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SUPPLEMENTARY METHODS 

 STRUCTURE Analysis 

Analysis of population structure was performed with the program STRUCTURE 
(Pritchard et al. 2000) using the 1,019 sites that have a called genotype in at least one 
of our samples and that are included in the Illumina 650Y platform. On average about 
40% of these sites have a called genotype in any one of our samples. We used a burn-
in period of 2000 iterations followed by 2000 iterations. Our reference genotype data 
were from the 938 unrelated individuals of the 51 populations in the Human Genome 
Diversity Panel (Cann et al. 2002) generated on the Illumina 650Y arrays (Li et al. 
2008), 288 unrelated individuals from 4 HapMap Phase 3 populations (LWK, MKK, GIH, 
TSI), and 204 unrelated individuals from 4 populations (Naukan Yupik, Chukchi, Native 
Australian, Khoisan, Amhara) genotyped in-house (Hancock et al. 2010). The 
genotypes for HGDP samples and our in-house samples were generated using the 
Illumina 650Y arrays, while HapMap Phase 3 samples were genotyped using the 
Illumina Human1M platform. Graphs of STRUCTURE results were produced using 
DISTRUCT ver. 1.1. 

 

Calculating a correction factor to take into account underestimation of nucleotide 
diversity due to restriction site polymorphism 

In this section we provide the derivations for the formulas used to estimate the 
correction factor. To calculate: 

    Prob( site called heterozygous)/Prob( site called), 

we first proceed to calculate the numerator. We consider the probability of a restriction 
fragment of a specified size occurring at a given position of a single sequence (a single 
chromosome).  We then consider two homologous sequences and the possibility of 
heterozygous sites.  For both alleles at a heterozygous nucleotide site (the focal site) to 
be detected by our method, each of the alleles must be in a restriction fragment 
approximately 70 base pairs long.  In the following, for mathematical simplicity, we 
assume that the fragment must be exactly 70 base pairs long.  The extension to a range 
of fragment sizes will not change our main result.  In the following we calculate the 
probability that a focal nucleotide site is at a particular position within a 70 base pair 
restriction fragment.  This is also only for convenience and does not affect the final 
result.   

To generate a 70 base pair restriction fragment, we consider a stretch of DNA 74 base 
pairs long, with the positions numbered, 5’ to 3’, from 1 to 74.   From a single diploid 
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individual we have two, possibly distinct, sequences of this segment present in our 
sample, which we refer to as paternal and maternal copies.  We assume a four-cutter 
restriction enzyme, with recognition sequence AGCT.  And say that a restriction site 
occurs at position j, if this recognition sequence appears at positions j, j+1, j+2, j+3, 
resulting in a cut between position j+1 and j+2.   We assume that the probability of a 
restriction site at any position is Prs.  If the recognition sequence does not occur at 
position i, we assume that this does not affect the probability that the recognition 
sequence occurs at position i+1.  In this case the probability that the paternal copy has 
a restriction site at position one, and that there is no recognition sites at positions 5-70, 
and there is a restriction site at position 71, is  

 

Prs(1− Prs)
66 Prs  . 

 

(Note that with our recognition sequence, the presence of the recognition sequence at 
position one precludes it being present at positions 2, 3 or 4.  )  This expression gives 
the probability that the paternal (or equivalently, the maternal) sequence will generate a 
restriction fragment of length 70, consisting of positions 3-72.   If the maternal and 
paternal sequences are identical, then the quantity above is the probability that both 
sequences generate the appropriate size fragment.  If there is a single heterozygous 
site in the middle of the sequence, then the probability that both sequences generate a 
70 base pair fragment is   

 

Prs(1− Prs)
66 Prs(1− Prs)

4  

 

where the extra factor of  ( 1- Prs)4  arises because the heterozygous site introduces 
four new four base pair sequences that  might generate a restriction site.  For both 
copies to generate the 70 base pair restriction fragment, there must be no restrictions 
sites in the interior of the sequence of either the maternal or paternal sequence.   

 Now we focus attention on a particular nucleotide site, say at position 30, which 
may or may not be heterozygous in our sample individual. (We assumed that the 
equation we derived for position 30 can be applied to all positions and we ignored minor 
changes that would be required for positions adjacent to the restriction sites at the 
edges of the fragment.) To get the required probabilities we need to consider several 
possible patterns of polymorphism, namely, 
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A) Both our focal site and our restriction sites at the ends of the fragment are 
homozygous. 

B) Both the focal site and one of the restriction sites are heterozygous. 
C) The focal site is heterozygous and the restriction sites are homozygous. 
D) The focal site is homozygous and one of the restriction sites is heterozygous. 
 
Case B results in allele drop out.   To calculate these probabilities we assume an 

equilibrium panmictic infinite-sites neutral model, but expect that these results will apply 
approximately for more realistic models with mild geographic structure and the 
possibility of multiple hits at sites.  (Similarly, we assume no recombination within the 74 
base pair segment.)  With these assumptions the probabilities of the polymorphism 
patterns A – D are: 
 

PA =
1

1+ 9θ
≈1− 9θ + 81θ 2

PB =
θ

1+ 9θ
8θ

1+ 8θ
+

8θ
1+ 9θ

θ
1+θ

≈16θ 2

PC =
θ

1+ 9θ
1

1+ 8θ
≈ θ −17θ 2

PD =
8θ

1+ 9θ
1

1+θ
≈ 8θ − 80θ 2 .

  

 
 
The symbol θ  is the scaled per base pair neutral mutation rate (4Neµ).  In calculating 

these probabilities we are just focusing on the 8 positions of the bounding restriction 
sites, and the single interior site, thus a total of nine sites. 

 
 The probability that the focal site is heterozygous and both alleles are in 70 bp 

restriction fragments that have coverage larger than t is: 
 
Prob(site called heterozygous) 2

4662 )1()1( fPPPP rsrsrsc −−=  

       2
662 )1()4171( fPPP rsrsrs −−−≈ θθ , 

 
where f2 is the probability that a site has coverage larger than t, given that both the 

paternal and maternal copies generate a 70 base pair restriction fragment.  We will 
denote by f1 the probability that a site has coverage larger than t, given that only one 
copy generates a 70 base pair restriction fragment ( i.e. when drop out occurs.)  
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   To calculate Prob (site called), we need to sum the probabilities of each of the 
events A-D, multiplying each term by the probability of appropriately placed restriction 
sites in each case: 

 
Prob(site called) = PAPrs

2(1− Prs)
66 f2 +

PB 2Prs
2(1− Prs)

62 f1 +

PC (Prs
2(1− Prs)

66(1− Prs)
4 f2 +

         Prs
2(1− Prs)

62(1− (1− Prs)
8) f1) +

PD 2Prs
2(1− Prs)

66 f1.
  

 
This is approximately, 
 

Prob(site called) ≈ (1− 8θ +16θ
f1

f2

)Prs
2(1− Prs)

66 f2. 

 
So finally,  
 
Prob(site called heterozygous)

Prob(site called)
≈θ (1− 4Prs − 9θ −16θ

f1

f2

).
 

 
 
This suggests that one can obtain a good approximate corrected estimate of π with: 
  

π raw

(1− 4Prs − 9π raw −16π raw
f1

f2

)
 

 ’ 
 
where πraw is simply the observed fraction of sites that are called heterozygote.  To 

estimate f1/f2 proceed as follows.  
        Let F1(c) be the probability of coverage c when one allele has dropped out, and 

let F2(c) be the probability of coverage c, when drop-out does not occur.  Then 
assuming that the distribution of coverage of one allele is binomially distributed when 
conditioned on the total coverage at a site, and assuming that the coverage of the non-
dropped-out allele has the same distribution as the coverage of a single allele at a non-
drop-out site, it follows that 
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F1(c) = F2 (k)Bin(
k≥c
∑ c;k,0.5)  

where Bin(c;k,0.5) is a binomial probability of c successes in k trials with the 
probability of success on each trial being 0.5.  The sum should be for all k greater than 
or equal to c, but for simplicity we limit consideration to k <= 250.  If we assume the 
threshold for reliable genotype calls is 20, then f1 is the sum of F1(c) for c going from 20 
to 100. The quantity F2(c) summed over values of c from 20 to 100 is f2. Thus we have: 

 

f1
f2

=
F2 (k)Bin(c;k,0.5)

k≥c

250

∑
c=20

100

∑

F2 (c)
c=20

100

∑
 

 

The quantities F2(c) can be estimated very accurately from the observed coverage 
distribution using all sites.  In practice it is easier to consider the coverage distributions 
conditional on coverage between 20 and 250.  We thus estimate f1/f2 by: 

f1
f2

=
F2

*(k)Bin(c;k,0.5)
k≥c

250

∑
c=20

100

∑

F2
*(c)

c=20

250

∑
 

where  

F2
*(c) =

N2 (c)

N2 (c)
c=20

250

∑
 

and N2(c) is the observed number of sites with coverage c. Thus F2
*(c) is the observed 

distribution of coverage conditional on coverage between 20 and 250.   (The observed 
distribution is a mixture of sites with and without drop-out, but because polymorphism 
levels are so low the above approach gives an accurate estimate of F2(c)). 

 The estimated value of f1/f2 varied from sample to sample, with a range of 0.38 to 
0.73, with a mean of approximately 0.5.   Assuming f1/f2 = 0.5 and π equal to 0.001, and 
Prs = 4/256, we calculate that the raw π is expected to be approximately 3.4% lower than 
the true π.    
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To confirm that our approximate theoretical results above were accurate we carried 
out computer simulations.  We generated pairs of sequences under a Jukes-Cantor 
neutral model without recombination, with equal frequencies of the four bases.  We 
assumed θ = 0.001.  In our simulated sequences we located the restriction fragments of 
length 68-72, and tabulated the number of heterozygous sites without drop out 
(assuming f1/f2 = 0.5.)  We found that the effect of allelic dropout was slightly over 3%, 
confirming our calculations above.   

 We also carried out simulations to check that divergence between sequences is 
biased by approximately the same multiplicative factor as estimates of π. To do this, we 
simulated polymorphism and divergence data using “ms” (Hudson 2002) to generate 
samples from two populations that split 2,000 generations in the past, using mutation 
rates and population sizes that resulted in levels of diversity and divergence similar to 
what we observed in our samples.  Each ms sample specifies the locations of 
polymorphisms and which copies carry the ancestral and which the derived allele.  To 
convert this information to a nucleotide sequence, a random ancestral sequence was 
generated with equal base frequencies expected.  The resulting descendant sequences 
were generated from this ancestral sequence and the ms output. We found that 
divergence was biased downward by approximately 2% due to dropout.  This bias is 
somewhat smaller than we found for diversity estimates. Our estimates for split times 
using equation (4) is based on the assumption that both divergence and diversity are 
biased by the same multiplicative factor. The somewhat reduced bias of divergence is 
expected to result in our split time estimates being upwardly biased. To quantitatively 
assess this bias in split time estimates, we again simulated polymorphism data with ms 
(Hudson 2002).  In this case, for each replicate we generated samples as above for 
10,000 unlinked segments, each 20,000 base pairs long with no recombination. 
(Segments of this length almost always generate zero, one or two restriction fragments 
of the appropriate length.) Generating 10,000 such segments resulted in approximately 
one megabase of sequence from restriction fragments which corresponds to the amount 
of sequence we used to estimate nucleotide diversity but somewhat more than we used 
for divergence estimates.  For each replicate we employed equation (4) to estimate the 
split time.  When the true split time was 50,000 years, we found our mean estimate from 
1,000 replicates was 55,700 years with a standard deviation of 18,000 years.  Thus the 
split time estimates are upwardly biased by approximately 10%.  

 

Maximum likelihood estimates of nucleotide diversity 

To estimate the fraction of sites in the genome of an individual that are heterozygous, 
which we denote by p, we utilized a maximum likelihood approach applied to all sites in 
our data that have coverage greater than or equal to 10. An observed configuration (i 
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A1, j A2), meaning i copies of the A1 allele, and j copies of A2, can occur in three different 
ways: 

1)  the site is heterozygous in the individual and no drop-out occurs at this site 

2)  the site is heterozygous in the individual and drop-out occurs at this site  

3)  the site is homozygous. 

In cases 2 and 3, if there is apparent variation in the sample (i.e. i and j are both non-
zero), then the apparent variation is due to sequencing error.  We assume when the site 
is heterozygous and no dropout occurs, that the distribution of the number of copies of 
each allele is binomially distributed with parameter 0.5, conditional on the total coverage 
(i+j) at the site.   When the variation is due to sequencing error we assume that the 
number of copies of each allele is again binomially distributed but with parameter,  ε, 
which can be thought of as the sequencing error rate.  We assume this parameter, ε, is 
independent of which two alleles are present, but we incorporate a term ( gp(A1,A2) )  
expressing the relative likelihood of different allele pairs, at heterozygous sites and a 
different term ( gm(A1,A2) )  for the relative likelihood of each allelic pair for variation due 
to sequencing errors.  With these considerations and based on the expressions given in 
the previous sections, we obtain the following expression for the probability of a 
configuration (i A1, j A2) at a site: 

 

P(i A1, j A2) = [π(1−17π − 4Prs)gp (A1,A2)F2
*(i + j)Bin(i;i + j;0.5)(2 − Ii, j ) +

π(32π + 8Prs)gm (A1,A2)F1
*(i + j)Bin(i;i + j;ε)+

(1−19π − 81π 2)gm (A1,A2)F2
*(i + j)Bin(i;i + j;ε)+

8π(1−10π)gm (A1,A2)F1
*(i + j)Bin(i;i + j;ε)]/Prob(coverage = i + j)

 

where π  is the probability a site is heterozygous. (This is the quantity we want to 
estimate.) And where gp(A1,A2)  is the probability that the two alleles at a heterozygous 
site are A1 and A2 , gm(A1,A2) is the probability that the two alleles at a site due to 
sequencing error are A1 and A2,  F*2(n) is the probability of coverage n at a site without 
drop-out,  F*1(n) is the probability of coverage n when there is drop-out,  Ii,j is an 
indicator variable equal to one when i equals j, and zero otherwise, and where  
Bin(i;n;p) is the binomial probability of i successes in n trials with probability of success 
on each trial of p.  And finally where: 

 



8 
 

Prob(coverage =  i + j) =  π(1-17π − 4Prs)F2
*(i + j) + π(32π + 8Prs)F1

*(i + j) +
                (1- 9π + 81π 2)F2

*(i + j) +16π(1−10π)F1
*(i + j),

 

which is proportional to the probability that a site has coverage i+j, and is obtained 
from the expressions given in the previous sections.  Dividing by this quantity means 
that our likelihood expression is based on probabilities conditional on the observed 
coverages.  

  The estimation F*2(n), and F*1(n) are described in the previous section. To 
estimate gm(A1,A2) we consider all sites that have coverage 20 to 100 that have one or 
two copies of the rarer allele.  These sites are with high probability, homozygous sites 
with sequencing error.   The fraction of these sites for which A1 and A2 are the two 
alleles found at the site is our estimate of gm(A1,A2).  Similarly, to estimate gp(A1,A2) we 
consider all sites that have coverage 20 to 100, and for which the frequency of the rarer 
allele is (i+j)/2 -2,   (i+j)/2 -1 , or (i+2)/2 .   These sites are with high probability 
heterozygous sites.  The fraction of these sites for which A1 and A2 are the two alleles 
found at the site is our estimate of gp(A1,A2).  We find that gp and gm differ from each 
other substantially, and hence that the identity of the two nucleotides at an apparently 
polymorphic nucleotide position provides significant information about whether the site 
is truly polymorphic or not. Finally, we estimate e using high coverage sites, in this case 
coverage 15 to 100, that have zero to three copies of one allele.  We treat each of these 
“erroneous” copies as an independent error, and thus get an error rate for a given 
coverage, c, with: 

 

ni
i=1

3

∑ i cni
i=0

3

∑
 

 

where ni is the number of sites that have i copies of the rare allele and c is the 
coverage being considered.   So the numerator here is the total number of “erroneous” 
alleles, and the denominator is the total number of copies in the data at coverage c.   
We simply take the arithmetic mean of these estimators for coverage 15 to 100.   

We take all the parameters on the right hand side of the equation for P(i A1,  j A2)  to 
be known without error ( except π), and assume the probability of the configuration at 
each site to be independent of the other sites.   To obtain the maximum likelihood of π 
we maximize the product of the P(i A1,  j A2)’s over all sites with coverage greater than 
10. This is done by simply evaluating the log of the product on a grid of discrete values 
of π.  
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Figure 1. Example of a coverage matrix. The left column indicates the 
total coverage (up to coverage 78) and the top row indicates the minor allele coverage 
(up to coverage 37). Blue cells are called homozygous sites, red cells are called 
heterozygous sites, and green are uncalled sites. 

Supplementary Figure 2. Heatmap of the pairwise divergence between non-African 
samples. Divergence estimates between European samples and East Asians, Oceanic 
and Native American samples are demarked by the box. 

Supplementary Figure 3. Structure plot generated using the resequencing data for the 
20 samples included in the study, together with genotyping data for the 51 populations 
in the Human Genome Diversity Panel, 4 HapMap Phase 3 populations (LWK, MKK, 
GIH, TSI), and 4 additional populations (Naukan Yupik, Chukchi, Native Australian, 
Khoisan, Amhara, Oromo). 
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Supplementary Figure 1. 
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Supplementary Figure 2.  
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Supplementary Figure 3. 
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SUPPLEMENTARY TABLES 

Supplementary table 1. False negative rate calculated by comparison with HapMap 
heterozygous sites, when a 5% binomial filter is applied to call heterozygous sites in the 
re-sequencing data set.  

 Han 
Chinese 
(CHB) 

Maasai 
(MKK) 

Gujarati 
(GIH) 

False negative rate 6.3% 9.4% 7.7% 
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Supplementary table 2. Number of heterozygous sites called on the X chromosome of 
male individuals after position and base quality filters were applied. 

Sample X error rate (x 10-3) 
Basque  4.78 
Druze  6.64 
Ethiopian  6.78 
Greek  8.17 
Gujarati (GIH)  5.78 
Han Chinese (CHB)  9.09 
Icelander  9.20 
Karitiana  2.67 
Khmer  2.34 
Kung  5.31 
Maasai (MKK)  6.51 
Mbuti Pygmy  4.94 
Nasioi  9.20 
Native Australian M 7.85 
Naukan  6.78 
Pima  5.68 
Portuguese  9.41 
Average 6.54 
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Supplementary table 3. Comparison of the maximum likelihood estimates of nucleotide 
diversity to previously published estimates 

Sample π (x 10-3) 
[Wall et al (2008)] 

π (x 10-3) 

Basque 0.87 0.72 

Biaka/Mbuti Pygmy 1.21 0.99 

Han Chinese/CHB 0.81 0.67 

Melanesian/Nasioi 0.78 0.65 

San/Kung 1.26 1.00 
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Supplementary table 4. Nucleotide diversity from sites at any distance from genic 
regions estimated with the maximum likelihood approach (MLE π) compared to the 
method of moments estimates (πm). 

Sample MLE π (x 10-3) πm(x 10-3) 
Maasai (MKK)  1.04 0.97 
Kung  1.00 1.00 
Mbuti Pygmy  0.99 0.98 
Ethiopian  0.92 0.93 
Berber  0.84 0.81 
Druze  0.81 0.81 
Gujarati (GIH)  0.79 0.72 
Portuguese  0.79 0.79 
Khmer  0.74 0.70 
Greek  0.73 0.73 
Basque  0.72 0.73 
Icelander  0.72 0.68 
Native Australian M 0.69 0.67 
Native Australian F 0.67 0.67 
Han Chinese (CHB)  0.67 0.66 
Nasioi  0.65 0.64 
Pima  0.64 0.67 
Naukan  0.63 0.59 
Karitiana  0.58 0.53 
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