTCAGC
CTCTCATTCGCATCTCAAACTCC
TCCCACGTTTACACGGAGTCC
TCGATCAGCAAGGACGGACG
ACATCCCCCTCCAGAGGACTG
GGTGAAGAGTGGGTTTGGTATCTG
CGAGCATCAAACACGTCATACTGC
TTCCAAAATTGTAAAGTGCTCTGG
TCCTTCTGAACCGTCCACTGA
CGGCACCCAGTTTCTCAAGA
TAATCCTTCAAAGGCTCATCCTC
ACTGCAAACCACTTTTCCACTGC
CTTTTCCCAACCTCCGCAGC
TCGAAATGAAACATCTCACGAGG

TCCTCATGCTAAGAGTCACTGAACC



Table S3 (related to Fig 3). List of Genbank ID of clones used for WISH probe

synthesis.

Gene
tafla
otx1
xbpl
etvs
apoeb
klf4
sox19a
idl
hspbl
cldng

Clone number
CK693445
CK692061
CK712552.1
CK690842
CK670601
EH604045
CK691764
CK711535
CK711069
CK711236

Table S4 (related to Fig 3). List of gene-specific primers used for poly(A) tail

measurements.
Gene Forward primer Reverse primer
xbpl AACGTGACCCAGTATTTTTGTC ATTATGATTGATGAGAGCATTTAC
otx1 GTGACGCACTCAAGGAATGG TGTGTAACATCTCACATGAGCTG
tafla GTATATGTTCTTGAATATGCCAG  AGTGTGAGGATATACACAGATGC
gtf2h4 GCATTTTACTGCAAGTTGATCTG  ACCTTGGACACAAACGTGTAG
dnaja2 GTCAGCAATCCAGGTGCATG TTCACAGAAGATAAGCCTAAAGG
ncl GGATACAGACCGAAAACAGC TCAAAATGGTTCTTTACATCATG
ybx1 TTGGGGAAACAGCAGATG AAATGTCAAACTGACCAGATATC

Table S5 (related to Fig. 4). List of motifs enriched in pre-MBT cluster with degradation

1 cluster as discriminant, generated by DREME.

MOTIF AAAAWAG | 2.60E-18
MOTIF GAAAANA | 2.70E-11
MOTIF CATTNCA | 5.70E-10
MOTIF RAAAAA 1.40E-07
MOTIF GAACB 5.50E-09
MOTIF ACAGMT 1.50E-06
MOTIF TCTTTAMA | 2.30E-06
MOTIF AAAGKA 6.20E-06
MOTIF STCRA 4.30E-06
MOTIF GGGRS 1.70E-05




MOTIF ATTHTG 1.80E-05
MOTIF CHTAAC 1.10E-05
MOTIF HTGTAGA | 1.20E-04
MOTIF ACKTCC 9.00E-05
MOTIF TCCAGCCA | 1.40E-04
MOTIF TCCAGCCA | 1.40E-04

Table S6 (related to Fig 5). Number of putative NTRs discovered by the WTAP 1.2

NTR module. Number of putative NTRs reduced significantly after intersection with

other known annotations (see Supplementary Methods).

Egg

1-cell

16-cell

128-cell 3.5 hpf

5.3 hpf

Putative

Transcribed

Regions
Putative

Transcribed

Regions

no annotation

support

85987

with

2329

82448

2064

118351

3899

115141 124610

3380 4590

122751

8140

Supplementary Methods

Mapping of sequence tags and data analysis

Reference Genome assemblies and gene annotation were downloaded from Ensembl

(Ensembl Genes 60, Zv9). Prior to aligning the sequence reads to the reference genome,

reads were filtered against Repbase (Jurka et al. 2005) to remove repeats. mRNA-seq



reads were mapped using Bioscope version 1.3.1 (Applied Biosystems) and the Whole
Transcriptome Analysis Pipeline version 1.2 (WTAP 1.2) with default settings. Using
uniquely mapped reads from Bioscope, read counts per exon were obtained using
Bioscope count module and read counts per gene were obtained by summarizing the read
counts for all exons within a gene for all Ensembl Gene IDs. Perl scripts were used to
generate coverage data for visual display in the UCSC browser (http://genome.ucsc.edu).

Novel Transcribed Regions (NTRs) were identified by the NTR Finder module in WTAP
1.2 using reads mapped by WTAP. We used a window size of 100bp and minimum
window coverage of 4 as parameters. Newly identified NTRs were subsequently
subjected to intersection with data from the UCSC genome browser (all mRNA and EST
data) using BEDTools (Quinlan and Hall, 2010) to discover exons with no annotation

support.

Data normalization and expression clustering

All analyses were performed in the R-environment (http://cran.r-project.org/) unless
specified. We modified the normalization strategy presented by Robinson and Oshlack
(2010) to obtain data adjusted for the amount of polyA RNA per embryo (see below for
detailed description). Statistical tests were performed by successive pair wise
comparisons using the R-package DEGseq with the method MARS (MA-plot-based
method with random sampling model) (Wang et al. 2008). We applied cut-offs for both
absolute change (read count change > 50), g-value (< 0.001) (Storey and Tibshirani 2003)
and fold change (>2). Read counts for each transcript were subsequently length

normalized by dividing against transcript length in kilobases. Using the genes within the



thresholds from statistical testing we designed clusters using a combination of K-means
clustering (k=30), subjectively merging similar groups, searching for transcripts with
specific gene expression profiles and finally applying cut offs for correlation to the
cluster mean (Pearson's correlation coefficient >0.90) and coverage (average of >50 reads
across all samples). A total of 5,278 genes were included in the clustering analysis. Genes
were subjected to functional annotation using Ingenuity Pathway Analysis (IPA;
http://www.ingenuity.com). P-values were calculated using Fischer’s exact test and a

threshold p-value of <0.01 was used to define significantly enriched terms.

Splice junction mapping & detection

For detection of splice variants we implemented the strategy proposed by Richard and
colleagues (2010) included in the R-package SolaS. Due to the low-throughput layout of
this package we reimplemented it in a custom R-script. We selected ~1600 multi-exon
transcripts (>2) with high read coverage in each library (>150 reads) without known
isoforms. We removed exons below 50 bp and calculated a z-score for each exon. A low
z-score is indicative of a exon skipping event or alternative 5' or 3' splice sites depending
on exon position. For genes with known isoforms we used Cufflinks version 0.9.3
(Trapnell et al. 2010) to estimate the relative abundance of each isoform. We inspected
the fraction value for a subset of genes expressed at all stages (>50 reads) and with
multiple isoforms. We interpreted a low major fraction (<0.80) as evidence for the

presence of multiple isoforms.

Motif search for cytoplasmic polyadenylation elements



Using BioMart (http://www.ensembl.org/biomart/), we downloaded the 3' UTRs of
transcripts associated with the different genes. For the pre-MBT clusters we applied a
stringent cut off (>500 reads increase and >5-fold increase) to reduce the computational
load. We used three different programs in the MEME-suite; MEME (Multiple Em for
Motif Elicitation) for de novo motif discovery, DREME (Discriminative Regular
Expression Motif Elicitation) to look for differences between groups, and FIMO (Find
Individual motif Occurrences) in the search of specific motifs. Shortest distance between

any HEX and CPE motif was found using a custom python script.

Normalization of developmental data

Several approaches have been proposed to normalize RNA-Seq data (e.g. RPKM,
median, quantile) (reviewed in Bullard et al., 2010). All of these assume that there is
equal amounts of RNA in each experimental unit (per cell, per embryo, per organism).
However, it has been pointed out previously that during development there are global
shifts in the levels of mRNA (van de Peppel et al, 2003; Gilbert et al., 2009; Thelie et al.,
2009; Evsikov and Evsikova, 2009). We measured the levels of total RNA and the polyA
RNA fraction per embryo of each stage and observed substantial differences in the polyA
content during development (Figure S.1C). A factor for each stage was calculated as

follows:

Where Z; is the estimated adjustment factor for sample j, Y; is the amount of poly(A)

RNA in sample j and Y, is the amount of poly(A) RNA in the reference sample.



Furthermore, Robinson and Oshlack (2010) presented a method to asses global
shifts in gene expression based on gene expression values (TMM, Trimmed Mean of M
values), which is implemented in the excellent R package edgeR (Robinson et al., 2010).
Basically this is a "global fold-change". We found that this estimated factor was in
harmony with our experimentally derived factor (Figure S.1D).

Due to the uncertainty in the experimentally derived factor, and because the TMM
was estimated only on known genes, we chose a robust middle path, taking the average of
the two values. These were calculated relative to the egg levels and gave the following
values; 1, 0.95, 1.21, 1.32, 1.38 and 1.15 for the egg, 1-cell, 16-cell, 128-cell, MBT and
post-MBT respectively. These values represent a measurement of the poly(A) RNA
levels at each stage relative to the egg stage.

The implication of this observation is obvious; we can not compare the respective
stages without taking this into consideration. If we make an arbitrary example; Gene A is
equally expressed in the egg and at the MBT stage, 10 transcripts (that is per embryo, per
cell it is of course far less abundant since there is 999 more cells at the MBT stage).
However, the total number of transcripts has increased from 1,000 to 1, 500. For
simplicity, lets say that we get 1 read per transcript. If we normalize under the
assumption of equal amounts of RNA per embryo we get the expression values (dividing
total reads by 1000 for clarity):

Egg: 10/1 =10
MBT: 10/1.5="17.5
The gene seems down regulated. However in a typical experimental design it is a bit

more complicated than this. Using microarrays and RNA-Seq it is common to use the



same amount of cDNA. However, the problem still persist. Following the example above,
if we used 1000 transcripts from both samples these would come from a different number
of eggs/embryos, and our gene A would be represented with 10 transcripts and 7.5
transcripts for the egg and MBT sample respectively.

In order to normalize our data we first estimated the relative abundance of each
transcript as the number of reads for transcript i divided by the total number of reads in

sample j.

R. (1)

Where [Ej] 1s the relative abundance (or the probability) of transcript i in sample j , Rjj is
the number of reads for gene 1 in sample j, and R; is the total number of reads in sample j.
If the samples are identical, changes of the [Ej] value would represent changes in
expression levels. However, since we measured different amounts of poly(A) RNA in our
samples we had to adjust for this. We took the average R; for all samples to generate a
common library size:

j=1

"R

X =50 0
n @

And made a pseudo library size by multiplying X with the calculated poly(A) content

factor Z;.

Xj:Xij )



Where Z; was calculated as described above based on experimentally derived data as well

as the TMM factor (for calculation of TMM, see Robinson and Oshlack, 2010).

Furthermore, we reassigned these pseudo read libraries to each gene based on the

previously estimated [Ej;] value to get the normalized dataset.

Eij :[EIJ]XXJ 4)

Our modified approach removes technical variation introduced by different amounts of
input cDNA, but keeps the biological variation and returns a "per-embryo" estimate of
the expression for a certain gene. This is a different implementation of the TMM factor
suggested previously (Robinson and Oshlack, 2010), and more suitable for our type of
data.

Let us extend the example from above; Gene A still have 10 copies at each of
stages and the egg has 1,000 and MBT 1,500 transcripts in total, respectively. For
sequencing 800 transcript were used from the egg stage and 1,200 from the MBT stage.
Given our simple world conditions this would result in a total of 800 and 1,200 reads in
total the egg and MBT samples respectively, and 8 reads for transcript A in both samples.
Normalizing by the common RPKM (Reads Per Kilobase per Million) approach:

Egg: 8/0.8= 10
MBT: 8/1.2 = 6.67
The approach proposed by Robinson and Oshlack (2010) with our modification:

(1) Estimation of concentration



8/(800) = 0.01

8/(1,200) = 0.0066

(2 and 3) Calculation of common library size and pseudo library size:
Common library size = (800+1000)/2 =900

Stage specific pseudo library size:

Egg: 900 x 1 =900

MBT: 900 x 1.5 = 1350

(4) Generating pseudo-counts
egg: 0.01 x900=9

MBT: 0.0067 x 1,350 =9

Thus, this approach maintains the per embryo abundance of transcript A. In the original
approach it was suggested to implement the TMM factor prior to estimation of the
relative abundance of transcripts. This would in our case reinforce the bias at a per-
embryo level, but would give a better view of the relative abundance of the transcripts.

It seems most methods of normalization is concentrating on making samples as
similar as possible, disregarding the underlying biology of their samples. It is somewhat
disturbing that it is only recently that the foundations of these approaches has been
questioned (Gilbert et al., 2009; Thelie et al., 2009; Evsikov and Evsikova, 2009).

We validated our data using correlation with recently published microarray data

(GSE20137; Lindeman et al., 2010). This were overall robust (r=0.72 and 0.75 for egg



and MBT, respectively, for 9,020 genes). Moreover, expression profiles overall followed
the same trends. 2,847 genes had a fold- change greater than 2 and a log2 intensity value
of >3 in the microarray dataset (2,471 up-regulated genes and 376 down-regulated
genes). Nonetheless, 309 genes (~10%) showed opposite expression patterns in our
RNA-Seq dataset. Thus, whereas microarray data are consistent with essentially every
differentially up-regulated gene (96% concordance), it only detected 45% concordance
for down-regulated genes. This is consistent with the implication of assuming the same
amounts of RNA across different stages, when there is in fact more poly(A) RNA in the
MBT embryos (Evsikov and Evsikova, 2009); All genes at the MBT are underestimated.
Importantly, these microarrays were only normalized within groups (quantile
normalized). Hence the discrepancies stems from using the same amount of RNA from
each sample. Performing a global normalization (e.g. quantile normalization) between
groups further increased the bias of differential poly(A) RNA amounts per embryo.

To further validate our data, we examined recently reported RNA polymerase II
(RNAPII) occupancy profiles during zebrafish development (Vastenhouw et al., 2010).
We examined genes with low RNAPII occupancy at the MBT stage and assessed their
expression values (RNA-Seq) post-MBT relative to MBT. With our normalization
method, 164/219 genes were detected as down-regulated relative to MBT. Using RPKM
normalization, 145/219 genes were detected as down-regulated. Many of the remaining
genes were expressed at low levels (27 genes with <50 reads), and/or exhibited minor
changes relative to their abundance, or showed discrepancy (14 genes) (data not shown).

This discordance may be explained by the relatively long time span between MBT and



post-MBT stages (2.3 h). Additional validation of our RNA-Sseq data was provided by
quantitative RT-PCR in a developmental context (see main text).

Our approach is simple and do not address technical biases such as transcript
length and base content. Or as proposed in the work by (Robinson and Oshlack, 2010),
that high abundance gene are taking up sequencing for low abundant transcripts. Further
work is needed to sort out these issues.

We hope that this approach will facilitate studies of both development and cross-
tissue comparison, and be particular beneficial in studies where the transcriptional

activity of specific loci is of importance (e.g. effects of histone modifications).

Paired end di-tag preparation and analysis

The process of Gene Identification Signature (GIS) analysis has been thoroughly
decribed (Ng et al., 2005). The complete procedure comprises the construction of GIS
full-length ¢cDNA library followed by ditagging which converts the library to a GIS
paired-end ditag (PET) library. In principle, 18 nucleotides 5’ and 3’ signatures of full-
length cDNAs were extracted into PETs that are concatenated for efficient sequencing. A
residual AA dinucleotide derived from the mRNA poly(A) tail was also included to
determine orientation of the ditag. These were subsequently mapped to the genome

sequences, allowing a demarcation of transcription boundaries of genes.

Supplementary Text
Cytoplasmic polyadenylation elements are found in the 3’'UTR of pre-MBT

transcripts



It is generally accepted that regulation of cytoplasmic polyadenylation is mediated
through cis elements in the 3’UTR of mRNAs. The most well studied include the nuclear
polyadenylation element (HEX; A(A/U)UAAA), and the cytoplasmic polyadenylation
element (CPE; UUUU(U/A)AU). In addition a dodecauridine (U;;) motif, termed
embryonic CPE (eCPE), has been described in Xenopus (Simon et al., 1992; Simon and
Richter 1994).

We used programs provided in the MEME-suite (Bailey and Elkan, 1994) to find
cis elements involved in delayed cytoplasmic polyadenylation in pre-MBT transcripts.
De-novo motif discovery with MEME (Multiple Em for Motif Elicitations) found a long
U-rich motif (20-mer) as the most significant (Fig. 4H), which resembles the eCPE
reported in Xenopus (Simon et al., 1992, Simon and Richter, 1994).

Next, we applied DREME (Discriminative Regular Expression Motif Elicitation),
which can find short motifs (£ 8 bp) enriched relative to a discriminative group. We used
the degradation 1 cluster as the discriminator and identified 15 motifs as significant
(Table S5) including several A-rich and U-rich motifs. The top ranking motif was
AAAA(A/U)AG (p =2.6x107").

To test whether the known Hex and CPE motifs were present and at what
frequency they occur we applied FIMO (Find Individual Motif Occurrences) on three
different groups; pre-MBT, the maternal-zygotic, and a set of randomly chosen genes.
Surprisingly, these two elements were present in all, without overrepresentation in any of
the groups. We also looked for a 12-mer U-rich motif (allowing 1 mismatch), and found
that 33, 24 and 15% of the transcripts harbored this in the pre-MBT, maternal-zygotic and

random group, respectively.



Analysis of splice variants

Through splice junction mapping we detected additional splice variants. Tumor
protein 53 (tpS3) has eleven annotated exons and is known to have splice variants
(Khoury and Bourdon 2010). We observed reads spanning across exon 2, exons 6, 7 and
8, and exon 7 (Fig. 7C). We found that exon 2, 7 and 9 had low z-values. This implies
that the zebrafish tp53 has several isoforms (human TP53 expresses 9 isoforms) present
simultaneously during development, and that both current strategies for splice variant
detection are needed to identify all isoforms: splice junction mappings for specificity and
exon read counts for sensitivity. Another example of alternative splicing pattern was
observed in gli2a. Gli proteins activate or repress transcription depending on the length of
its C-terminus (Ruel and Therond 2009). We observed during development, a shift in the
expression of the gli2a 3’ distal exon (exon 14; Fig. S8B) coding for the C-terminus
corresponding to its transactivation domain. Inclusion of exon 14 and the extended C-
terminus could result in the replacement of gli2a transcript encoding the transcriptional
repressor by a longer version encoding a transcriptional activator, which might be further
processed into repressor post-translationally. Interestingly, the appearance of exon 14
isoform in gli2a is paralleled with a decrease in transcripts level of its suppressor sufu
(Fig. S8C), as well as transcriptional onset of a number its target genes (Fig. S8C),

suggesting its activity during MBT in zebrafish.
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