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S1 The Underlying Model in Detail

We want to model the situation where we have genotype data for L di-allelic SNP loci from N individuals
from the same homogeneous population, so we for each locus can infer which of the N individuals’ 2N
chromosomes are IBD. To do that we use an HMM with the genotypes as the observed data and the
partitioning of chromosomes into IBD sets in all loci (the IBD configuration) as the hidden (unknown)
variable which we wish to infer. Let us first assume that the haplotype phase is known, i.e. that we for
each genotype know which of its constituent alleles that originates from which chromosome and thus that
we know the haplotypes of all 2N chromosome. Let us also initially assume that the data contains no
genotyping errors. In that case we can let the observed data H be a matrix with a row for each of the 2V
chromosomes and a column for each of the L loci, where H, € {0,1} is the allelic type of chromosome ¢
at locus [ and thus H.; is the vector of allelic types of all the chromosomes at locus [. Similarly, assuming
that at most & IBD sets can be present in any given locus, we can let the hidden IBD configuration, X, be
a matrix with a row for each chromosome ¢ and a column for each locus | with X, € A ={0,1,2, ..., k}.
In this matrix the Ith column, X ;, represents the partitioning of the 2N chromosomes into IBD sets at
locus [ as follows: all chromosomes with the same positive value of X,; share this locus IBD, and all

chromosomes with value 0 are not IBD to any of the other chromosomes.

Since IBD sharing is inherited in regions and since the lengths of these are determined by recombi-
nation events we make the assumption that the IBD states along each chromosome, i.e. each row in X,
can be described as a Markov process, where distance is measured in Centi-Morgan (cM) between the
different loci. For simplicity we also assume that all SNPs genotyped at different loci are independent
given their IBD states, i.e. that there is no linkage disequilibrium (LD). Then, the joint probability of h

and zx is:

P(H=h, X=x) (1)

= P(X=z)P(H=h|X=x)

L L
= (P(X.lzzz:‘l) HP(X4l=m.l|Xl,1=m.l,1)) (HP(H.Z=h4l|Xl=x4l))
=2 =1
L L
= (P(XAlzl,’Al)HP(X4l::r.l|X4l,1:$.l,1)) (H Z P(Al:al|X.l:x.l)P(H.l:h4l|Al:al,XJ:x.l))
=2 l=1la;€A
B . l l
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A; € {0,1}* is here a vector of the allelic states in the k possible IBD sets and the last equality is true be-
cause A; is independent of X.;. When calculating the emission probability of locus I, P(H.;=h.| X ;=x.),
we sum over all possible values of A; to take into account that the allelic states of the different IBD sets
are not known. Each of the probabilities P(H.;=h.;|A;j=a;, X.;=x.;) is simply calculated as the product
12N, P(Hu=ha|Ai=a;, Xg=14) with

c=

fihg ifxg=0
P(Hg=he|Ai=a;, Xa=2a) = § 1, if x>0 and a;[ze] = he (2)
0, ifxgg >0 and q [Icl] 7é he

where f; 1, is the nucleotide frequency of nucleotide h. at position [ estimated from an appropriate
reference population and a; [z] is the zth element of vector a; and thus the allelic state in IBD set x4
at position I. Similarly, P(A;=qa;) is simply calculated as the product of the independent frequencies of
each of its constituent allelic states.

In effect, if several chromosomes are in the same IBD set, v, at locus [ then the haplotypes of these
chromosomes will contribute to the emission probability in [ with exactly one factor in total, f 4., if all
the corresponding haplotypes are equal to the allelic state of IBD set v and a factor of 0 otherwise. Also,
chromosomes with IBD state 0 or with IBD states that they do not share with any other chromosome
contribute a factor of f;,, each. For instance, if N = 1 and the individual’s two chromosomes are in
the same IBD set, the emission probability will be f; p or fi if the individual is homozygous for B or
b, respectively, and 0 if the individual is heterozygous. Similarly, if the two chromosomes are not in the
same IBD set, the emission probability will be f?5 or f7, for homozygous individuals and fi g fi s for

heterozygous individuals.

The transition probabilities of the HMM capture information regarding the length distribution of
IBD regions. Because the distances between the observed nucleotide loci are large, a continuous time
Markov model provides a tractable approach to modeling these transition probabilities. We assume that
each Markov process along a chromosome jumps from a state different than 0 into state 0 at constant
rate, p > 0, and from state 0 into a state different than 0 at a constant rate, A > 0. Additionally, to
keep the number of parameters at a minimum, we assume that the instantaneous rate of transition made

directly between different non-zero IBD sets is 0. Under these assumptions the Markov processes are



time reversible, with detailed balance equations

%/\:pm Yve A, v#0

where 7, is the stationary probability of IBD state v. Solving Kolmogorov’s Forward Equations we find

the transition probabilities along each chromosome sequence as

%‘y“) if 2,-1) =0 and 2y =0
% if xeq_1y =0and x4 >0
P(Xa=za|Xcq-1)=Tci-1)) = p_,,;:;ﬁw i 2eq-1) > 0and zq =0
e—tp((—1+k)2(+p(j/‘\;*71+k)p)+>\ if zog_1) > 0and zg = zc-1)
e—tﬂ((ﬂ)z?ﬁ:\;k,l)p)w\ if zcy—1) >0 and w1y # T >0

where ¢ is the genetic distance (or time) between SNP locus I — 1 and SNP locus I. Thus the stationary

distribution of each chain is given by:

P if o —
ifo=0
A?
Ty = P+

A .
Wiy Hv#O

The full transition probability, P(X.,=xz.;|X.;—1=x.,—1) for a given locus [ is simply calculated as the
product of the transition probabilities of [ for the individual chains.

It is important to note that the simplifying assumption that the instantaneous rate of transition
between different non-zero IBD states is zero, only means that such transitions are not allowed to happen
over infinitesimal distances along the chromosome. Since the distance between any two loci is bigger
than infinitesimal, the model does indeed, despite the assumption, allow such transitions to happen
between any two loci, as is evident from the fact that the transition probabilities indicated above for such
transitions is non-zero when ¢ > 0.

It is it also worth noting that the described model reduces to the inbreeding model by Leutenegger
et al. (Leutenegger et al. 2003) when N = 1, k = 1 with a set to A + p and [ set to /\%rp. This is
noteworthy both because it illustrates that the new model can be viewed as an extension of the model by
Leutenegger et al. and because the re-parameterization to a and f contributes some additional intuition

about the parameters A and p. As in the model by Leutenegger et al. a (=A + p) determines the overall

.

X +p) is the stationary probability

instantaneous rate of change between IBD and non-IBD states and f (=



of a non-zero IBD state.

Finally it should be noted that all of the above equations are for fixed values of p and A. The
dependence of P(G,X) and P(X,;|X.;—1) on p and X has, for the sake of simplicity, been suppressed in
the notation. The values for p and A are not known in advance and will be treated as parameters to be

estimated from data.

Incorporating Genotyping Errors and Unknown Phase

Most often the assumptions that the phase is known and that there are no genotyping errors will be
unrealistic. We deal with this by making two adjustments to the model described above.

First, when the phase is unknown the allelic types of each chromosome within each individual are
no longer observed. Only the genotypes of the N individuals are observed. The observed data is thus a
matrix G with a column for each locus, and a single row for each individual, with the ith row in G being
equal to the sum of the two rows in H that correspond to the 2 chromosomes of individual 7. In this case
equation 1 will still hold (with H replaced by G). But the emission probability at locus I can no longer
be calculated as a product over all chromosomes. Instead we multiply over all individuals.

Second, in order to take into account the unknown phase and genotyping errors, the factor we multiply
with for each individual, to get the emission probability for locus I, is calculated using an approach very
similar to the approach used by Albrechtsen et al. (Albrechtsen et al. 2009): let G;; be the observed
unphased genotype of individual 4 at locus [ and H le, H 221, X 1 and X3 2 be the underlying true haplotypes
and IBD states for each of individual ¢’s two chromosomes j € {1, 2} at locus . Then assuming genotyping
errors occur at a rate e per allele, the factor we multiply with for individual i at locus [ is calculated as

a sum over all four possible true haplotype pairs:

P(Gu=giulAi=a;, X}j=a}, XJ=2},6) = > (( 1 P@H= h|Ai=ay, X} =x] ))P(Gzl gal Hy=hly, H}=h3, )>
Rl h2, G€{1,2}

where P(H}=hl|Aj=a;, X},=z],) for individual i’s two chromosomes j € {1,2} are calculated using
equation 2 and where P(G,,=g,|H}=h}, H3=h?,€) ispo the probability of the observed genotype g;,
given that the true haplotypes are h}; and h?. The values of P(G,|H}, H3,¢€) are summarized in table
S1.

It should be noted that the unknown phase could also have been handled by inferring the most
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Table S1. The distribution of P(Gil|Hi1l7 Hizl, €). € is the genotyping error frequency on allele level.

probable phase using a program such as fastPHASE (Scheet and Stephens 2006) and assuming that this
is the true phase. However, we have chosen the above solution instead, because it allows us to take the

uncertainty of the phase into account.

Implementation Details

In the implementation of the above model we do not always sum over all possible values of the full k-
vector, Ay, as described. k is an upper limit to the number of IBD sets in any one locus, not necessarily
the actual number of IBD sets in a given locus and when only a subset of the possible & IBD sets contain
at least one chromosome, we only sum over all possible values of the A; vector that is associated to this
subset of IBD sets. This approach is mathematically equivalent to a full enumeration of all values of A;
and it reduces the number of terms in the sum by a factor of two for each "unused set”. Hence, this

modification leads to much faster computation of the emission probabilities in certain situations.

S2 Inference Using MCMC

If we let & = (X, p,\) we are in general interested in the posterior distribution P(®|G = g) for a given
unphased SNP genotype data set g defined as above (including marginal posterior probabilities) and
in expectations under this distribution assuming appropriate priors for A and p. For instance, for the
BRCA1 data set, consisting of SNP data from five cancer patients, later analyzed, we are interested in
the posterior probability that all five individuals share the BRCA1 gene IBD. We are also interested
in the posterior expectation of the number of patients that share at least one chromosome IBD in the

BRCA1 gene.

The posterior distribution is given by

P(a|G = g) = DG =02) — 9.9 3)



Hence the posterior expectation of any function f(®) is given by

Elf(®)|G =g = L (L(?(I;(i ; i’)ji)dq)

Unfortunately both are computationally intractable to calculate for practically any realistic scenario.
We solve this problem by using MCMC to approximate the posterior probabilities and expectations
(for a comprehensive introduction to MCMC, see Gilks et al. 1996). More specifically, we use the
Metropolis Hastings algorithm. This algorithm allows us to approximate the posterior by sampling
values of @ in a manner that only requires calculations of P(G = g, X = z|p, \). After choosing an initial
value for @, this algorithm proceeds by repeatedly proposing a new value of either X, p and A and thus
a new value ¢p,o, of ® based only on the current value, ¢y, of ®. The proposed value is accepted with

probability

o — min (17 P(G =g, Xprop = xpr0p|ppropv pTOp) (PpTOP)P( pTOp) (¢cur|¢pr0p)>

P(G :g7Xcur = xcur‘pcura cur)P(pcur) ( cur) (¢prop‘¢cur)

where g(¢2|¢1) is the probability of proposing ¢» when the current value of ® is ¢;. The proposal
distributions, ¢, used, are described in Supplemental Material, section S3. Note that we use uniform priors
for p and A, and that these priors will therefore cancel when calculating the acceptance probabilities.

The described algorithm provides samples from an ergodic Markov chain that has P(®|G) as its
stationary distribution (Gilks et al. 1996). And for any set of values, ¢, of ® the posterior probability of
¢ can simply be approximated by

n

PUIG=g)~ —= 3 I(dn <)

m=b+1

where ¢1,¢2,...,¢, are the samples generated using the MCMC-algorithm and b is a burn-in chosen to be
so large that the samples are approximately independent of the starting value. For any function f(®),

similarly E[f(®)|G = g] can be approximated as the ergodic average

B@IG =g~ = 3 f(6u)

m=b-+1



S3 The Moves Used in the MCMC Algorithm

The MCMC algorithm is based on a number of moves, here defined as proposal algorithms with corre-
sponding acceptance probabilities. The moves are used to propose and evaluate changes to three different
state variables: 1) the two parameters A (the rate of change from an IBD state>0 to state 0) and p (the
rate of change from IBD state>0 to another state) and 2) the IBD configuration matrix X.

In total there is one move for proposing changes to each of the parameters A and p and six moves for

proposing changes to the IBD configuration matrix X.

Notation

In the descriptions of the moves the following notation is used:

N number of individuals in total

L number of loci in total

site a specific locus on a specific chromosome.

region a number of consecutive sites on one or more chromosomes. If more

chromosomes are involved the region starts and ends in the same

locus on all chromosomes. In a region there can be many different

IBD states.
k the maximum number of possible IBD sets in any given locus.
IBD state the number from 0 to k that a site has been assigned in the IBD

configuration matrix (i.e. the value in X|[chr, locus])
IBD block one or more consecutive sites that all have the same IBD state.

IBD block border where two IBD blocks meet on a chromosome.

The Parameter Moves

There is one move for each of the two parameters A and p. This move is based on a proposal algorithm,
q, that proposes a new value uniformly in a window around the current value (if a value smaller than
0 or larger than 1 is sampled 0 or 1 is used as a mirror — if for instance the sampled value is -0.01 the

proposed value will be 0.01.) Since ¢ is a symmetric proposal distribution, i.e. for any two values p;



and py of the parameter of interest g(p1|p2) = q(p2|p1), this is simply a Metropolis move. So assuming

uniform priors on A and p the following acceptance probability is used for A,.qp:

P(G = gaX = xcur‘pcura )\prop)>

= 1 1
“ e < ’ P(G = gaX - xcur‘pcura)\cur)

and the following is used for pp;op:

o= min <1’ P(G = gaX = xcur‘pprop, cur))

A
P(G = g7X = xcur‘pcura )\cur)

The X Matrix Moves
The Single Site X Move

In this move a site is picked at random and the IBD state of this site is changed to a randomly picked
other state from the set {0,1,...,k}. The proposal algorithm behind the move more precisely consists of

the following steps:
1. Pick a chromosome ¢ uniformly
2. Pick a locus [ uniformly
3. Pick a new IBD state for the chosen site uniformly

Again, since we have a move based on a symmetric proposal distribution, we have a Metropolis move.

So assuming uniform priors we have the following acceptance probability

o = min <]_7 P(G - g’X - ‘rPTOP|pCUT7 cur))

A
P(G = gaX = xcur‘pcum )\cur)

The Region X Move

This move consists of picking a region on a random chromosome and changing the IBD state of all sites
in this region by adding the same random number to all of them. More precisely the proposal algorithm

is as follows
1. Pick a chromosome ¢ uniformly

2. Pick a region length m uniformly from 1 to a fixed maximum region length



3. Pick a region start locus [ uniformly from 1 to L-m

4. Pick an integer z € {1, ..., k} and set the state of each site in the region to be (the current state+z)

modulo k + 1

Again, the proposal distribution is symmetrical and hence the move is a Metropolis move. So assuming

uniform priors we again get the acceptance probability

a = min <17 P(G = gaX = xprop|pcura)f\Cu’r’)>

P(G = g7X = xcur‘pcura cur)

The Border X Move

The idea behind this move is to make it possible to move IBD block borders. The proposal algorithm

consists of the following steps:
1. Pick a chromosome c¢ uniformly
2. Pick a border on ¢ uniformly. If there are no borders on ¢ reject move.
3. Pick a side to move the border to (uniformly)
4. Pick a distance to move the border (uniformly from 1 to a fixed maximum move length)
5. Move the border in the chosen direction the chosen distance.

Note that the distance is measured in number of sites without borders between. And note that if the end
of the X matrix is reached the rest of the distance is travelled back towards the original position of the
border. In this way the proposal distribution becomes symmetrical. Thus again we have a Metropolis

move. So assuming uniform priors we again get an acceptance probability of

o = min (17 P(G =9, X = xproplﬂcurai‘cur))

P(G =9, X = xcur‘pcurv cur)
The Block State Change X Move

The idea behind this move is to make it possible to change IBD state on an entire IBD block on chromo-

some level. The proposal algorithm consists of the following steps:

1. Pick a chromosome

10



2. Pick an IBD block on the chromosome b uniformly and call the length of it m
3. If the IBD block is longer than a fixed maximum block length, reject the move

4. Otherwise pick a new state for the block (different from any neighboring blocks on the same chro-

mosome and give the IBD block that state.

Since we again have a symmetric proposal distribution it must hold that (assuming uniform priors) the

acceptance probability is

a = min (17 P(G =¢g,X = xprop|Pcur,;\cw«)>

P(G =9, X = xcur‘pcum cur)
The Copy X Move

This move consists of two opposite moves. The idea behind it is to make it possible to copy the IBD
states of a region on one chromosome to the same region one or more other chromosomes. The proposal

algorithm is as follows:
1. Pick a region length m (uniformly from 1 to a fixed maximum region length)
2. Pick a locus [ (uniformly from 1 to L-m), where the region starts
3. Pick a random subset, C,,, of the 2N chromosomes with |C,| =n < 2N.
4. Pick a move type (A or B)

e If move type A is chosen:
(a) Pick a chromosome ¢ (uniformly from the 2N — n chromosomes not in C,,)
(b) Copy the IBD states of the relevant region in ¢ to all the chromosomes in C,,
e If move type B is chosen:

(a) If the IBD state sequence of all chromosomes in C,, are not identical to each other and at

least one other chromosome in the relevant region reject the move.

(b) Else give each site in the region in all the chromosomes in C,, a random IBD state between

0 and k.
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Assuming uniform priors move A has the acceptance probability

o = min (17 P(G =g, X = xpmppcurvi‘cur)q(XcuAXpmp))

P(G = gaX = xcur'ﬂcura cur)q(Xprop|Xcur)
— min P(G =9, X = xprop|pcu'r7 Acur)W
’ P(G:gvX :xcur‘pcum)\cur)ﬁ

= min (1, P(G = g,X = Tprop|peur, Acur) (2N — n))
P(G = 97X = mcur|pcur7 )\cur)(k-l-l)mny

where y is the number of chromosomes not in C,, that are identical to ¢ in the region (including c itself).

And move B has the acceptance probability

o = min (17 P(G=g¢,X = xprop‘pcum )\cur)q(Xcur|Xpmp))
P(G =g, X = xcur|pcur, AC“T)Q(XproMXCW)
= min (1’ P(G =g9,X= xpmp\pcm, )‘cur))(k-&-l)m"y>
P(G = gaX = xcur‘pcur, )\CUT‘)(2N — n)

The IBD Expansion/Reduction X Move

Also this move consists of two opposite moves. In the first move an IBD block is expanded to include one
more chromosome. In the second move an IBD block is reduced to include one chromosome less. More

precisely the proposal algorithm consists of the following steps:
1. Pick a locus ! (uniformly from 1 to L)
2. Pick a move type (A or B)

e If move type A is chosen:
(a) Pick an IBD state s present in the {th column of the IBD matrix X and let C,, be the set
of chromosomes with state s in this column and let n = |C,,|

(b) Find left and right limits of the biggest IBD block that contains all of the chromosomes

in C,, and locus I.
(c¢) Pick a chromosome ¢ not among the n chromosomes in C),

(d) If ¢ does not have the same state in all sites between the left and right limits found in (b)

the move is rejected. Otherwise c is given state s in all sites between left and right limits

12



e If move type B is chosen:

(a) Pick a chromosome ¢ uniformly

(b) Find all n — 1 chromosomes with same IBD state as ¢ at locus [ and let C, be a set
consisting of these chromosomes and c.

(c) If there are no such chromosomes (i.e. if C,, = {c}) the move is rejected. Otherwise find
the left and right limits of the biggest IBD block containing all the chromosomes in C,
and locus [. If the removal of ¢ from the set would lead to another left or right limit the
move is rejected. If not a new IBD state is picked uniformly and given to all sites of ¢ in

the region between the left and right limits.

Assuming uniform prior get that for move A the acceptance probability is

o = min (17 P(G=9,X = Tproplpeurs )\cur)Q(XCU7"|Xpmp))
P(G=g9,X = xcur|pcur7 )\cur)q(XPmZ"Xc“T)
_ ) P(G = g’X = .rprop|pcu7‘7 )\CU"')ﬁ%
=min [ 1, n__1
P(G = g’X == xcur‘pcu’r? )‘C’lﬂ')ﬁm

= min | 1, P(G = g’X = xprop‘pcum )\CUT)(QN — n)
P(G =9 X = xCUT|pcu7“a )‘cur)kn

And for move B we get that the acceptance probability is

& = min (1’ P(G = gvX = xprop‘pcurv )\cur)q(Xcur|Xprop))
P(G =9, X = xcur'ﬁcurv )\cur)q(Xprop|Xcur)

. P(G =g, X = x;m’op|ﬁcura )‘cur)kn
= min ( 1,
P(G = g,X = xcur|pcur7 Acur)(2N - n)

Note that sometimes an expansion move has the exact same effect as a reduction move and vice versa.
This is not corrected for in the proposal probabilities because whenever this is the case there is an

equivalent opposite move that takes you back.
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S4 Program Settings Used

Settings used in the example run

We used default settings for all programs, except that for Relate we turned off the LD correction since

the data set does not contain LD. For the MCMC we set & = 2.

Settings used in the power study

MCMC We ran the MCMC method with ¢ = 0.005 and k& = 1. The € value used is somewhat
conservative given that the data were simulated using an error rate of approximately 0.003 to mimic

realistic SNP chip data (see section about Simulated Test Data for details about the simulated data).

Relate We ran Relate under the assumption that pairs of individuals cannot share two chromosomes
IBD. We ran it with default parameters except that we turned off the LD correction since the simulated

data does not contain LD.

PLINK The method by Purcell et al. is based on an HMM, which infers the probability that the
two individuals being analyzed share 0, 1 or 2 chromosomes IBD (Purcell et al. 2007). In the article
describing the method, a region is inferred to be IBD based when the probability of sharing at least one
chromosome IBD is above a certain threshold (Purcell et al. 2007). However, in the implementation
available in PLINK, inference are based not only on these probabilities, but also on thresholds for the
lengths of the regions measured in both kilobases and in number of SNPs. The default settings require
IBD regions to be longer than 1 Mb and 100 SNPs. We are here considering shorter regions of lengths
< 1 Mb, which contain significantly fewer SNPs than 100. When applying PLINK with default setting on
all of the power study’s 1500 positive data sets with short (< 1 Mb) IBD regions only 5 of these regions
were inferred, corresponding to 0.3%. In order to give PLINK the best possible chance to find the short
regions, we, therefore, chose not to use any length restrictions, but instead to use the method as it is
described in Purcell et al. (Purcell et al. 2007). To be able to do so we had to force the program to

output IBD probabilities for all pairs analyzed. Except for this, PLINK was run with default settings.

BEAGLE We ran BEAGLE with default parameters with the only exception that as recommended in

the manual for small data sets, we used 20 iterations instead of 4, in the phasing part of the inference,

14



in order to achieve better accuracy. As recommended in the manual we ran BEAGLE 10 times on each

data set with different seed values and used the maximum IBD probability for each locus.

GERMLINE For each pair of sequences, GERMLINE partitions the genome into segments of a given
length and identifies all segments where the two individuals are identical by state (IBS) in all loci. These
IBS segment are then expanded to both sides until a segment with more than x mismatches is met.
Finally, all segments that after expansion are longer than a fixed length are recorded as IBD regions.
The following three parameters have to be supplied by the user: the minimum size of an IBD region
(measured either in Mb or ¢M), the number of SNPs in each initial segment and an upper bound for
the number of mismatches allowed in each segment for them to be interpreted as genotyping errors. The
default settings are 5 cM, 128 SNPs and 2 errors. However, in most of the scenarios the IBD regions are
shorter than 5 ¢cM. Moreover, they almost all contain fewer SNPs than 128. In fact, we are interested in
capturing regions with less than 30 SNPs. We therefore did not use the default settings, since using these
would have lead to a TP rate of 0 for all the scenarios with short IBD regions. To give GERMLINE the
best chances of finding the short regions we instead used an initial segment size of only 1 and allowed for
0 errors. In this way an IBD region should always be found unless it is shorter than the minimum length

or it contains genotyping errors.

Settings used for real data

MCMC We ran the MCMC method with the exact same settings as in the power study with two
exceptions. First, we used a genotyping error parameter ,e of 0.01 instead of 0.005. This is a conservative
estimate based on the BRLMM white paper (Inc 2006) , where the genotyping error rate for the HapMap
individuals was estimated as 0.006 and 0.008 for homozygote and heterozygote genotype calls, respectively.
Second, when applied to the BRCA1 region alone we raised k to 3 instead of 1 in order to allow the

MCMC method to detect if there are more than one IBD sharing set in the BRCA1 region.

Relate We ran Relate with the exact same settings as in the power study with at single exception; we
turned on the LD correction. And as recommended in the manual for data sets the size we have, we used
a back parameter of 25 for the correction, meaning that for each SNP locus it corrects for LD with the

previous 25 SNP positions.

15



PLINK We used the exact same settings as in the power study.

BEAGLE We used the exact same settings as in the power study.

GERMLINE We used default values, since it unclear which minimum length for IBD regions to use,
if we were to use the same settings as in the power study in order to ensure a relatively low rate of false

positives.

16



S5 Verification of the Method

To ensure that the MCMC algorithm works correctly, i.e. that it converges to a stationary distribution
and that this stationary distribution is in fact the correct posterior distribution, we applied the method
to a very small simulated data set, consisting of only two individuals and three SNPs. For a data set
of this size it is possible (for any given values of A and p) to calculate exact posterior probabilities.
Hence running the algorithm on such a data set enabled us both to test if the method did converge to a
stationary distribution and if this distribution was the right distribution. We focused on two possible IBD
patterns: We investigated the posterior probability that individual 1 is inbred at the first locus and the
posterior probability that all four chromosomes are unrelated at the third locus. We ran two chains each
with a unique starting value and assessed convergence using the Gelman-Rubin convergence diagnostic:
”the potential scale reduction factor”. As can be seen in figure S1 the potential scale reduction factor
stabilizes at a value close to 1 after a few thousand iterations. This suggests that the chains did converge

to a stationary distribution.
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Figure S1. Gelman-Rubin plots for the two IBD patterns. Left: The Gelman-Rubin plot for IBD
pattern 1. Right: The Gelman-Rubin plot for IBD pattern 2.

Real posterior | 1st run | 2nd run
Individual 1 is inbred at locus 1 0.012 0.012 0.011
All four chr unrelated at locus 3 0.052 0.055 0.053

Table S2. The real posterior probabilities and the estimates obtained from the two runs of MCMC.
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We then calculated the posterior probability of the two IBD patterns analytically by exact enumeration
and compared these to the values obtained using MCMC. The obtained value are very close to the correct

ones, see table S2, suggesting that the algorithm indeed did converge to the right distribution.
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S6 Convergence Assessment of all MCMC Runs

We used the following approach for monitoring convergence for all runs described in this paper: two
chains were run, each with a unique starting value and afterwards the Gelman-Rubin diagnostic was used
to assess convergence for all parameters of interest. The only exception were the runs made for the power
study, for which we, for computational reasons, only ran two chains for a couple of the data sets from
each scenario, as the results should not be affected much by a small fraction of non-converging chains. All
the Gelman-Rubin plots can be seen below (figures S2 to S6). Inspection of these plots and the fact that
the final point estimates of the potential scale reduction factor in all cases were at most 1.01, suggests

that convergence has indeed been achieved in all runs.

Convergence plot for the example run
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Figure S2. Gelman-Rubin plots on the number of zeros in the X matrix. This statistic was used since
the MAP estimates that the inference is based is only a summary statistic in the sense that it
summarizes all samples in one overall statistic and not a statistic for each sample. Hence it cannot be
used for convergence monitoring. So instead we used the number of zeros in X as this at least to some
extend captures the state of the entire X matrix.
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Convergence plots for the power study
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Figure S3. Gelman-Rubin plots on the statistics used to for the power study (the first 3 scenarios and
their corresponding null scenarios). For a single sample from each scenario the IBD status used for the
power study in a single locus (101 if part of IBD region otherwise locus 51).
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Convergence plots for the power study (continued)
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Figure S4. Gelman-Rubin plots on the statistics used to for the power study (the last 3 scenarios and
their corresponding null scenarios). For a single sample from each scenario the IBD status used for the
power study in a single locus (101 if part of IBD region otherwise locus 51).
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Convergence plots for the founder mutation analysis
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Figure S5. Gelman-Rubin plots on the statistics used to estimate pairwise relatedness for the 5 cancer

patients.
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Convergence plot for the mapping analysis
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Figure S6. Gelman-Rubin plots for the two statistics used for mapping the disease causing mutation
in the BRCA1 region and two other random regions. For the first statistic (number of individuals that
share at least on chromosome IBD) there is a plot for three different loci on chromosome 17; two
random loci and the BRCA1 locus. For the second statistic (all individuals IBD) there is only one
plots: the plot for the BRCA1 locus for the two random places, because not a single one of the samples
in the two random regions had all 5 individuals IBD.
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S7 All ROC curves for the power analysis
ROC curves for scenario 1
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Figure S7. ROC curves for scenario 1 using three different thresholds for having inferred an IBD
region: when at least half of the SNP are inferred to be IBD, when at least 95% of the SNP are inferred
to be IBD and when all of the SNPs are inferred to be IBD. Since only the MCMC method and
BEAGLE can infer inbreeding only ROC curves for these two methods are plotted. The green curves
are from the MCMC method and the red curves are from BEAGLE.
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ROC curves for scenario 2
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Figure S8. ROC curves for scenario 2 using three different thresholds for having inferred an IBD
region: when at least half of the SNP are inferred to be IBD, when at least 95% of the SNP are inferred
to be IBD and when all of the SNPs are inferred to be IBD. The green curves are the ROC curves from
the MCMC method (not visible because the purple curves cover them), the purple curves are from
Relate, the blue curves are from PLINK (not visible because the purple curves cover them), the red
curves are from BEAGLE and the black curves are from GERMLINE.

25



ROC curves for scenario 3

Scenario 3 Scenario 3
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Figure S9. ROC curves for scenario 3 using three different thresholds for having inferred an IBD
region: when at least half of the SNP are inferred to be IBD, when at least 95% of the SNP are inferred
to be IBD and when all of the SNPs are inferred to be IBD. The green curves are the ROC curves from
the MCMC method (not visible because the purple curves cover them), the purple curves are from
Relate, the blue curves are from PLINK (not visible because the purple curves cover them), the red
curves are from BEAGLE and the black curves are from GERMLINE.
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ROC curves for scenario 4a
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Figure S10. ROC curves for scenario 4a using three different thresholds for having inferred an IBD
region: when at least half of the SNP are inferred to be IBD, when at least 95% of the SNP are inferred
to be IBD and when all of the SNPs are inferred to be IBD. The green curves are the ROC curves from
the MCMC method, the purple curves are from Relate, the blue curves are from PLINK, the red curves
are from BEAGLE and the black curves are from GERMLINE.
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ROC curves for scenario 4b
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1.0

1.0
1

© | © |
@ ° @ °
I ©
o o
}_ < '_ <
o 7 34
N N
o N o
I!
2
o o |
o o
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FP rate FP rate
Scenario 4b
o |
2
@ _f
o
© _|
9 o
<
o
[ <
o
~ Wi
° :
I'!
o
3
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FP rate

Figure S11. ROC curves for scenario 4b using three different thresholds for having inferred an IBD
region: when at least half of the SNP are inferred to be IBD, when at least 95% of the SNP are inferred
to be IBD and when all of the SNPs are inferred to be IBD. The green curves are the ROC curves from
the MCMC method, the purple curves are from Relate, the blue curves are from PLINK, the red curves
are from BEAGLE and the black curves are from GERMLINE.
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ROC curves for scenario 4c
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Figure S12. ROC curves for scenario 4c using three different thresholds for having inferred an IBD
region: when at least half of the SNP are inferred to be IBD, when at least 95% of the SNP are inferred
to be IBD and when all of the SNPs are inferred to be IBD. The green curves are the ROC curves from
the MCMC method, the purple curves are from Relate, the blue curves are from PLINK, the red curves
are from BEAGLE and the black curves are from GERMLINE.
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S8 MAP estimates for the BRCA1 region
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Figure S13. MCMC based estimates for 161 SNP loci in a 12 Mb region surrounding the BRCA1 gene.
For each locus the figure depicts the IBD set partitioning with the highest posterior probability, i.e. the
estimated MAP IBD set partition. Here the lower chromosome of each individual has been placed in
light green IBD sets (if the individual has a chromosome in this set) and the upper chromosome has
been placed in the dark green (if the individual has a chromosome in this set). However it should be
noted that the estimates for the different loci are made independently and that for each position the
order of the sets within each individual has not been taken into account when making the MAP
estimates and could hence just as well be the opposite. The BRCA1 gene is situated close to SNP 76.
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