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Supporting Methods

Generating intercross lines

Overall strategy. We devised a simple strategy that forces yeast cells through multiple rounds
of random mating and sporulation to create advanced intercross lines (AlLs) (Fig. S1). This step
can improve genetic mapping in two ways: increasing resolution by reducing linkage, and
unlinking nearby QTLs. The experimental design has three main features. First, it requires little
genetic strain manipulation, thus making the method straightforward to extend to natural
populations and not limiting it to the laboratory strains. We have previously created over 50
strains in this way that can be used to create AlLs (Cubillos et al. 2009). Second, our approach
allows systematically undergo many rounds of sporulation and random mating. Finally, in
addition to pools of haploid segregants, diploid heterozygous segregants can be obtained,
making the yeast a better model for complex trait genetics in diploid organisms.

Strain selection. We selected a North American oak isolate (YPS128) and a West African palm
wine isolate (DBVPG6044) as parent strains for their marked phenotypic growth differences at
high temperature (Liti et al. 2009) (Fig. S2a). We started from strains that are stable haploid
(ho::HphMX4), isogenic (except for opposite mating type) and unable to grow in the absence of
uracil (Table S1). We replaced the LYS2 with URA3 gene in the DBVPG6044 strain (Cubillos et
al. 2009). This gene replacement restores the ability of growing in the absence of uracil and
makes it unable to grow without lysine.

F1 cross. The two parental strains YPS128 LYS+ and DBVPG6044 URA+ were crossed in
complete media (YPDA) and grown overnight (Fig. S1). Patches were replica plated in synthetic
minimal media (MIN) to select for diploid F1 hybrids. F1 hybrids were isolated and stored at -
80°C. Two F1 hybrid replicas were grown overnight (spread over a whole Petri dish) and replica
plated on KAc at 23°C to be sporulated for 10 days. We monitored sporulation efficiency (% of
sporulating cells) until it reached >90%. Cells from the whole plate were carefully collected and
resuspended in 0.5 ml of sterile water and treated with an equal amount of ether and vortexed
for 10 minutes to selectively kill unsporulated cells (Dawes and Hardie 1974). Cells were
washed 4 times in sterile water, resuspended in 900 pl of sterile water and treated with 100 ul of
Zymolase (10 mg/ml) to remove the ascus. Cell mixtures were vortexed for 5 minutes to
increase spore dispersion and inter-ascus mating.

Further rounds of intercrosses. Cells were plated at high density to begin a second round of
mating and meiosis (F2). The presence of two distinct markers (LYS2 and URA3) at the same
genomic position prevents them from co-segregating in haploid cells, and thus allows selecting
for diploid cells segregating at that locus. In order to confirm this system, we dissected 20
tetrads from the F6 pool and all of them had the correct 2:2 segregation of the LYS/URA
markers. The sporulated pool was treated with zymolase and plated at high density to start the



next generation of intercross as described in the paragraph above. The result of this strategy is
a large pool of segregants for sensitive and high resolution QTL mapping.

Ploidy. We can generate either haploid or heterozygous diploid pool of segregants. For the
haploid pool, we used spores from different generations (F1, F6, F12 and F18) treated with
ether and zymolase as described above. These pools consist of cells of both mating types (Mat
a and Mat o), and thus have the potential to mate and form diploids. To check whether mating
had taken place during the selection experiment, we isolated 960 segregants at the end of the
heat selection (T2.5) and found that all of them were able to mate with the haploid tester strains,
thus indicating they remained haploid during the selection. Furthermore, we genotyped 288 of
these segregants at 11 loci distributed in 8 different chromosomes and confirmed that the
segregants remained haploid. Our results indicate that the haploid segregants did not mate
during the heat selection, suggesting that the propagation of the cells under heat stress
prevents mating events. The pool of segregants with mixed mating types provides a further
advantage compared to the Mat a pool previously described (Ehrenreich et al. 2010) which is
unable to map QTLs in regions linked to the MAT, LYP1 and CANL1 loci. For the heterozygous
diploid pool, we forced one extra round of mating and selection for LYS+/URA3+ cells, resulting
in a pure diploid pool that is stable during subsequent propagation step, as meiosis can only be
induced by exposing the cells to a specific media.

Selection experiment

Pools of population size of 10-100 million cells (estimated by plating serial dilutions) were
collected from the sporulation media and treated with ether and zymolase as described above.
Spores were plated in complete media (YPDA) and incubated either at permissive temperature
(23°C) or at restrictive temperature (40°C) until full growth was obtained. Each plate was
incubated for 48 hours, after which, all cells were carefully collected and resuspended in distilled
water. Ten percent of the suspended cells were used for the next re-plating in fresh media. The
rest of the cells (90%) were used for DNA extraction, followed by high coverage genome
sequencing described below. We tested a different dilution factor (1/100) for replating, and
measured the changes in allele frequencies at the Xlll subtelomeric QTL by Tagman assay. We
found that the two dilution factors resulted in similar changes in allele frequencies (results not
shown). We used the 1/10 dilution for all other experiments to maintain a larger population size
through the selection experiment preventing the risk of clonality. At this dilution, the pool
undergoes through at least 3.25 generations between re-platings in addition to an estimated 10-
20 generations during the first two re-platings for a total of 25-35 generations by T3.

Genotyping

To calculate the percentage of recombinant haplotypes, we obtained genotypes at 24 loci by
real time PCR coupled to high resolution melting (HRM) using the Corbet Rotorgene and
Quantace PCR HRM mix. We used the data for 96 F1 segregants previously described
(Cubillos et al. 2011), and genotyped 96 additional segregants from each of the F6, F12, and
F18 at three regions (Dataset 1). We used the same genotyping approach to genotype 19



strongest QTLs in 96 segregants isolated from F12 replica 1 pool after 336 hours of heat
selection (T3.5, Dataset 2).

Furthermore, we genotyped 960 F12 segregants isolated from the F12 replica 2 pool
after 240 hours of heat selection (T2.5) using the Sequenom IPLEX™ Gold Assay (Sequenom®
Inc.). Assays for Sequenom genotyping were designed using the eXTEND suite and
MassARRAY Assay Design software version 3.1 (Sequenom® Inc.). Amplification was
performed in a total volume of 5uL containing ~0.06-0.4ng genomic DNA, 100nM of each PCR
primer, 500uM of each dNTP, 1.25 x PCR buffer (Qiagen), 1.625mM MgClI, and 1U HotStar
Tag® (Qiagen). Reactions were heated to 94 °C for 15 min followed by 45 cycles at 94°C for 20
s, 56°C for 30 s and 72°C for 1 min, then a final extension at 72°C for 3 min. Unincorporated
dNTPs were SAP digested prior to iPLEX™ Gold allele specific extension with mass-modified
ddNTPs using an iPLEX Gold reagent kit (Sequenom® Inc.). SAP digestion and extension were
performed according to the manufacturer’s instructions with reaction extension primer
concentrations adjusted to between 0.7-1.8uM, dependent upon primer mass. Extension
products were desalted and dispensed onto a SpectroCHIP using a MassARRAY
Nanodispenser prior to MALDI-TOF analysis with a MassARRAY Analyzer Compact mass
spectrometer. Genotypes were automatically assigned and manually confirmed using
MassARRAY TyperAnalyzer software version 4.0 (Sequenom® Inc.). Genotype data are
presented in Datasets 1-2, and primer sequences are available upon request.

DNA isolation, library preparation, and sequencing

DNA was extracted using the phenol chloroform protocol as previously described (Borts et al.
1986). Multiplexed PCR-free Illlumina sequencing libraries were prepared starting from 2 pg of
genomic DNA from each strain or pool. Essentially this followed the protocol described in
(Kozarewa et al. 2009), except that modified bottom adapter strands were used that introduced
a unique tag sequence between SP2 primer site and P7 sequence (Table S10), allowing
libraries prepared from 12 samples to be pooled and each samples' unique sequence
subsequently deconvoluted according to the specific tag sequence present. The PCR free
adapters were made by annealing T_no_PCR oligo
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCHT (*
indicates phosphorothioate) with a specific bottom oligo that contains the indexing tag sequence
given in Table S10. Fragments with 200-300bp inserts were gel purified and sequenced using
standard lllumina SBS v4 chemistry for 2 x 76 cycles plus an extra 7 cycles of sequencing using
the reverse complement of the SP2 primer to determine the tag sequence of each cluster.
Parental strains were sequenced using 2 x 108 cycles.

Sequencing data handling

Sequencing reads were mapped to the S288c reference genome obtained from the SGRP
project website (Carter 2006) using BWA (Li and Durbin 2009), with option “-n 8” to allow
mapping of divergent reads from the founder strains. Pileup files comprising the genotypes of
mapped reads were created for segregating sites inferred from both low-coverage capillary
sequencing (Liti et al. 2009) and the parental strain shotgun sequence mapping to the S288c
assembly using samtools (Li et al. 2009). For allele frequency inference, sites that were not



segregating in the initial population, corresponding to likely false positive variant calls, were
filtered out, as well as sites that were noted as heterozygous in either parental strain, indicative
of copy number variation or non-unique sequence in general. Furthermore, for allele frequency
inference, we filtered the variants to have minimum distance of at least 200 bases to ensure that
any single read does not contribute disproportionately due to spanning many variants. The
mapping pipeline is available upon request.

Parental strain analysis

The parental strain sequence was mapped similarly to the selection experiment. We used the
samtools variant caller with default settings to call differences from the reference sequence, and
used these data to update the list of segregating sites used in the allele frequency analysis. The
variants not observed were added to the list, and variants observed from capillary data, but not
supported by the short reads were discarded.

We performed de novo assembly of the parental strains to assess the amount of
sequence present in these strains that is not found in the S288c reference genome. We used
the overlap-based assembler SGA (String Graph Assembler) to construct contigs from the
sequence data. This assembler is based on the FM-index and allows efficient detection of
overlaps between reads (Simpson and Durbin 2010). First, we filtered the sequence data to
remove low quality reads by discarding any read that had more than 4 bases with a Phred-
scaled quality value less than 4. We then corrected base calling errors in the reads by finding
inexact overlaps between the reads. We required an overlap of at least 50bp with no more than
5% mismatches between the sequences to consider them overlapped. The consensus
seqguence for each read was called from the set of overlapping reads. After correction, the reads
were assembled using the string graph assembly algorithm described in (Simpson and Durbin
2010) by finding the set of exact overlaps of length at least 50bp between the corrected reads.

Segregant analysis

To analyse the genetic background of two individual F6 segregants, we mapped the sequencing
reads to the genome as described earlier, and classified every segregating site to stem from
one of the two parental strains, or a ‘no-call’. A site was called to be from one parent, if it was
covered by at least 15 sequencing reads with base and mapping qualities at least 30, and 80%
of them had the parental allele. We conservatively refrained from making a call at low-coverage
variants, subtelomeric regions up to 30kb, and variants with ambiguous mapping data. We
called a recombination event if a region of at least 2kb from one parent was followed by a region
of at least 2kb from the other, and at least 5 calls were made in both regions. This results in a
conservative estimate of recombination events, as it discards non-crossovers shorter than 2kb,
and recombination in subtelomeric regions.

We observed less recombination events than expected if at each meiotic generation a
new set of crossover occurred independently of the previous ones. It is well known that the
distribution of crossovers is not random but instead these events tend to cluster in specific
regions (recombination hotspots (Szekvolgyi and Nicolas 2010)), thus many of the crossovers
will take place at the same positions. Under the model of uniform distribution of recombination
events, and 30 recombinations in F1, we would expect ~105 recombination events by F6. As we



observed 66 on average, we estimate that (66-30)/(105-30) = 48% of the events to reuse the
recombination hotspots (perhaps favoured by intra-ascus mating), and we have 106 detectable
events on average by F12. Thus, we further estimate that 1 centimorgan of genetic map in the
F12 generation corresponds to 1.1 kilobases. It is also possible that there is a recombination
preference in the heterozygous diploids within regions inherited from the same strain, and such
events cannot be detected. We also expect to observe less recombination events taking place
between sequences from different parental backgrounds in regions selected early during the
intercross, as these regions will have long tracts of sequence from one parent in the pool.
Furthermore, we have filtered out closely spaced events (within 2 kb), which could be originated
by short non-crossovers or by re-usage of the same crossover. Some of these issues could be
addressed by using a different cross with higher recombination frequency, or mutant strains that
exhibit different recombination patterns (Szekvolgyi and Nicolas 2010).

Allele frequency inference

Under a simple model, there is an unobserved WA allele frequency f, at each locus |; we want to
infer the posterior distribution of f; after observing the sequence data. We assume all reads to
come from different segregants after filtering segregating sites to be distant, thus every
segregant i has one allele ai observed at some locus I distance d; away from |. We take d to be
infinity if the loci are on different chromosomes. For that segregant, there is an unobserved
allele by at locus |, and the probability that these loci are linked, with no recombination event
occurring during the intercross between them, is gi = exp(-dir), where r is the recombination rate.
We took r =30 (1 + (g-1)/2) , where g is the number of intercross rounds, as there is on average
30 crossovers per tetrad, and every intercross after the first one has a 50% chance of
introducing a switch between parental haplotypes. The likelihood of the allele frequency at locus
| is thus

P(D | fl) = TT; P(ai | fi), where

P(ai | fi) = P(ai, bi = ‘WA’ | fi) + P(ai, bi = ‘NA’ | fi) =
= P(ai | bi = ‘WA")P(bi = ‘WA’ | fi) + P(ai | bi = ‘NA)P(bi = ‘NA’ | fi) =
= g WA (1-qi)®= M i+ gt = M (1-qi)® = WA (1-fi) ~
~ qi fi= WA (L)@ = "NA

Here, we have discarded likelihood terms that require a recombination event, as we will filter qi
to be large. We calculate the posterior (beta) distribution of f; by applying Bayes rule: P(f; | A) «
P(A | f) P(fi) =11 P(ai | fi ) P(f)) where the beta prior P(f;) is uninformative, and we filter gi > 0.9
(0.75 for Fig. 3a-b for smoothness). We further filtered out loci for which the difference between
inferred posterior WA allele frequency, and frequency of the WA allele mapped to the locus was
greater than 0.1 to downweight the effect of outliers, and repeated the smoothing. This
inference procedure corresponds to a smoothing approach within a fixed window, discarding
outliers, with the width determined by the recombination rate (~6kb for gi > 0.9), and has the
effect of discriminating against extreme allele frequencies. The posterior mean and confidence
intervals were obtained from the approximated Beta distribution.

QTL mapping

Allele frequency change. We called a QTL if the inferred allele frequency changed in the same
direction by at least 10% in both biological replicas, and the change was larger than four times
the average standard deviation of the inferred allele frequencies. One QTL was called in any



50kb window, corresponding to the variant with largest combined allele frequency change over
two replicas. We assessed the significance of the calls using the null distribution of allele
frequency changes from the control experiment, where the initial pool was propagated in
permissive temperature alongside the selected pool for 144h (T2). Due to repeptitive nature of
the subtelomeric regions, and resulting low sequencing coverage, we did not consider loci within
30kb of the end of chromosomes. We fit a normal distribution to the allele frequency changes at
the 26,871 loci assessed (Fig. S9), and calculated the probability of observing a change of at
least 10% in either direction to be less than 10”. After Bonferroni-correcting for the 26,871 tests,
the p-value remained less than 107. We further required the allele frequency change at the
locus to be at least four times the average standard deviation of the allele frequency posteriors
assayed in the two compared experiments. This filter for large changes relative to the
uncertainty in the inferred allele frequencies had the effect of discarding regions with low
sequence coverage, usually around subtelomeres and centromeres.

Copy number and missing sequence. We mapped all reads to artificial chromosomes, each
containing exactly one gene with 100 flanking bases, and recorded their average sequencing
coverage every 100 bases. We used that to infer a copy number for each gene as the average
gene coverage normalised by the average sequencing coverage (Table S5). We also mapped
the reads to the assembled contigs from parental sequence data that did not map to the S288c
reference; no large allele frequency changes were observed (data not shown).

Individual allele analysis

Tolerability of mutations. We ran SIFT (Ng and Henikoff 2003; Ng and Henikoff 2006) to
predict the effect of all SNPs in coding regions of 7 genes associated with strong heat
resistance QTLs along the two WA and NA lineages (Table S7). The main idea of SIFT is that a
SNP at an evolutionary conserved locus can affect the function of corresponding protein and
therefore is predicted to be intolerable. The conservation at any locus is measured by the
amount of diversity of amino-acid (AA) bases observed at that locus. The diversity of AA bases
at each locus is represented by a position weight matrix (PWM) that is constructed using an
alignment of protein sequences homologues with the protein of interest. The alignments are
built recursively by searching protein databases (e.g. Uni-Prot Tr-EMBL 39.6 in this case). For
detailed methods of constructing PWMs as well as a number of heuristics used to perform the
predictions by SIFT refer to original paper (Ng and Henikoff 2003).

Signatures of selection. We constructed an alignment of the IRAL gene sequences for the
WA, NA, S288c and S. paradoxus strains and inferred the evolutionary tree (Fig. S4b) for IRA1
using phyML (Guindon and Gascuel 2003). As can be seen from Table S11 no significant
divergence between the WA and the NA lineages indicating significant differences in selection
pressure along these lineages is observed (comparing to what is expected genome-wide, Fig.
1c of reference (Liti et al. 2009)). We further compared the ratio of amino acid replacements to
synonymous polymorphisms in WA lineage to NA lineage, and found no significant difference
(lineage WA=0.48 vs. lineage NA=0.75, P=0.4, Fisher's exact test, see also Table S11).

QTL validation



Reciprocal hemizygosity. We validated that the WA and NA versions of IRAL1 and IRA2 affect
growth in heat by reciprocal hemizygosity (Steinmetz et al. 2002). IRA1 and IRA2 were deleted
individually in the hybrid strain YCC22F using the URA3 gene as a marker (primers listed in
Table S12). Genes were deleted using the standard single-step PCR gene deletion method
(Wach et al. 1994). We genotyped independent transformants using HRM-PCR to determine
which allele was deleted and measured the effect of the hemizygous deletion with different
assays. We performed a temperature growth assay by plating serial dilutions of cells in YPDA
and incubated the plates at 30°C and 40°C for 48 hours (Fig. 4a).

Growth curves. We also measured growth curves (Warringer and Blomberg 2003; Liti et al.
2009) in defined media with amino acids for the parental, hybrid and reciprocal hemizygous
strains at a range of high temperatures (40°C, 40.5°C, 41°C, 41.5°C, 42°C). Growth curves for
each strain were measured in at least 8 replicas, and growth lag, growth rate and growth
efficiency variables were extracted and log(2) transformed as previously described (Warringer
and Blomberg 2003; Liti et al. 2009)

To test for an epistatic interaction between the IRAL and IRA2 WA alleles, we evaluated
the null hypothesis that Xopserved = Xexpected Where Xopsenved 1S the observed generation time
difference between hemizygotes with WA alleles for IRA1 and IRA2 and NA alleles for IRA1 and
IRA2 and where Xeypected IS the corresponding expected generation time difference, given the
generation times of hemizygotes with IRA1 and IRA2 alleles of mixed ancestry and an additive
model for allele interactions. Formally:

Xobserved = YIRA1=WA, IRA2=WA ~ YIRA1=NA, IRA2=NA

Xexpected = (YIRA1:WA, IRA2=NA ~ YIRAl:NA, IRA2:NA) + (YIRAl:NA, IRA2=WA ~ YIRAlzNA, IRA2:NA)-

Y denotes the average of the log(2) transformed generation times of the indicated hemizygotes
at 40°C. Xopservea Was found to be significantly higher than Xexpectea (3.3 fold difference, p < 10%,
two-sided t test), rejecting the null hypothesis and demonstrating an epistatic interaction
between the WA alleles for IRA1 and IRA2 at 40°C.

Competitive growth. Finally, we performed a competition experiment that resembled the
selection regime imposed on the pool and competed the reciprocal hemizygous hybrids against
each other (e.g. for IRA1 naA/WA vs. waA/NA). For each competition experiment, equal
numbers of cells were mixed, a pre-selection sample taken for allele frequency analysis and a
dilution (1/10) plated for selection. Competition was performed at either 30°C or 40°C for 96
hours (with re-plating a 1/10 dilution after 48 hours) and a post-selection sample taken at final
time point of 96 hours. Pyrosequencing was used to assess the allele frequency in the pools
using specific polymorphisms within the IRA genes as a target.

Pyrosequencing

Pyrosequencing (PyroMark24, Qiagen) was used to assess changes in allele frequencies after
selection in pool of segregants derived from different generations (F1, F6, F12 and F18) and
used to infer the allele frequency of 2 strong QTLs (IRA1 and HKR1) and loss of linkage in
nearby regions (Fig. S3). We measured allele frequencies at QTL locus, and 20kb upstream
and downstream the QTL. For visualisation, we calculated the ratio of beneficial allele frequency
at a locus to its frequency at the QTL. We used a biotinylated universal primer (sequences in



Table S13) (Pacey-Miller and Henry 2003) and PCR conditions previously described in (Colella
et al. 2007).

CAMP determination

cAMP determination was performed using TCA to extract metabolites (Nikawa et al. 1987) with
slight modifications as outlined below. Briefly, 2x108 cells (20 ml of culture at an ODggo 0.5) were
pelleted in a cold centrifuge, washed and resuspended in 1 ml cold milliQ-water. Samples for
normalization were withdrawn (ODgoo determination) and subsequently metabolites were
extracted (Gustafsson 1979) by adding 1.2 ml TCA (0.5 M) and occasional vigourous vortexing
while samples were kept on ice for 15 min. TCA was removed by ether extraction. CAMP in the
extracts was determined by the LANCE cAMP 384 kit (Perkin-Elmer, cat# AD0262) according to
instructions from the manufacturer in 40 pl total reactions and by comparing to the standards
supplied. The values for cAMP obtained were normalized to dry weight as obtained from a dry
weight-OD600 standard curve.

Supporting Text

Simulation experiments

We simulated data from a simple generative model to explore the influence of QTL allele
frequency and many rounds of crossing on mapping resolution, sensitivity to detect allele
frequency changes, potential of adaptive mutations to dominate a haploid pool, as well as
effects of more than one allele in haploid and diploid pools. Many aspects of using advanced
intercross lines for trait mapping have been explored in earlier work (Darvasi and Soller 1995).

Influence of QTL allele frequency and number of intercross rounds on mapping
resolution. The mapping resolution depends only on the physical distance corresponding to the
genetic distance, which is determined by local recombination rate. For our purposes, we only
consider recombination events that take place between tracts of sequence from different
parental backgrounds. We observed 30 recombination events on average in 96 F1 segregants,
giving an estimate of 3000 cM = 12 Mb, or 4 Kb per cM. However, as discussed above, the true
correspondence varies considerably across the genome. Assuming independent
recombinations in each generation, the genetic map expands with each intercross round. An x
cM locus in the F1 generation corresponding to K base pairs will correspond to 2K/(n+1) base
pairs in the Fn generation. The additional factor of 2 is due to each recombination in further
(n>1) intercross rounds having a 50% chance of crossing between tracts of material from
different parental background. Thus, by F6, we expect to increase the mapping resolution by a
factor of 3.5 compared to F1, and a factor of 6.5 by F12. However, as we estimate 50% of



recombination events taking place in a small portion of the genome, we estimate the increase in
resolution from F1 to F12 to be closer to a factor of 3.

We simulated data to visualise and quantify this effect for our approach. We considered
a segregant pool selected long enough to reach equilibrium, with allele frequencies no longer
changing. This means the QTL effect size per generation is inconsequential, and we thus
operated with its final allele frequency alone. For simplicity, we assumed the pool before
selection to have 50% NA allele frequency at all loci, and the QTL locus to have NA allele
frequency fg > 0.5.

The NA allele frequency of locus | that is x cM away from the QTL is fl = fq P(even # of
recombinations between | and q) + (1 - fq) P(odd # of recombinations between | and q).
Assuming a standard Poisson model for number of recombinations, and uniform distribution of
the events, we can calculate fl exactly. We considered 500 loci spaced at 0.2cM intervals on
both sides of the QTL (corresponding roughly to a locus every 200 bp in F12, see above), and
calculated fl for each of them. Assuming 80x sequencing coverage (lower of the T2 samples we
use most in the analyses), we then calculated the distribution of the sampled allele frequency at
the locus as f'| ~ Beta(75 fl, 75(1 - fl)). Finally, we used the allele frequency estimation approach
outlined in main text, and calculated the posterior allele frequency in the average case by
combining the sampled allele frequency distributions, which corresponds to calculating a
weighted sum of the parameters of the beta distributions within a 10cM window from each locus.

We considered two aspects of mapping resolution. First, we looked at the total size wi of
the interval that we could detect to be changing more than 10% in allele frequency. Second, we
calculated the length of the peak interval wp we are confident the causative locus lies in. For our
purposes, we defined this to be the length of the region for which the QTL peak allele frequency
change is within one standard deviation of the posterior mean allele frequency of sites in the
region. We calculated wi and wp for QTLs of final allele frequencies of 0.99, 0.9, 0.8 and 0.65
(Fig. S10, Table S14). QTLs with higher fq had larger mapped intervals, but narrower peaks. In
the case of strong QTLs that nearly fix (fg=0.9), the inferred peak interval was 6.6 cM,
corresponding to about 7kb in the F12 cross, or about 35 segregating sites. This is in
concordance with the actual observed mapped interval sizes (median 6.4 kb, Table S4). Higher
sequencing coverage, better inference techniques, and more intercross rounds can narrow the
interval even more.

Sensitivity to detect allele frequency changes. We simulated allele frequency changes of 1-
10% for one locus, and calculated allele frequencies for 500 loci spaced at 0.2 cM intervals
surrounding it as for QTLs. We then sampled 80 alleles at each locus from the calculated fl,
followed by allele frequency inference from the sampled data. We repeated this procedure 1000
times, and estimated the normal distribution of inferred allele frequency changes. For a
simulated change of 5%, we observed 2/1000 estimated changes smaller than 3%. Thus,
extrapolating, we expect to see estimated changes of at least 3% at the 21 QTL loci if the true
allele frequency is changing at least 5% at least 95% of the time. Similarly, we expect to see
estimated changes of at least 5% if the true change is at least 7% at least 95% of the time. We
observed 19/21 QTL loci changing less than 3% in allele frequency between T2 and T3, and two
chancing up to 4%. We thus estimate that for 19 QTLSs, the allele frequency changes are no



larger than 5%, and for the remaining two, no larger than 7%, while the alleles are still at least
15% from fixation.

Adaptive mutations. We provide three lines of computational evidence for lack of new adaptive
mutations with large effect on intercross pool allele frequency during selection.

Firstly, the fithess requirement of adaptive mutations to dominate the pool is too high. A
single adaptive mutation begins at very low initial frequency, f; = 1/N, where we take N, the total
number of segregants in the pool to be 10’. The doubling times for the segregants range from
1.5 hours in permissive condition (or for fit segregants in restrictive condition) to 2 hours for unfit
segregants in restrictive condition. Let us assume the adaptive mutation rises to same
frequency as the total frequency of haplotypes with beneficial alleles at the two loci that reach
fixation - the IRA1 and chrXIll subtelomeric loci (initial frequency fo =1/4) all of which have
doubling times ty ~ 1.5 hours. Over T=288 hours of selection, the following identity must then
hold for the doubling time t; of the adaptive mutation: f, 2™ >=f, 2™, or
t; <= T/(logxfs - logofy + T/tg). Plugging in numbers for f,f,, T, this gives t; <= 1.34 = 0.9 t,. Thus,
in order to rise to appreciable frequencies in the very large pool, the haplotype with the adaptive
mutation must grow 10% faster in restrictive condition than the segregants do in the permissive
condition. If such mutations were possible, they would be more likely to rise during the many
months of intercross rounds, not during the span of four days. However, in this case, the allele,
not the haplotype, will be selected for, as further intercross rounds separate the adaptive
mutation from the haplotype on which it arose.

Dominating adaptive mutations would drive the pool allele frequencies to extremes. In
the very long run, the haplotype with the adaptive mutation will be the only one left in the pool,
as no recombination happens during selection. As the frequency of the adaptive mutation rises
in the pool, the pool loses heterozygosity and genetic complexity, and the frequency of the NA
allele at all segregating loci will be driven to 0 or 1. If a haplotype with an adaptive mutation is
present at high frequency in the pool, we would expect to see an allele frequency change from
the initial pool at all loci towards the genotype of that haplotype, which we do not observe.
Adaptive mutations would continue to rise in frequency after 192 hours. We do not observe
global allele frequency changes after 192 hours. However, as outlined above, haplotypes with
adaptive mutations should continue to rise in frequency in the pool. These three lines of
evidence point to little contribution from adaptive mutations to the final segregant pool allele
frequency makeup. Adaptive mutations for sporulation, mating, or growth can arise during
intercross, and could be traced. However, for QTL mapping, we are conditioning our analysis on
all the segregating sites present in the pool at the beginning of selection, regardless of whether
they were present in the parental strains.

Finally, genotyping 960 segregants at the 19 QTL loci from the selected pool as
described in main text yielded 787 unique haplotypes, with most abundant one represented six
times. To assess the unexpectedness of this result, we created 1000 simulated datasets of the
same size, sampling genotypes at each QTL locus according to its allele frequency. The
average number of unique haplotypes per simulated dataset was 786, and 631 of 1000 (63%) of
the datasets had at least one haplotype represented at least six times. Thus, our observations
are consistent with the null model of no loss of complexity or overrepresentation of a single
haplotype.



Effects of selection on allele frequency. We simulated allele frequency changes under simple
assumptions for various scenarios. While standard (e.g. (Hartl and G. 2007)), the results give
intuition for allele frequency changes observed.

Haploid individuals. We fixed the initial allele frequency of any locus to be 0.5 for simplicity,
and calculated its change over generations in a deterministic way. For a one locus trait, the
individuals with genotype '1' were assumed to have a fitness advantage s, which changed the
rate at which they survived to the next generation, with the frequency fi; of locus | at generation t
was taken to be

(A + S)fia/ (A + S)firr + (1- fir1)) = (L+S)/(1+sf 11)fira. If S > 0, fincreases, and if s <0, it
decreases in a near-geometric manner. For these one locus haploid pools, the beneficial allele
asymptotically approaches fixation, with the speed depending on the magnitude of the selection
coefficient (Fig. S11).

In case two loci are contributing, the calculation remains almost unchanged, but now the
effect of selection is assumed to act only on the '11' genotype. In this case, if s > 0, the
haplotypes with '11' genotype are fitter than the others, and again are driven to fixation.
However, if s < 0, the '11' genotype is selected against, and will be purged from the pool in the
long run. Both alleles will still be present at each locus (Fig. S11a). We hypothesize such
interactions within a chromosome to be responsible for the lack of fixation upon ~40 generations
of selection. The usual intuition behind this is that fithess depends on functioning of a specific
pathway. While any single mutation does not alter the functionality of the pathway, there are
many possible combinations of genotypes that render it defective. These combinations are
selected against, producing a change in allele frequency, but not fixation of any allele.

Diploid individuals. As the diploid individuals propagate clonally just like haploids, we have to
trace the frequency of the genotypes, not alleles, since there is no further mixing of the
haplotypes between individuals. We can treat a one locus trait in diploids, identically to a two-
locus trait in haploids, and find that for traits where the beneficial allele behaves in an additive or
recessive way, selection drives the frequency of beneficial allele to fixation, and for dominant
beneficial alleles, the homozygous non-beneficial allele combination is selected against (Fig.
S11b). We observed QTLs with final allele frequencies as well as their speed of change
consistent with both recessive (IRA1) and dominant (chrXIIl subtelomere) beneficial alleles
(main text). However, when the QTL acts in an additive manner, the allele frequency change is
identical to that of the haploid pool.

If interaction effects are responsible for the allele frequency change, the effect can again
be dominant, additive, or recessive. The differences to a one-locus model are slower effect of
selection, as the fittest haplotype has lower initial frequency, and less extreme final allele
frequency in case the interaction effect is dominant, as there are less genotype combinations
selected against (Fig. S11b).



The RAS signalling pathway regulates quantitative growth at high
temperature

Of the 19 QTLs we mapped here, we have validated three with large effect size. We
previously mapped and validated the QTL present in the subtelomeric region of chromosome
X1l (Cubillos et al. 2011). Due to the difficulty of assembling the subtelomeres, we are unable to
characterise this high temperature growth QTL. The only other QTL that reached fixation was
the GTPase activating protein IRA1, a negative regulator of the RAS signalling pathway,
containing some of the most prominent human oncogenes (Tanaka et al. 1989). Interestingly,
additional genes of the Ras/cAMP/PKA pathway pathway were contained in intervals with sharp
increases in NA allele frequencies (Fig. 4C). IRA1 and IRA2 are of specific interest as they are
highly conserved orthologs of the human disease gene NF1 (Ballester et al. 1990), which
causes neurofibromatosis type 1, and as mutations in patients with neurofibromatosis also have
similar detrimental effects on the yeast Iralp activity (Gil and Seeling 1999). Thus, we validated
by reciprocal hemizygosity (Steinmetz et al. 2002) that the naturally evolved IRAL1 and IRA2
alleles indeed affect high temperature mitotic growth (Fig. 4 and Fig. S5a-b). These genes affect
both growth rate (population doubling time) and efficiency (change in population density) with
IRA1L having a stronger effect compared to IRA2, consistent with their strength as inferred by the
final allele frequency (Fig. S5a-b). The effect was restricted to a surprisingly narrow temperature
range, peaking at 41°C, but with no effect at 42°C, reflecting an extremely fine-tuned gene-by-
environment interaction and emphasizing the need for high resolution phenotyping in QTL
analysis.

We tested the idea that the IRA polymorphisms in the WA lineage are pleiotropic at
multiple environmental conditions. We measured growth curves of four replicas in five
conditions (caffeine 2.25 mg/ml, paraquat 400ug/ml, ethanol 7%, DTT 1.8 mM, 1.5 pug/ml). The
conditions were selected from previous high throughput screening in the S. cerevisiae deletion
collection mutants showing an effect of the IRA deletions compared to the wild type.
Interestingly, the West African IRA alleles do not have pleiotropic consequences, even at
environmental conditions where a compromised RAS activity has been reported to have strong
phenotypic consequences (Park et al. 2005) (Fig. S5c). Our results indicate that the growth
defect due to IRA1 and IRA2 WA alleles is specific to high temperature.

To experimentally investigate the IRA1 and IRA2 interactions, we constructed the four
possible reciprocal hemizygous combinations of their alleles (Table S1). Growth curve analyses
indicated a strong negative epistatic interaction between the WA alleles (Fig S6) consistent with
a partially redundant role of the Ira gene products. We then measured the internal level of cCAMP
in the parental strains and the double reciprocal hemizygous deletion strains, and detected a
1.6-fold higher level in the WA compared to the NA strain consistent with its RAS hyperactivity.
This difference is similar to the difference in basal CAMP levels between the ras24 and the WT
in mid-exponential phase and in the laboratory strain BY (Caballero et al, manuscript
submitted). Importantly, we also detected a 9-fold difference in CAMP level between the hybrid
carrying the WA alleles of the Ira genes compared to hybrid carrying the NA alleles when cells
were grown at high temperature (Fig. 4C) but not at a permissive temperature. These data are
consistent with the WA versions of Iral and Ira2 becoming defective at high temperature and
leading to high cAMP levels and PKA activity and explain the lack of pleiotropy at other



conditions at permissive temperature. The clear identification of the IRA1 and IRA2 alleles as a
cause of low performance at high temperatures show that our method can directly map
causative genes without any a priori information and without requiring further fine-mapping.

Computational analyses of IRA1 and IRA2 alleles

The strongest predictions for genes identified in the large effect size heat resistance QTL
regions are presented in Table S7. For the QTL of interest, IRAL, the predictions by SIFT sorted
by scores of intolerance are presented in Table S8. It can be seen from this table and Fig. S4A
that the strongest prediction corresponding to the SNP in the WA lineage at IRA1-Chrll:522887
(G to A) is located in a well-conserved locus IRA1p-1246. By aligning IRA1 to IRA2 and NF1 in
human and Drosophila we found that our mutation of interest (IRA1p:1246) mapped in a highly
conserved region of the alignment in all homologues (not shown).

To investigate the evolutionary history of the QTL IRA1 we constructed an evolutionary
tree of the gene consisting of WA, NA, S288c, and S. paradoxus as the outgroup (Fig. S4B). We
did not observe any significant evidence of change in selection between WA and NA lineages
compared to what is expected genome-wide (11). Furthermore, we compared the ratio of amino
acid replacement to synonymous polymorphism in WA lineage to NA lineage, and found no
significant difference (lineage WA=0.48 vs. lineage NA=0.75, P=0.4, Fisher's exact test), which
supported this observation (Fisher's exact test with p-value=0.446, Table S11).

Selection during intercross rounds

We further investigated the regions in chromosome | (30-50 kb) and chromosome V (110-
180kb)) selected during the F1 to F6 intercross rounds and tested if they harbour sporulation
efficiency QTLs. We used 40 F1 segregants from the WA x NA cross described in (Cubillos et
al. 2011) and backcrossed them to the WA parental strain. We sporulated the cells in KAc for
five days and calculated the percentage of sporulating cells by counting at least 200 cells for
each sample in duplicate. We found a strong effect on sporulation efficiency for the
chromosome V maker YND1 (position 160kb). The sporulation average for segregants carrying
the YND1 heterozygous marker (A/W) was 43% compared to the 21% detected in the
homozygous (W/W). This difference is highly significant (p < 0.005, t test for unpaired data with
unequal variance) and is consistent with the presence of a previously uncharacterised slow
sporulation QTL present in the WA lineage that contributes to the low sporulation efficiency
described in the WA strain (Cubillos et al. 2009) and results in strong selection for the NA
version of this chromosome V locus during the intercross.



Supplementary Figures

Fig. S1. Intercross strategy.

Strategy used to generate advanced intercross lines. Description of the product and the action
for each step are indicated on the left and the right side respectively. Each round of intercross
requires approximately two weeks.

Fig. S2. Allele frequency after paraquat selection

WA allele frequencies of the whole genome for one pool subjected to heat and paraquat stress
for 192 hours (T2) compared to the control experiment.

Fig. S3. Loss of linkage upon several rounds of intercross assayed by
pyrosequencing.

Increased recombination frequency results in loss of linkage between QTLs and nearby loci,
and resulted in narrower mapped QTL peaks. Allele frequency was measured at three positions
(-20, 0 and 20Kb) for two strong QTLs. The relative abundance of beneficial allele is the ratio of
beneficial allele frequency at genotyped locus (e.g. +20kb) and the beneficial allele frequency at
QTL site.

Fig. S4. Bioinformatics analysis of IRAl

a. A logo representation of position weight matrix (PWM) constructed based on an alignment of
proteins homologous to Iral used by SIFT to perform the prediction. The alanine 1246 in Iralp
is well-conserved and a SNP in the WA lineage (A to S) is predicted to be intolerable.

b. Evolutionary tree constructed for IRAL gene in the WA, NA, the reference and S. paradoxus
as outgroup. No significant divergence between WA and NA lineages is observed compared to
what is expected genome-wide (see(Liti et al. 2009), Fig. 1c).

Fig. S5. Growth curves for IRA1 and IRA2 reciprocal hemizygotes.

a-b. Growth curves in a show a difference in growth between WA and NA strains (left plot) and
a temperature dependent effect of hemizygous knockouts of IRA1 (center plot) and IRA2 (right
plot) from the WA/NA hybrid on growth with maximum final OD difference at 41-41.5°C.
Interestingly, both panel a and b also indicate haploisufficiency of IRA2 showing the WA allele
still contributing to the heat phenotype in the hybrid. Growth rate and efficiency values show in b
were extracted from growth curves show in a.

c. Growth defect of WA IRA1 and IRA2 alleles is specific to high temperature. The graphs show
average doubling time (growth rate) of four replicas in five conditions for which deletions of IRA



genes had an effect compared to the wild type in screening the S. cerevisiae deletion collection
mutants.

Fig. S6. Phenotypic analysis of double reciprocal hemizygotes of IRA1
and IRA2 alleles.

A. Average doubling time of 20 IRA1/2 double hemizygotes grown at 40°C. The double
hemizygote IRA1 WA/IRA2 WA grows significantly slower (p < 10, two-sided t-test with
unequal variance) than each of IRAL WA/IRA2 NA (23% slower), IRA1 NA/IRA2 WA (21%
slower) and IRA1 NA/IRA2 NA (26% slower).

B. Doubling time defect of IRAL1 WA/IRA2 WA compared to multiplicative expectation indicate
strong negative epistatic interaction between the WA alleles.

Fig. S7. Summaries of allele frequency changes between consecutive
timepoints.

Histogram (left column) and scatterplot (middle column) of changes in inferred allele frequency
between control experiment and initial pool (first row), control experiment and first timepoint (T1)
of heat selection (second row), T2 and T1 of heat selection (third row) and T3 and T2 of heat
selection (last row). Right column shows histograms of allele frequency changes relative to the
average standard deviation of the compared posteriors between the same set of samples. All
data are from replica 2.

Fig. S8. Comparison of alternative assays for allele frequency
estimation.

Every marker corresponds to the WA allele frequency of one QTL locus after heat stress
measured by genotyping (y-axis) or sequencing (x-axis) in first replica (blue) or second replica
(green). Sequencing allele frequencies are taken from timepoint T2 for both replicas. Genotyped
allele frequencies for replica 1 are assayed from 96 segregants genotyped at 11 loci, and for
replica 2 from 960 segregants genotyped at 24 loci (Dataset 2). Genotypes from sequencing
data were inferred using a smoothing approach, which underestimates the extremity of the allele
frequencies, and explains the difference between genotyping and sequencing-derived estimates
at low WA allele frequencies.

Fig. S9. Control experiment allele frequency change summaries.

QQ plot (left panel) and histogram with a normal distribution fit (matching sample mean and
standard deviation, red line) of allele frequency changes between control experiment T2 and
initial pool. Sites from subtelomeric regions (up to 30kb from chromosome end) are excluded



due to repetitive nature of the regions resulting in low sequencing coverage and high variance
posterior allele frequencies.

Fig. S10. Mapping resolution for simulated QTL peaks.

Mapping resolution, quantified by the width wp of the inferred peak in cM (see text above), for
QTLs with different final allele frequencies fq. The thin line corresponds to the mean inferred
allele frequency, dashed line to mean + one standard deviation, thick line to the region with
allele frequency change from 50% above 10%, and the thickest line to the mapped QTL region.
Dashed black line shows the 10% change cutoff.

Fig. S11. Changes in allele frequency in simulated data.

Haploid (solid lines) and diploid (dashed lines) pool allele frequency changes for 1-locus (a) and
2-locus effects (b). Initial allele frequency of a locus is 0.6. Individual lines correspond to
different fitness modifiers (see Supporting Text), from top to bottom: +1, +0.3, +0.1, +0.03, -
0.03, -0.3, -1.

Dataset 1

Genotypes of three regions for 96 segregants from each of F6, F12, and F18 generations
isolated before selection to assess increase in segregants recombinant in the regions using
HRM PCR.

Dataset 2

Genotypes for 960 individual segregants isolated after heat selection (T2.5) genotyped for 19
QTLs using the Sequenom platform and 96 segregants isolated at T3.5 genotyped for 11 QTLs
using HRM PCR.

Dataset 3

Allele frequencies for different timepoints, cross generations, and ploidies for the 21 QTLs
detected. Each window corresponds to 80kb, centered on the variant with the largest change in
frequency. See Fig. 3d for details on legend. Top panel — haploid timepoints; middle panel — F6
and F12 generations; bottom panel — haploid and diploid pools. Dashed lines indicate
boundaries for the inferred QTL region.



Supporting Tables

Supplementary Table 1. Strains used.

Name Derived from Genotype and notes Ref.
YPS128 Wild type isolate Isolated in Pennsylvania (1999) by P. Sniegowski from soll (Sniegowski et al. 2002)
beneath Quercus alba.
DBVPG6044 |  Wild type isolate Isolated in West Africa (pre-1914) by A. Guilliermond from (Liti et al. 2005)
bili wine from Osbeckia grandiflora
NCYC3607 YPS128 Mat a, ura3::KanMX4, ho::HphMX4 (Cubillos et al. 2009)
NCYC3625 DBVPG6044 Mat «, ura3::KanMX4, ho::HphMX4 (Cubillos et al. 2009)
YFCL1 DBVPG6044 Mat ¢, ura3::KanMX4, ho::HphMX4, lys2::URA3 (Cubillos et al. 2009)
F1 Hybrid: NCYC3607 | Mat a/q, ura3::KanMX4/ura3::KanMX4, -
CC35 x YFCL1 ho::HphMX4/ho::HphMX4, LYS2/lys2::URA3 This study
F1 Hybrid: NCYC3607 | Mat a/q, ura3::KanMX4/ura3::KanMX4, .
YCC22F X YFC3625 ho::HphMX4/ho::HphMX4 (Cubilios et al. 2011)
F1 Hybrid NCYC3607 x | Mat a/e, ura3::KanMX4/ura3::KanMX4, .
YCC23F YFC3625 ho::HphMX4/ho::HphMX4 (Cubilios et al. 2011)
Mat a/e, ura3::KanMX4/ura3::KanMX4, .
YFCRH101 YCC22F ho::HphMX4/ho::HphMX4, iral(na)::URA3/IRAL(WA) This study
Mat a/e, ura3::KanMX4/ura3::KanMX4, .
YFCRH102 YCC22F ho::HphMX4/ho::HphMX4, iral(wa)::URA3/IRAL(NA) This study
Mat a/¢, ura3::KanMX4/ura3::KanMX4, .
YFCRH103 YCC22F ho::HphMX4/ho::HphMX4, ira2(na)::URA3/IRA2(WA) This study
Mat a/¢, ura3::KanMX4/ura3::KanMX4, .
YFCRH104 YCC22F ho::HphMX4/ho::HphMX4, ira2(wa)::URA3/IRA2(NA) This study
Mat a/a, ura3::KanMX4/ura3::KanMX4,
YFCRH117 YFCRH101 ho::HphMX4/ho::HphMX4, iral(na)::URA3/IRA1(WA), This study
ira2(na)::NatMX/IRA2(WA)
Mat a/e, ura3::KanMX4/ura3::KanMX4,
YFCRH118 YFCRH102 ho::HphMX4/ho::HphMX4, iral(wa)::URA3/IRAL(NA), This study
ira2(na)::NatMX/IRA2(WA)
Mat a/e, ura3::KanMX4/ura3::KanMX4,
YFCRH119 YFCRH102 ho::HphMX4/ho::HphMX4, iral(wa)::URAS3/IRAL1(NA), This study
ira2(wa)::NatMX/IRA2(NA)
Mat a/¢, ura3::KanMX4/ura3::KanMX4,
YFCRH120 YFCRH104 ho::HphMX4/ho::HphMX4, iral(na)::NatMX/IRA1(WA), This study

ira2(wa)::URA3/IRA2(NA)




Supplementary Table 2. Regions selected for during rounds 6-12 of
the intercross.

Combined
chr, f allele Region Region Region Number_ of Region
Location requency start end length genesin genes
change (bp) (bp) (bp) region
(R1 +R2)
2, 132336 0.23 81134 187145 106011 68
2, 475979 0.38 469724 477009 7285 3 LYS2, YBR116C, TKL2
4, 408754 0.34 400287 420414 20127 13
4, 469197 0.39 433335 527824 94489 51
MAK21, YDRO61W,
4, 573669 0.56 570208 579573 9365 5 LCB2, YDR063W, RPS13
4, 709767 -0.37 703851 817213 113362 52
UPC2, AHA1, YDR215C,
4, 892054 0.25 890414 895198 4784 4 ADR1
LCD1, RPL37B, PLM2,
SAM2, LPP1, SPG3,
4, 1452475 -0.27 1449398 1459253 9855 7 PSP1
YELO68C, YELO67C,
5, 26206 -0.21 25590 28600 3010 4 HPA3, SIT1
CCH1, CRM1, YGR219W,
7, 934217 0.22 928940 939704 10764 5 MRPLY, TOS2
8, 57903 0.27 55475 62378 6903 3 SNF6, RIM4, RMD11
8, 256539 0.32 249529 280866 31337 15
9, 79354 0.3 76340 90209 13869 10
APL1, YIJRO05C-A,
10, 451935 0.26 444889 453307 8418 5 POL31, SUI2, YJRO08W
10, 604363 0.46 600041 618895 18854 11
12, 391582 -0.4 387520 583104 195584 122
12, 912538 -0.28 895661 921060 25399 15
YLR419W, URA4,
12, 970723 -0.35 959600 971646 12046 4 RPN13, YLR422W
14, 41217 0.28 16112 50093 33981 21
IRA2, REX4, YOLO79W,
15, 178731 0.45 174849 183754 8905 4 AVO1
15, 234578 -0.27 66457 244782 178325 98
15, 571166 -0.33 567019 601747 34728 15




Supplementary Table 3. Average sequencing coverage of analysed

samples.
Average SRA
Sample Generation | Replica Type Ploidy Condition Timepoint coverage at | Accession
segregating number
sites
Initial R1 F6 TO 6 1 Pool Haploid | Permissive 0 23.8 ERS002654
Initial R2_F6_TO 6 2 Pool Haploid | Permissive 0 13.1 ERS002657
Heat R1_F6_T2 6 1 Pool Haploid | Heat 40C 2 19.3 ERS002655
Heat R2 F6 T2 6 2 Pool Haploid | Heat 40C 2 25.7 ERS002658
Initial R1 F6 S1 6 1 Segregant | Haploid | Permissive 0 20.3 ERS002656
Initial_R2_F6_S1 6 2 Segregant | Haploid | Permissive 0 27.4 ERS002659
Mock R1 F12 T2 12 1 Pool Haploid | Permissive 2 1154 ERS018247
Heat R1_F12_T2 12 1 Pool Haploid | Heat 40C 2 129.3 ERS018248
Mock R2 F12 T2 12 2 Pool Haploid | Permissive 2 105.7 ERS018249
Initial R2 F12 TO 12 2 Pool Haploid | Permissive 0 107.3 ERS018250
Heat R2 F12 T1 12 2 Pool Haploid | Heat 40C 1 54.8 ERS018251
Heat R2 F12 T2 12 2 Pool Haploid | Heat 40C 2 83.7 ERS018252
Heat R2_F12 T3 12 2 Pool Haploid | Heat 40C 3 65.9 ERS018253
Diploid- . ERS018255
heat R2 F12 T3 12 2 Pool Diploid Heat 40C 3 32.6
Diploid- S ERS018256
heat R1 E12 T2 12 1 Pool Diploid Heat 40C 2 88.6
Paraquat- 12 1 Pool Haploid | Paraquat 2 150 ERS018258

RL F12 T2




Supplementary Table 4. Regions selected for upon heat selection for
F12 pool after 96h.

Combined
Chr, allele Region Region Region Number Region
Location frequency start end length _of genes genes
change (R1 + (bp) (bp) (bp) in region
R2)
YALO18C, PSK1, YALO16C-B,
1,119382 0.34 118724 125287 6563 5 YALO16C-A, TPD3
2,519399 -0.7 515930 522327 6397 2 YBR139W, IRAl
MAF1, SOK1, TRP1, YDROO8C,
4, 461085 -0.33 457812 463886 6074 5 GAL3
4, 802325 0.22 797088 805655 8567 1 SEC7
4,1050116 -0.23 1046548 1051757 5209 2 SSD1, DPL1
4, 1307579 0.44 1305616 1314837 9221 2 HKR1, ARO80
CCA1, RPH1, ADK2, RAD3,
5, 526677 -0.27 522500 536992 14492 7 BRR2, YER172C-A, RAD24
LOC1, NIC96, YPI1, RPN11,
6, 150543 -0.27 148802 154639 5837 5 SAD1
7, 127600 0.32 125071 135730 10659 3 MDS3, DSD1, GCN1
7, 858516 0.88 856677 859960 3283 4 TIM13, YGR182C, QCR9, UBR1
CST6, CKAL, CAP2, BCY1,
9, 292345 -0.35 287155 295587 8432 7 YIL032C, ULP2, YILO30W-A
10, 238929 -0.45 235471 240115 4644 3 GSH1, LSB6, CHS6
YJLOO9W, CCTS8, YJLOO7C,
10, 423960 -0.48 420008 425480 5472 5 CTK2, CYR1
YLLOO7C, YLLOO6W-A, MMML,
12, 137312 0.41 134931 140165 5234 4 SPO75
12, 735715 -0.34 733797 737572 3775 2 MET17, ACO1
BCH1, DFG5, RNT1, CUS1,
13, 749977 -0.32 743628 753953 10325 6 YHM2, RPL20A
13, 895955 -0.59 891318 898276 6958 4 PSE1, NIP1, YMR310C, GLC8
EOS1, TPM1, NIS1, APJ1, MKS1,
14, 480653 0.54 476889 485871 8982 6 IMP4
14, 685970 -0.22 683792 688334 4542 4 SSK2, PPG1, HUB1, ABZ1
15, 182170 -1.31 176359 183754 7395 4 IRA2, REX4, YOLO79W, AVO1
15, 1031113 -0.8 1028004 1032237 4233 4 RAD17, RPS12, MRS6, GPB1




Supplementary Table 5. Copy nhumber variable genes upon heat
selection.

Gene F12 T2 copy number F12 TO copy number Change TO-T2
Q0045 0.4 36.5 -36.1
Q0250 2 37 -35
Q0255 1.7 36.1 -34.4
Q0060 0.3 31.9 -31.6
Q0115 12 32 -30.8
Q0275 1.8 32.3 -30.5
Q0105 33 32.8 -29.5
Q0050 0.2 27.7 -27.5
Q0120 1.6 28.3 -26.7
Q0070 0.2 26 -25.8
Q0085 1.9 26.1 -24.2
Q0065 0.2 22 -21.8
Q0182 0.7 18.3 -17.6
Q0032 0.9 12.3 -11.4
Q0142 0.3 11.3 -11
YLR162W 44.5 55.4 -10.9
Q0140 33 13.2 -9.9
Q0130 2.7 11.4 -8.7
Q0144 2.2 10.8 -8.6
Q0143 0.7 7.9 -7.2
Q0080 0.1 6.2 -6.1
YDR366C 11.5 17.6 -6.1
Q0110 0.7 6 -5.3
Q0010 13.7 18 -4.3
Q0092 0 35 -3.5
Q0017 0.1 25 -2.4
YELO74W 4.1 5.9 -1.8
YIR044C 1.1 2.9 -1.8
YIL174W 0.7 1.9 -1.2
YJL225C 2.1 3.3 -1.2
YNL337W 1.6 2.8 -1.2
YOL166C 1.6 2.8 -1.2
YHR216W 34 4.4 -1
YLR465C 2.6 0.9 17
YDR340W 8.3 3.9 4.4




Supplementary Table 6. Allele frequencies at QTL loci during

selection.
DipHeat DipHeat Paraquat
Initial Mock Heat Heat Heat R2 R2 Mock Heat R1
R2F12 | R2F12 | R2F12 | R2F12 | R2F12 F12 F12 | R1F12 | R1F12 F12
Chr | Location TO T2 Tl T2 T3 T2 T3 T2 T2 T2
1 119382 53.7 52.6 63.2 70.6 715 57.5 60.8 48 64 42.1
2 519399 36.2 37.1 15.7 0.3 1.2 18.3 2.1 33.7 0.6 39
4 461085 84.1 84 75.9 66.2 64.8 70.8 53.9 71.8 56.3 59.5
4 802325 34.1 32.5 41.1 44 46.1 39.9 54.2 40.9 514 51.6
4 | 1050116 38.4 37.7 31 25.3 25 345 27.3 375 26.5 33.9
4 | 1307579 43 42.3 52.5 63.7 65.8 50.7 65.3 40.8 63 33
5 526677 54.9 56.8 54.5 41.3 42.1 47.4 32.2 50 38.3 41.4
6 150543 60.5 64 59.7 49.4 48.5 52.7 40.6 56.8 44.2 56.9
7 127600 39 39.1 45.4 54.3 58.3 38.7 44 37.7 54.7 51.1
7 858516 43.1 43 67.1 86.2 86.3 63.9 86.5 40.6 85 38.5
9 292345 59.8 62.7 53 40.4 40.9 50.5 35.7 51.5 38.9 38.4
10 238929 58.7 60.5 48 35 34.6 43.8 28.2 47.2 27.8 45.5
10 423960 65.8 68.7 58.1 43.9 43.2 57.1 44.8 71.8 48.2 72.3
12 137312 35 35.4 43.6 58.2 56.2 43.3 54.9 37.9 56.4 29.3
12 735715 39.6 42.8 35.5 23.3 25.6 32.6 22.9 38.2 23.6 36.7
13 749977 43.1 45.8 38.3 31.2 33.9 36 25.2 49 32 44.3
13 895955 27.9 27.6 5.5 1.6 2.9 25 10.6 35.1 2.1 23.6
14 480653 46.9 47 60.6 715 74.8 61.3 81.7 40.4 69.4 50.8
14 685970 39.2 38.9 37.1 28.6 29.2 40.2 36.8 48 36.8 46.5
15 182170 85 87.8 60.3 17.2 16 58.2 17.7 775 16.7 67.1
15| 1031113 62.2 61.9 40.3 19.3 214 41.3 18.5 58.3 20.4 51.8




Supplementary Table 7. Top SIFT scores for 7 strongest QTLSs.

Gene | QTL region i Ref | DBVPG6044 | YPS128 | Protein | Ref (S288c) | DBVPG6044 | YPS128
ocus (S288c) (WA) (NA) locus AA (WA) AA (NA) AA

GPB2 | Chri36-49kb | 40524 A T . 422 K | .

RA1 | CTSLE 522887 G T 1246 A s

HKR1 Chlrfls\{zlige;- precri\:gtion

Gpaz | ChIV O3 196109 A G 315 T A

GsH1 | X229 235664 c T 230 s F

GPB1 Chrl)é\sl71k%32' 1031596 C A 862 T N

Rz | XY 208 | 172081 G c 338 A p

Strongest predictions by SIFT for 7 well-characterized genes associated with heat resistance

QTL regions. All the predictions are associated with SNPs in WA lineage. "." means equal to

S288c reference.




Supplementary Table 8. SIFT analysis of IRA1 non-synonymous
variants.

Chrll Ref DBVPG6044 | YPS128 | Protein (S?Se;c) DBVPG6044 | YPS128 | SIFT | Tolerable-

locus (S288c) (WA) (NA) locus AA (WA) AA (NA) AA | score | Intolerable
522887 G T G 1246 A S . 0 Intolerable
517820 G A G 2935 \% M 0.01 | Intolerable
518671 T C T 2651 \% A 0.02 | Intolerable
520745 T A T 1960 F I 0.18 Tolerable
520381 T C T 2081 \% A . 0.18 Tolerable
523279 T . C 1115 L . P 0.19 Tolerable
520334 A G A 2097 | V 0.19 Tolerable
520084 G C G 2180 G A 0.19 Tolerable
520246 G A G 2126 S N 0.25 Tolerable
518563 C T C 2687 A V 0.27 Tolerable
524465 G A G 720 A T 0.31 Tolerable
524102 G . A 841 D . N 0.35 Tolerable
522736 C T 1296 S L 0.39 Tolerable
523094 G A 1177 A T 0.4 Tolerable
521572 T C 1684 | T 0.49 Tolerable
521279 A G 1782 | \ 0.64 Tolerable
517394 G A 3077 E K 0.68 Tolerable
524309 C T 772 P S 0.72 Tolerable
519853 A G . 2257 N S . 0.8 Tolerable
526588 T . C 12 F . S 0.84 Tolerable
520667 A G 1986 N D 0.86 Tolerable
521896 G C 1576 S T 0.95 Tolerable
519341 G A . 2428 \% I . 1 Tolerable
526602 A . T 7 Q . H ? ?
525205 C T . 473 T | . ? ?
525008 G A . 539 A T ? ?

Predictions by SIFT for the QTL IRAL. "." means equal to S288c reference.




Supplementary Table 9. Most significant 2-locus interactions.

Bonferroni- FDR at
nominal p | corrected p cutoff WA/WA | NA/WA WA/NA NA/NA | Locus 1 Locus 2
0.0007 0.116 0.116 98 177 156 484 | chrl0 235663 chrl2 730764
0.0024 0.398 0.199 5 153 83 697 | chrl5 1032447 chrl5 172081
0.0026 0.433 0.144 155 250 250 267 | chr7 131690 chrl2 140165

Interaction p-value was calculated using two-sided Fisher’s exact test in R (function
fisher.test), on the two-locus genotype frequencies from 960 segregants (Dataset 2) as
described in Sl. Bonferroni-corrected p-value (166 tests), and false discovery rate (FDR)
using the nominal p-value as a cutoff are given, along with genotype frequencies. No
other interactions are significant at 0.3 FDR.




Supplementary Table 10. Sequencing primers used in the multiplexed
library creation.

Primer Name Sequence (5’-3))

inoPCR_B1 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCATCACGTTATCTCGTATGCCGTCTTCTGCTT*G
inoPCR_B2 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCCGATGTTTATCTCGTATGCCGTCTTCTGCTT*G
inoPCR B3 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCTTAGGCATATCTCGTATGCCGTCTTCTGCTT*G
inoPCR_B4 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCTGACCACTATCTCGTATGCCGTCTTCTGCTT*G
inoPCR_B5 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCACAGTGGTATCTCGTATGCCGTCTTCTGCTT*G
inoPCR_B6 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGCCAATGTATCTCGTATGCCGTCTTCTGCTT*G
inoPCR_B7 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCCAGATCTGATCTCGTATGCCGTCTTCTGCTT*G
inoPCR B8 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCACTTGATGATCTCGTATGCCGTCTTCTGCTT*G
inoPCR_B9 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGATCAGCGATCTCGTATGCCGTCTTCTGCTT*G
inoPCR_B10 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCTAGCTTGTATCTCGTATGCCGTCTTCTGCTT*G
inoPCR_B11 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGGCTACAGATCTCGTATGCCGTCTTCTGCTT*G

inoPCR_B12

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCCTTGTACTATCTCGTATGCCGTCTTCTGCTT*G




Supplementary Table 11. Synonymous and non-synonymous
polymorphisms in IRAL.

Strain Ka Ks Ka/Ks
S. paradoxus 152 707 0.21
S288c 6 4 15
DBVPG6044 (WA) 14 29 0.48
YPS128 (NA) 3 4 0.75

Synonymous and non-synonymous polymorphism data between S288c, DBVPG6044 (WA) and
YPS128 (NA) lineage and their outgroup S. paradoxus. No significant divergence between WA
and NA lineages is observed from the Ka/Ks ratios.



Supplementary Table 12. Primers used for IRA1 and IRA2 deletion.

Primer name

Target
coordinates

Sequence (TARGET, BARCODE, ura3)

IRA1-FW-YPS128

517266-517344

CAACAAATATAAAACAAAATATAATTATAAGGAAAAACGTATATAATCACTGCA
ATACTCTAATTTAAAATGGACT Cagctittcaattcaattcatcat

IRA1 FW1- 517266-517344 CAACAAATATAAAACAAAATATAATTATAAGGAAAAACGTATATAATCACTGCA
DBVPG6044 ATACTCTAATTTAAAATCACTCGagcttttcaattcaattcatcat
IRAL-RV 526622-526702 TTTTGCCCTGCAAATAGAGCTTCAAACTTAACATTCTTCTTCAGCATATAACAT

ACAACAAGATTAAGGCTCTTTCTAAAAagctttttctttccaatt

IRA2-FW-YPS128

171000-171070

TTTCCCCCAACGTTACACCATTTTTTGATATCAACTAAACTGTATACATTATCT
TTCTTCAGGGAGAAGCAGGACT Cagcttttcaattcaattcatcat

IRA2-FW- 171000-171070 TTTCCCCCAACGTTACACCATTTTTTGATATCAACTAAACTGTATACATTATCT
DBVPG6044 TTCTTCAGGGAGAAGCACACTCGagcttttcaattcaattcatcat
IRA2-RV1 180309-180389 AGAAAACCCTAACATGAGATATGTACATTCATGCTTACAGATAGATATTGATA

TTTCTTTCATTAGTTTATGTAACACCT Cagctttttctttccaatt

Sequence coordinates for chromosome Il (IRA1) and XV (IRA2) are based on the S288c¢
genome from the SGD database. The target sequence in the primers is shown in upper case,
the unique sequence tag used for the real time PCR is underlined and the sequence that
amplifies the selectable marker (URA3) is in lower case.




Supplementary Table 13. Primers used for pyrosequencing.

Chr Kb Forward primer Reverse Primer Sequencing primer
I 497 CTTTTCTGTT'/I;‘C/ZACAGAGATTTC GCCCCCGCg(é(_}r$$é¢$'cl;GAAAAAATC TCTATATCTGAATTTGAACTAGTA
I 517 GCCEE((:Z_SF(;\CGI%% (/i'l(;(_}r/_?gXCTG TTGTTACTTGAAGTCGGCTTCG GGTACCTTTAA::\TAATACACTAAA
I | s38 | COCCCTEEEES ISASTTCAG TGCGTGCATTCTACCCTTTGA GCTCTTCCTCCCAAGATA
v | 1286 ACCTTGGGAA_Cr:ATCGGACTAT GCCCCCG‘?E:C?ACGAJ%AA%&F CGTGTTA GTGTTGGTTTTTCACAAT
\Y 1306 TTAGTCACAATCCGAAGTCCG GCCCCCGCCCCG GG GTAA'I? g GCTGAACTAT CAGATAGCGATACAACCT
Y, 1321 CCGGTGGCAAAAAGTAAGAACA GCCCCCGCC(_:r(_Br_?CC;Ig_(r:AACTGTTTGCTT AAAAGCTAGACCTAGATTGA
XV 171 CGATTTATCA('BI'(T:GCCTACTTTT GCCCCCGCSSSEEACC?;I_AGCCATTAT CATTACAGCGCCAAA




Supplementary Table 14. QTL mapping resolution for simulated data.

fq 0.99 0.9 0.8 0.65
wi (cM) 159.6 139.2 1104 | 412
wp (cM) | 4.8 6.6 8.4 12.8

The influence of the final allele frequency fq on the mapping resolution quantified by the width of
the interval inferred to be changing in allele frequency (wi), and the width of the QTL peak (wp).
See Supporting Text for details on the simulation procedure. To give intuition for
correspondance with physical map, under the assumption of 100 uniformly distributed
recombination events per segregant for 12" generation, one centimorgan corresponds to
roughly one kilobase.
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