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Supporting Methods 

Generating intercross lines 

Overall strategy. We devised a simple strategy that forces yeast cells through multiple rounds 
of random mating and sporulation to create advanced intercross lines (AILs) (Fig. S1). This step 
can improve genetic mapping in two ways: increasing resolution by reducing linkage, and 
unlinking nearby QTLs. The experimental design has three main features. First, it requires little 
genetic strain manipulation, thus making the method straightforward to extend to natural 
populations and not limiting it to the laboratory strains. We have previously created over 50 
strains in this way that can be used to create AILs (Cubillos et al. 2009). Second, our approach 
allows systematically undergo many rounds of sporulation and random mating. Finally, in 
addition to pools of haploid segregants, diploid heterozygous segregants can be obtained, 
making the yeast a better model for complex trait genetics in diploid organisms.  
 
Strain selection. We selected a North American oak isolate (YPS128) and a West African palm 
wine isolate (DBVPG6044) as parent strains for their marked phenotypic growth differences at 
high temperature (Liti et al. 2009) (Fig. S2a). We started from strains that are stable haploid 
(ho::HphMX4), isogenic (except for opposite mating type) and unable to grow in the absence of 
uracil (Table S1). We replaced the LYS2 with URA3 gene in the DBVPG6044 strain (Cubillos et 
al. 2009). This gene replacement restores the ability of growing in the absence of uracil and 
makes it unable to grow without lysine.  
 
F1 cross. The two parental strains YPS128 LYS+ and DBVPG6044 URA+ were crossed in 
complete media (YPDA) and grown overnight (Fig. S1). Patches were replica plated in synthetic 
minimal media (MIN) to select for diploid F1 hybrids. F1 hybrids were isolated and stored at -
80oC. Two F1 hybrid replicas were grown overnight (spread over a whole Petri dish) and replica 
plated on KAc at 23oC to be sporulated for 10 days. We monitored sporulation efficiency (% of 
sporulating cells) until it reached >90%. Cells from the whole plate were carefully collected and 
resuspended in 0.5 ml of sterile water and treated with an equal amount of ether and vortexed 
for 10 minutes to selectively kill unsporulated cells (Dawes and Hardie 1974). Cells were 
washed 4 times in sterile water, resuspended in 900 µl of sterile water and treated with 100 µl of 
Zymolase (10 mg/ml) to remove the ascus. Cell mixtures were vortexed for 5 minutes to 
increase spore dispersion and inter-ascus mating.  
 
Further rounds of intercrosses. Cells were plated at high density to begin a second round of 
mating and meiosis (F2). The presence of two distinct markers (LYS2 and URA3) at the same 
genomic position prevents them from co-segregating in haploid cells, and thus allows selecting 
for diploid cells segregating at that locus. In order to confirm this system, we dissected 20 
tetrads from the F6 pool and all of them had the correct 2:2 segregation of the LYS/URA 
markers. The sporulated pool was treated with zymolase and plated at high density to start the 



next generation of intercross as described in the paragraph above. The result of this strategy is 
a large pool of segregants for sensitive and high resolution QTL mapping. 
 
Ploidy. We can generate either haploid or heterozygous diploid pool of segregants. For the 
haploid pool, we used spores from different generations (F1, F6, F12 and F18) treated with 
ether and zymolase as described above. These pools consist of cells of both mating types (Mat 

a and Mat ), and thus have the potential to mate and form diploids. To check whether mating 
had taken place during the selection experiment, we isolated 960 segregants at the end of the 
heat selection (T2.5) and found that all of them were able to mate with the haploid tester strains, 
thus indicating they remained haploid during the selection. Furthermore, we genotyped 288 of 
these segregants at 11 loci distributed in 8 different chromosomes and confirmed that the 
segregants remained haploid. Our results indicate that the haploid segregants did not mate 
during the heat selection, suggesting that the propagation of the cells under heat stress 
prevents mating events. The pool of segregants with mixed mating types provides a further 
advantage compared to the Mat a pool previously described (Ehrenreich et al. 2010) which is 
unable to map QTLs in regions linked to the MAT, LYP1 and CAN1 loci. For the heterozygous 
diploid pool, we forced one extra round of mating and selection for LYS+/URA3+ cells, resulting 
in a pure diploid pool that is stable during subsequent propagation step, as meiosis can only be 
induced by exposing the cells to a specific media. 

Selection experiment 

Pools of population size of 10-100 million cells (estimated by plating serial dilutions) were 
collected from the sporulation media and treated with ether and zymolase as described above. 
Spores were plated in complete media (YPDA) and incubated either at permissive temperature 
(23oC) or at restrictive temperature (40oC) until full growth was obtained. Each plate was 
incubated for 48 hours, after which, all cells were carefully collected and resuspended in distilled 
water. Ten percent of the suspended cells were used for the next re-plating in fresh media. The 
rest of the cells (90%) were used for DNA extraction, followed by high coverage genome 
sequencing described below. We tested a different dilution factor (1/100) for replating, and 
measured the changes in allele frequencies at the XIII subtelomeric QTL by Taqman assay. We 
found that the two dilution factors resulted in similar changes in allele frequencies (results not 
shown). We used the 1/10 dilution for all other experiments to maintain a larger population size 
through the selection experiment preventing the risk of clonality. At this dilution, the pool 
undergoes through at least 3.25 generations between re-platings in addition to an estimated 10-
20 generations during the first two re-platings for a total of 25-35 generations by T3. 

Genotyping 

To calculate the percentage of recombinant haplotypes, we obtained genotypes at 24 loci by 
real time PCR coupled to high resolution melting (HRM) using the Corbet Rotorgene and 
Quantace PCR HRM mix. We used the data for 96 F1 segregants previously described 
(Cubillos et al. 2011), and genotyped 96 additional segregants from each of the F6, F12, and 
F18 at three regions (Dataset 1). We used the same genotyping approach to genotype 19 



strongest QTLs in 96 segregants isolated from F12 replica 1 pool after 336 hours of heat 
selection (T3.5, Dataset 2). 

Furthermore, we genotyped 960 F12 segregants isolated from the F12 replica 2 pool 
after 240 hours of heat selection (T2.5) using the Sequenom iPLEX™ Gold Assay (Sequenom® 
Inc.). Assays for Sequenom genotyping were designed using the eXTEND suite and 
MassARRAY Assay Design software version 3.1 (Sequenom® Inc.). Amplification was 
performed in a total volume of 5µL containing ~0.06-0.4ng genomic DNA, 100nM of each PCR 
primer, 500µM of each dNTP, 1.25 x PCR buffer (Qiagen), 1.625mM MgCl2 and 1U HotStar 
Taq® (Qiagen). Reactions were heated to 94 °C for 15 min followed by 45 cycles at 94°C for 20 
s, 56°C for 30 s and 72°C for 1 min, then a final extension at 72°C for 3 min. Unincorporated 
dNTPs were SAP digested prior to iPLEX™ Gold allele specific extension with mass-modified 
ddNTPs using an iPLEX Gold reagent kit (Sequenom® Inc.). SAP digestion and extension were 
performed according to the manufacturer’s instructions with reaction extension primer 
concentrations adjusted to between 0.7-1.8µM, dependent upon primer mass. Extension 
products were desalted and dispensed onto a SpectroCHIP using a MassARRAY 
Nanodispenser prior to MALDI-TOF analysis with a MassARRAY Analyzer Compact mass 
spectrometer. Genotypes were automatically assigned and manually confirmed using 
MassARRAY TyperAnalyzer software version 4.0 (Sequenom® Inc.). Genotype data are 
presented in Datasets 1-2, and primer sequences are available upon request.  

DNA isolation, library preparation, and sequencing 

DNA was extracted using the phenol chloroform protocol as previously described (Borts et al. 

1986). Multiplexed PCR-free Illumina sequencing libraries were prepared starting from 2 g of 
genomic DNA from each strain or pool. Essentially this followed the protocol described in 
(Kozarewa et al. 2009), except that modified bottom adapter strands were used that introduced 
a unique tag sequence between SP2 primer site and P7 sequence (Table S10), allowing 
libraries prepared from 12 samples to be pooled and each samples' unique sequence 
subsequently deconvoluted according to the specific tag sequence present. The PCR free 
adapters were made by annealing T_no_PCR oligo 
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T (* 
indicates phosphorothioate) with a specific bottom oligo that contains the indexing tag sequence 
given in Table S10. Fragments with 200-300bp inserts were gel purified and sequenced using 
standard Illumina SBS v4 chemistry for 2 x 76 cycles plus an extra 7 cycles of sequencing using 
the reverse complement of the SP2 primer to determine the tag sequence of each cluster. 
Parental strains were sequenced using 2 x 108 cycles. 

Sequencing data handling 

Sequencing reads were mapped to the S288c reference genome obtained from the SGRP 
project website (Carter 2006) using BWA (Li and Durbin 2009), with option “-n 8” to allow 
mapping of divergent reads from the founder strains. Pileup files comprising the genotypes of 
mapped reads were created for segregating sites inferred from both low-coverage capillary 
sequencing (Liti et al. 2009) and the parental strain shotgun sequence mapping to the S288c 
assembly using samtools (Li et al. 2009). For allele frequency inference, sites that were not 



segregating in the initial population, corresponding to likely false positive variant calls, were 
filtered out, as well as sites that were noted as heterozygous in either parental strain, indicative 
of copy number variation or non-unique sequence in general. Furthermore, for allele frequency 
inference, we filtered the variants to have minimum distance of at least 200 bases to ensure that 
any single read does not contribute disproportionately due to spanning many variants. The 
mapping pipeline is available upon request. 

Parental strain analysis 

The parental strain sequence was mapped similarly to the selection experiment. We used the 
samtools variant caller with default settings to call differences from the reference sequence, and 
used these data to update the list of segregating sites used in the allele frequency analysis. The 
variants not observed were added to the list, and variants observed from capillary data, but not 
supported by the short reads were discarded. 

We performed de novo assembly of the parental strains to assess the amount of 
sequence present in these strains that is not found in the S288c reference genome. We used 
the overlap-based assembler SGA (String Graph Assembler) to construct contigs from the 
sequence data. This assembler is based on the FM-index and allows efficient detection of 
overlaps between reads (Simpson and Durbin 2010). First, we filtered the sequence data to 
remove low quality reads by discarding any read that had more than 4 bases with a Phred-
scaled quality value less than 4. We then corrected base calling errors in the reads by finding 
inexact overlaps between the reads. We required an overlap of at least 50bp with no more than 
5% mismatches between the sequences to consider them overlapped. The consensus 
sequence for each read was called from the set of overlapping reads. After correction, the reads 
were assembled using the string graph assembly algorithm described in (Simpson and Durbin 
2010) by finding the set of exact overlaps of length at least 50bp between the corrected reads. 

Segregant analysis 

To analyse the genetic background of two individual F6 segregants, we mapped the sequencing 
reads to the genome as described earlier, and classified every segregating site to stem from 
one of the two parental strains, or a ‘no-call’. A site was called to be from one parent, if it was 
covered by at least 15 sequencing reads with base and mapping qualities at least 30, and 80% 
of them had the parental allele. We conservatively refrained from making a call at low-coverage 
variants, subtelomeric regions up to 30kb, and variants with ambiguous mapping data. We 
called a recombination event if a region of at least 2kb from one parent was followed by a region 
of at least 2kb from the other, and at least 5 calls were made in both regions. This results in a 
conservative estimate of recombination events, as it discards non-crossovers shorter than 2kb, 
and recombination in subtelomeric regions. 

We observed less recombination events than expected if at each meiotic generation a 
new set of crossover occurred independently of the previous ones. It is well known that the 
distribution of crossovers is not random but instead these events tend to cluster in specific 
regions (recombination hotspots (Szekvolgyi and Nicolas 2010)), thus many of the crossovers 
will take place at the same positions. Under the model of uniform distribution of recombination 
events, and 30 recombinations in F1, we would expect ~105 recombination events by F6. As we 



observed 66 on average, we estimate that (66-30)/(105-30) = 48% of the events to reuse the 
recombination hotspots (perhaps favoured by intra-ascus mating), and we have 106 detectable 
events on average by F12. Thus, we further estimate that 1 centimorgan of genetic map in the 
F12 generation corresponds to 1.1 kilobases. It is also possible that there is a recombination 
preference in the heterozygous diploids within regions inherited from the same strain, and such 
events cannot be detected. We also expect to observe less recombination events taking place 
between sequences from different parental backgrounds in regions selected early during the 
intercross, as these regions will have long tracts of sequence from one parent in the pool. 
Furthermore, we have filtered out closely spaced events (within 2 kb), which could be originated 
by short non-crossovers or by re-usage of the same crossover. Some of these issues could be 
addressed by using a different cross with higher recombination frequency, or mutant strains that 
exhibit different recombination patterns (Szekvolgyi and Nicolas 2010). 

Allele frequency inference 

Under a simple model, there is an unobserved WA allele frequency fl at each locus l; we want to 
infer the posterior distribution of fl after observing the sequence data. We assume all reads to 
come from different segregants after filtering segregating sites to be distant, thus every 
segregant i has one allele ai observed at some locus l’ distance di away from l. We take d to be 
infinity if the loci are on different chromosomes. For that segregant, there is an unobserved 
allele bl at locus l, and the probability that these loci are linked, with no recombination event 
occurring during the intercross between them, is qi = exp(-dir), where r is the recombination rate. 
We took r = 30 (1 + (g-1)/2) , where g is the number of intercross rounds, as there is on average 
30 crossovers per tetrad, and every intercross after the first one has a 50% chance of 
introducing a switch between parental haplotypes. The likelihood of the allele frequency at locus 
l is thus 
P(D | fl) = i P(ai | fl), where 

P(ai | fl) = P(ai, bi = ‘WA’ | fl) + P(ai, bi = ‘NA’ | fl) =  

             = P(ai | bi = ‘WA’)P(bi = ‘WA’ | fl) + P(ai | bi = ‘NA’)P(bi = ‘NA’ | fl)  =  

             = qiai = ‘WA’ (1-qi)ai = ‘NA’ fl + qiai = ‘NA’ (1-qi)ai = ‘WA’ (1-fl)  

              qi flai = ‘WA’(1-fl)ai = ‘NA’   

Here, we have discarded likelihood terms that require a recombination event, as we will filter qi 
to be large. We calculate the posterior (beta) distribution of fl by applying Bayes rule: P(fl  | A)  
P(A | fl ) P(fl ) = i P(ai | fl ) P(fl) where the beta prior P(fl ) is uninformative, and we filter qi > 0.9 
(0.75 for Fig. 3a-b for smoothness). We further filtered out loci for which the difference between 
inferred posterior WA allele frequency, and frequency of the WA allele mapped to the locus was 
greater than 0.1 to downweight the effect of outliers, and repeated the smoothing. This 
inference procedure corresponds to a smoothing approach within a fixed window, discarding 
outliers, with the width determined by the recombination rate (~6kb for qi > 0.9), and has the 
effect of discriminating against extreme allele frequencies. The posterior mean and confidence 
intervals were obtained from the approximated Beta distribution. 

QTL mapping 

Allele frequency change. We called a QTL if the inferred allele frequency changed in the same 
direction by at least 10% in both biological replicas, and the change was larger than four times 
the average standard deviation of the inferred allele frequencies. One QTL was called in any 



50kb window, corresponding to the variant with largest combined allele frequency change over 
two replicas. We assessed the significance of the calls using the null distribution of allele 
frequency changes from the control experiment, where the initial pool was propagated in 
permissive temperature alongside the selected pool for 144h (T2). Due to repeptitive nature of 
the subtelomeric regions, and resulting low sequencing coverage, we did not consider loci within 
30kb of the end of chromosomes. We fit a normal distribution to the allele frequency changes at 
the 26,871 loci assessed (Fig. S9), and calculated the probability of observing a change of at 
least 10% in either direction to be less than 10-7. After Bonferroni-correcting for the 26,871 tests, 
the p-value remained less than 10-3. We further required the allele frequency change at the 
locus to be at least four times the average standard deviation of the allele frequency posteriors 
assayed in the two compared experiments. This filter for large changes relative to the 
uncertainty in the inferred allele frequencies had the effect of discarding regions with low 
sequence coverage, usually around subtelomeres and centromeres. 
 
Copy number and missing sequence. We mapped all reads to artificial chromosomes, each 
containing exactly one gene with 100 flanking bases, and recorded their average sequencing 
coverage every 100 bases. We used that to infer a copy number for each gene as the average 
gene coverage normalised by the average sequencing coverage (Table S5). We also mapped 
the reads to the assembled contigs from parental sequence data that did not map to the S288c 
reference; no large allele frequency changes were observed (data not shown). 
 

Individual allele analysis 

Tolerability of mutations. We ran SIFT (Ng and Henikoff 2003; Ng and Henikoff 2006) to 
predict the effect of all SNPs in coding regions of 7 genes associated with strong heat 
resistance QTLs along the two WA and NA lineages (Table S7). The main idea of SIFT is that a 
SNP at an evolutionary conserved locus can affect the function of corresponding protein and 
therefore is predicted to be intolerable. The conservation at any locus is measured by the 
amount of diversity of amino-acid (AA) bases observed at that locus. The diversity of AA bases 
at each locus is represented by a position weight matrix (PWM) that is constructed using an 
alignment of protein sequences homologues with the protein of interest. The alignments are 
built recursively by searching protein databases (e.g. Uni-Prot Tr-EMBL 39.6 in this case). For 
detailed methods of constructing PWMs as well as a number of heuristics used to perform the 
predictions by SIFT refer to original paper (Ng and Henikoff 2003). 
 
Signatures of selection. We constructed an alignment of the IRA1 gene sequences for the 
WA, NA, S288c and S. paradoxus strains and inferred the evolutionary tree (Fig. S4b) for IRA1 
using phyML (Guindon and Gascuel 2003). As can be seen from Table S11 no significant 
divergence between the WA and the NA lineages indicating significant differences in selection 
pressure along these lineages is observed (comparing to what is expected genome-wide, Fig. 
1c of reference (Liti et al. 2009)). We further compared the ratio of amino acid replacements to 
synonymous polymorphisms in WA lineage to NA lineage, and found no significant difference 
(lineage WA=0.48 vs. lineage NA=0.75, P=0.4, Fisher's exact test, see also Table S11). 

QTL validation 



Reciprocal hemizygosity. We validated that the WA and NA versions of IRA1 and IRA2 affect 
growth in heat by reciprocal hemizygosity (Steinmetz et al. 2002). IRA1 and IRA2 were deleted 
individually in the hybrid strain YCC22F using the URA3 gene as a marker (primers listed in 
Table S12). Genes were deleted using the standard single-step PCR gene deletion method 
(Wach et al. 1994). We genotyped independent transformants using HRM-PCR to determine 
which allele was deleted and measured the effect of the hemizygous deletion with different 
assays. We performed a temperature growth assay by plating serial dilutions of cells in YPDA 
and incubated the plates at 30oC and 40oC for 48 hours (Fig. 4a).  
 
Growth curves. We also measured growth curves (Warringer and Blomberg 2003; Liti et al. 
2009) in defined media with amino acids for the parental, hybrid and reciprocal hemizygous 
strains at a range of high temperatures (40oC, 40.5oC, 41oC, 41.5oC, 42oC). Growth curves for 
each strain were measured in at least 8 replicas, and growth lag, growth rate and growth 
efficiency variables were extracted and log(2) transformed as previously described (Warringer 
and Blomberg 2003; Liti et al. 2009) 

To test for an epistatic interaction between the IRA1 and IRA2 WA alleles, we evaluated 
the null hypothesis that Xobserved = Xexpected where Xobserved is the observed generation time 
difference between hemizygotes with WA alleles for IRA1 and IRA2 and NA alleles for IRA1 and 
IRA2 and where Xexpected is the corresponding expected generation time difference, given the 
generation times of hemizygotes with IRA1 and IRA2 alleles of mixed ancestry and an additive 
model for allele interactions. Formally:  
Xobserved  = YIRA1=WA, IRA2=WA - YIRA1=NA, IRA2=NA 
Xexpected = (YIRA1=WA, IRA2=NA - YIRA1=NA, IRA2=NA) + (YIRA1=NA, IRA2=WA - YIRA1=NA, IRA2=NA).  
Y denotes the average of the log(2) transformed generation times of the indicated hemizygotes 
at 40oC. Xobserved was found to be significantly higher than Xexpected (3.3 fold difference, p < 10-29, 
two-sided t test), rejecting the null hypothesis and demonstrating an epistatic interaction 
between the WA alleles for IRA1 and IRA2 at 40oC.  
 
Competitive growth. Finally, we performed a competition experiment that resembled the 
selection regime imposed on the pool and competed the reciprocal hemizygous hybrids against 

each other (e.g. for IRA1 na/WA vs. wa/NA). For each competition experiment, equal 
numbers of cells were mixed, a pre-selection sample taken for allele frequency analysis and a 
dilution (1/10) plated for selection. Competition was performed at either 30oC or 40oC for 96 
hours (with re-plating a 1/10 dilution after 48 hours) and a post-selection sample taken at final 
time point of 96 hours. Pyrosequencing was used to assess the allele frequency in the pools 
using specific polymorphisms within the IRA genes as a target.  

Pyrosequencing 

Pyrosequencing (PyroMark24, Qiagen) was used to assess changes in allele frequencies after 
selection in pool of segregants derived from different generations (F1, F6, F12 and F18) and 
used to infer the allele frequency of 2 strong QTLs (IRA1 and HKR1) and loss of linkage in 
nearby regions (Fig. S3). We measured allele frequencies at QTL locus, and 20kb upstream 
and downstream the QTL. For visualisation, we calculated the ratio of beneficial allele frequency 
at a locus to its frequency at the QTL. We used a biotinylated universal primer (sequences in 



Table S13) (Pacey-Miller and Henry 2003) and PCR conditions previously described in (Colella 
et al. 2007). 
 
 

cAMP determination 
cAMP determination was performed using TCA to extract metabolites (Nikawa et al. 1987) with 
slight modifications as outlined below. Briefly, 2x108 cells (20 ml of culture at an OD600 0.5) were 
pelleted in a cold centrifuge, washed and resuspended in 1 ml cold milliQ-water. Samples for 
normalization were withdrawn (OD600 determination) and subsequently metabolites were 
extracted (Gustafsson 1979) by adding 1.2 ml TCA (0.5 M) and occasional vigourous vortexing 
while samples were kept on ice for 15 min. TCA was removed by ether extraction. cAMP in the 
extracts was determined by the LANCE cAMP 384 kit (Perkin-Elmer, cat# AD0262) according to 
instructions from the manufacturer in 40 µl total reactions and by comparing to the standards 
supplied. The values for cAMP obtained were normalized to dry weight as obtained from a dry 
weight-OD600 standard curve. 
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Simulation experiments 

We simulated data from a simple generative model to explore the influence of QTL allele 
frequency and many rounds of crossing on mapping resolution, sensitivity to detect allele 
frequency changes, potential of adaptive mutations to dominate a haploid pool, as well as 
effects of more than one allele in haploid and diploid pools. Many aspects of using advanced 
intercross lines for trait mapping have been explored in earlier work (Darvasi and Soller 1995). 
 
Influence of QTL allele frequency and number of intercross rounds on mapping 
resolution. The mapping resolution depends only on the physical distance corresponding to the 
genetic distance, which is determined by local recombination rate. For our purposes, we only 
consider recombination events that take place between tracts of sequence from different 
parental backgrounds. We observed 30 recombination events on average in 96 F1 segregants, 
giving an estimate of 3000 cM = 12 Mb, or 4 Kb per cM. However, as discussed above, the true 
correspondence varies considerably across the genome. Assuming independent 
recombinations in each generation, the genetic map expands with each intercross round. An x 
cM locus in the F1 generation corresponding to K base pairs will correspond to 2K/(n+1) base 
pairs in the Fn generation. The additional factor of 2 is due to each recombination in further 
(n>1) intercross rounds having a 50% chance of crossing between tracts of material from 
different parental background. Thus, by F6, we expect to increase the mapping resolution by a 
factor of 3.5 compared to F1, and a factor of 6.5 by F12. However, as we estimate 50% of 



recombination events taking place in a small portion of the genome, we estimate the increase in 
resolution from F1 to F12 to be closer to a factor of 3. 

We simulated data to visualise and quantify this effect for our approach. We considered 
a segregant pool selected long enough to reach equilibrium, with allele frequencies no longer 
changing. This means the QTL effect size per generation is inconsequential, and we thus 
operated with its final allele frequency alone. For simplicity, we assumed the pool before 
selection to have 50% NA allele frequency at all loci, and the QTL locus to have NA allele 
frequency fq > 0.5. 

The NA allele frequency of locus l that is x cM away from the QTL is fl = fq P(even # of 
recombinations between l and q) + (1 - fq) P(odd # of recombinations between l and q). 
Assuming a standard Poisson model for number of recombinations, and uniform distribution of 
the events, we can calculate fl exactly. We considered 500 loci spaced at 0.2cM intervals on 
both sides of the QTL (corresponding roughly to a locus every 200 bp in F12, see above), and 
calculated fl for each of them. Assuming 80x sequencing coverage (lower of the T2 samples we 
use most in the analyses), we then calculated the distribution of the sampled allele frequency at 
the locus as f’l ~ Beta(75 fl, 75(1 - fl)). Finally, we used the allele frequency estimation approach 
outlined in main text, and calculated the posterior allele frequency in the average case by 
combining the sampled allele frequency distributions, which corresponds to calculating a 
weighted sum of the parameters of the beta distributions within a 10cM window from each locus.  

We considered two aspects of mapping resolution. First, we looked at the total size wi of 
the interval that we could detect to be changing more than 10% in allele frequency. Second, we 
calculated the length of the peak interval wp we are confident the causative locus lies in. For our 
purposes, we defined this to be the length of the region for which the QTL peak allele frequency 
change is within one standard deviation of the posterior mean allele frequency of sites in the 
region. We calculated wi and wp for QTLs of final allele frequencies of 0.99, 0.9, 0.8 and 0.65 
(Fig. S10, Table S14). QTLs with higher fq had larger mapped intervals, but narrower peaks. In 
the case of strong QTLs that nearly fix (fq=0.9), the inferred peak interval was 6.6 cM, 
corresponding to about 7kb in the F12 cross, or about 35 segregating sites. This is in 
concordance with the actual observed mapped interval sizes (median 6.4 kb, Table S4). Higher 
sequencing coverage, better inference techniques, and more intercross rounds can narrow the 
interval even more. 
 
Sensitivity to detect allele frequency changes. We simulated allele frequency changes of 1-
10% for one locus, and calculated allele frequencies for 500 loci spaced at 0.2 cM intervals 
surrounding it as for QTLs. We then sampled 80 alleles at each locus from the calculated fl, 
followed by allele frequency inference from the sampled data. We repeated this procedure 1000 
times, and estimated the normal distribution of inferred allele frequency changes. For a 
simulated change of 5%, we observed 2/1000 estimated changes smaller than 3%. Thus, 
extrapolating, we expect to see estimated changes of at least 3% at the 21 QTL loci if the true 
allele frequency is changing at least 5% at least 95% of the time. Similarly, we expect to see 
estimated changes of at least 5% if the true change is at least 7% at least 95% of the time. We 
observed 19/21 QTL loci changing less than 3% in allele frequency between T2 and T3, and two 
chancing up to 4%. We thus estimate that for 19 QTLs, the allele frequency changes are no 



larger than 5%, and for the remaining two, no larger than 7%, while the alleles are still at least 
15% from fixation. 
 
Adaptive mutations. We provide three lines of computational evidence for lack of new adaptive 
mutations with large effect on intercross pool allele frequency during selection.  

Firstly, the fitness requirement of adaptive mutations to dominate the pool is too high. A 
single adaptive mutation begins at very low initial frequency, f1 = 1/N, where we take N, the total 
number of segregants in the pool to be 107. The doubling times for the segregants range from 
1.5 hours in permissive condition (or for fit segregants in restrictive condition) to 2 hours for unfit 
segregants in restrictive condition. Let us assume the adaptive mutation rises to same 
frequency as the total frequency of haplotypes with beneficial alleles at the two loci that reach 
fixation - the IRA1 and chrXIII subtelomeric loci (initial frequency f0 =1/4) all of which have 
doubling times t0 ~ 1.5 hours. Over T=288 hours of selection, the following identity must then 
hold for the doubling time t1 of the adaptive mutation: f1 2

T/t1 >= f0 2
T/t0, or  

t1 <= T/(log2f0 - log2f1 + T/t0). Plugging in numbers for f1,f0,T, this gives t1 <= 1.34 = 0.9 t0. Thus, 
in order to rise to appreciable frequencies in the very large pool, the haplotype with the adaptive 
mutation must grow 10% faster in restrictive condition than the segregants do in the permissive 
condition. If such mutations were possible, they would be more likely to rise during the many 
months of intercross rounds, not during the span of four days. However, in this case, the allele, 
not the haplotype, will be selected for, as further intercross rounds separate the adaptive 
mutation from the haplotype on which it arose. 

Dominating adaptive mutations would drive the pool allele frequencies to extremes. In 
the very long run, the haplotype with the adaptive mutation will be the only one left in the pool, 
as no recombination happens during selection. As the frequency of the adaptive mutation rises 
in the pool, the pool loses heterozygosity and genetic complexity, and the frequency of the NA 
allele at all segregating loci will be driven to 0 or 1. If a haplotype with an adaptive mutation is 
present at high frequency in the pool, we would expect to see an allele frequency change from 
the initial pool at all loci towards the genotype of that haplotype, which we do not observe. 
Adaptive mutations would continue to rise in frequency after 192 hours. We do not observe 
global allele frequency changes after 192 hours. However, as outlined above, haplotypes with 
adaptive mutations should continue to rise in frequency in the pool. These three lines of 
evidence point to little contribution from adaptive mutations to the final segregant pool allele 
frequency makeup. Adaptive mutations for sporulation, mating, or growth can arise during 
intercross, and could be traced. However, for QTL mapping, we are conditioning our analysis on 
all the segregating sites present in the pool at the beginning of selection, regardless of whether 
they were present in the parental strains. 

Finally, genotyping 960 segregants at the 19 QTL loci from the selected pool as 
described in main text yielded 787 unique haplotypes, with most abundant one represented six 
times. To assess the unexpectedness of this result, we created 1000 simulated datasets of the 
same size, sampling genotypes at each QTL locus according to its allele frequency. The 
average number of unique haplotypes per simulated dataset was 786, and 631 of 1000 (63%) of 
the datasets had at least one haplotype represented at least six times. Thus, our observations 
are consistent with the null model of no loss of complexity or overrepresentation of a single 
haplotype. 



 
Effects of selection on allele frequency. We simulated allele frequency changes under simple 
assumptions for various scenarios. While standard (e.g. (Hartl and G. 2007)), the results give 
intuition for allele frequency changes observed. 
 
Haploid individuals. We fixed the initial allele frequency of any locus to be 0.5 for simplicity, 
and calculated its change over generations in a deterministic way. For a one locus trait, the 
individuals with genotype '1' were assumed to have a fitness advantage s, which changed the 
rate at which they survived to the next generation, with the frequency fl,t of locus l at generation t 
was taken to be 
(1 + s)fl,t-1/((1 + s)fl,t-1 + (1- fl,t-1)) = (1+s)/(1+sfl,t-1)fl,t-1. If s > 0, fl increases, and if s < 0, it 
decreases in a near-geometric manner. For these one locus haploid pools, the beneficial allele 
asymptotically approaches fixation, with the speed depending on the magnitude of the selection 
coefficient (Fig. S11).  

In case two loci are contributing, the calculation remains almost unchanged, but now the 
effect of selection is assumed to act only on the '11' genotype. In this case, if s > 0, the 
haplotypes with '11' genotype are fitter than the others, and again are driven to fixation. 
However, if s < 0, the '11' genotype is selected against, and will be purged from the pool in the 
long run. Both alleles will still be present at each locus (Fig. S11a). We hypothesize such 
interactions within a chromosome to be responsible for the lack of fixation upon ~40 generations 
of selection. The usual intuition behind this is that fitness depends on functioning of a specific 
pathway. While any single mutation does not alter the functionality of the pathway, there are 
many possible combinations of genotypes that render it defective. These combinations are 
selected against, producing a change in allele frequency, but not fixation of any allele.  
 
Diploid individuals. As the diploid individuals propagate clonally just like haploids, we have to 
trace the frequency of the genotypes, not alleles, since there is no further mixing of the 
haplotypes between individuals. We can treat a one locus trait in diploids, identically to a two-
locus trait in haploids, and find that for traits where the beneficial allele behaves in an additive or 
recessive way, selection drives the frequency of beneficial allele to fixation, and for dominant 
beneficial alleles, the homozygous non-beneficial allele combination is selected against (Fig. 
S11b). We observed QTLs with final allele frequencies as well as their speed of change 
consistent with both recessive (IRA1) and dominant (chrXIII subtelomere) beneficial alleles 
(main text). However, when the QTL acts in an additive manner, the allele frequency change is 
identical to that of the haploid pool.  

If interaction effects are responsible for the allele frequency change, the effect can again 
be dominant, additive, or recessive. The differences to a one-locus model are slower effect of 
selection, as the fittest haplotype has lower initial frequency, and less extreme final allele 
frequency in case the interaction effect is dominant, as there are less genotype combinations 
selected against (Fig. S11b). 
 



The RAS signalling pathway regulates quantitative growth at high 
temperature 

Of the 19 QTLs we mapped here, we have validated three with large effect size. We 
previously mapped and validated the QTL present in the subtelomeric region of chromosome 
XIII (Cubillos et al. 2011). Due to the difficulty of assembling the subtelomeres, we are unable to 
characterise this high temperature growth QTL. The only other QTL that reached fixation was 
the GTPase activating protein IRA1, a negative regulator of the RAS signalling pathway, 
containing some of the most prominent human oncogenes (Tanaka et al. 1989). Interestingly, 
additional genes of the Ras/cAMP/PKA pathway pathway were contained in intervals with sharp 
increases in NA allele frequencies (Fig. 4C). IRA1 and IRA2 are of specific interest as they are 
highly conserved orthologs of the human disease gene NF1 (Ballester et al. 1990), which 
causes neurofibromatosis type 1, and as mutations in patients with neurofibromatosis also have 
similar detrimental effects on the yeast Ira1p activity (Gil and Seeling 1999). Thus, we validated 
by reciprocal hemizygosity (Steinmetz et al. 2002) that the naturally evolved IRA1 and IRA2 
alleles indeed affect high temperature mitotic growth (Fig. 4 and Fig. S5a-b). These genes affect 
both growth rate (population doubling time) and efficiency (change in population density) with 
IRA1 having a stronger effect compared to IRA2, consistent with their strength as inferred by the 
final allele frequency (Fig. S5a-b). The effect was restricted to a surprisingly narrow temperature 

range, peaking at 41C, but with no effect at 42C, reflecting an extremely fine-tuned gene-by-
environment interaction and emphasizing the need for high resolution phenotyping in QTL 
analysis.  

We tested the idea that the IRA polymorphisms in the WA lineage are pleiotropic at 
multiple environmental conditions. We measured growth curves of four replicas in five 
conditions (caffeine 2.25 mg/ml, paraquat 400µg/ml, ethanol 7%, DTT 1.8 mM, 1.5 µg/ml). The 
conditions were selected from previous high throughput screening in the S. cerevisiae deletion 
collection mutants showing an effect of the IRA deletions compared to the wild type. 
Interestingly, the West African IRA alleles do not have pleiotropic consequences, even at 
environmental conditions where a compromised RAS activity has been reported to have strong 
phenotypic consequences (Park et al. 2005) (Fig. S5c). Our results indicate that the growth 
defect due to IRA1 and IRA2 WA alleles is specific to high temperature. 

To experimentally investigate the IRA1 and IRA2 interactions, we constructed the four 
possible reciprocal hemizygous combinations of their alleles (Table S1). Growth curve analyses 
indicated a strong negative epistatic interaction between the WA alleles (Fig S6) consistent with 
a partially redundant role of the Ira gene products. We then measured the internal level of cAMP 
in the parental strains and the double reciprocal hemizygous deletion strains, and detected a 
1.6-fold higher level in the WA compared to the NA strain consistent with its RAS hyperactivity. 

This difference is similar to the difference in basal cAMP levels between the ras2 and the WT 
in mid-exponential phase and in the laboratory strain BY (Caballero et al, manuscript 
submitted). Importantly, we also detected a 9-fold difference in cAMP level between the hybrid 
carrying the WA alleles of the Ira genes compared to hybrid carrying the NA alleles when cells 
were grown at high temperature (Fig. 4C) but not at a permissive temperature. These data are 
consistent with the WA versions of Ira1 and Ira2 becoming defective at high temperature and 
leading to high cAMP levels and PKA activity and explain the lack of pleiotropy at other 



conditions at permissive temperature. The clear identification of the IRA1 and IRA2 alleles as a 
cause of low performance at high temperatures show that our method can directly map 
causative genes without any a priori information and without requiring further fine-mapping.  
  

Computational analyses of IRA1 and IRA2 alleles  
The strongest predictions for genes identified in the large effect size heat resistance QTL 
regions are presented in Table S7. For the QTL of interest, IRA1, the predictions by SIFT sorted 
by scores of intolerance are presented in Table S8. It can be seen from this table and Fig. S4A 
that the strongest prediction corresponding to the SNP in the WA lineage at IRA1-ChrII:522887 
(G to A) is located in a well-conserved locus IRA1p-1246. By aligning IRA1 to IRA2 and NF1 in 
human and Drosophila we found that our mutation of interest (IRA1p:1246) mapped in a highly 
conserved region of the alignment in all homologues (not shown). 

To investigate the evolutionary history of the QTL IRA1 we constructed an evolutionary 
tree of the gene consisting of WA, NA, S288c, and S. paradoxus as the outgroup (Fig. S4B). We 
did not observe any significant evidence of change in selection between WA and NA lineages 
compared to what is expected genome-wide (11). Furthermore, we compared the ratio of amino 
acid replacement to synonymous polymorphism in WA lineage to NA lineage, and found no 
significant difference (lineage WA=0.48 vs. lineage NA=0.75, P=0.4, Fisher's exact test), which 
supported this observation (Fisher's exact test with p-value=0.446, Table S11). 
 

Selection during intercross rounds 
We further investigated the regions in chromosome I (30-50 kb) and chromosome V (110-
180kb)) selected during the F1 to F6 intercross rounds and tested if they harbour sporulation 
efficiency QTLs. We used 40 F1 segregants from the WA x NA cross described in (Cubillos et 
al. 2011) and backcrossed them to the WA parental strain. We sporulated the cells in KAc for 
five days and calculated the percentage of sporulating cells by counting at least 200 cells for 
each sample in duplicate. We found a strong effect on sporulation efficiency for the 
chromosome V maker YND1 (position 160kb). The sporulation average for segregants carrying 
the YND1 heterozygous marker (A/W) was 43% compared to the 21% detected in the 
homozygous (W/W). This difference is highly significant (p < 0.005, t test for unpaired data with 
unequal variance) and is consistent with the presence of a previously uncharacterised slow 
sporulation QTL present in the WA lineage that contributes to the low sporulation efficiency 
described in the WA strain (Cubillos et al. 2009) and results in strong selection for the NA 
version of this chromosome V locus during the intercross. 



 

Supplementary Figures 

Fig. S1. Intercross strategy. 

Strategy used to generate advanced intercross lines. Description of the product and the action 
for each step are indicated on the left and the right side respectively. Each round of intercross 
requires approximately two weeks. 
 

Fig. S2. Allele frequency after paraquat selection 

WA allele frequencies of the whole genome for one pool subjected to heat and paraquat stress 
for 192 hours (T2) compared to the control experiment.  

Fig. S3. Loss of linkage upon several rounds of intercross assayed by 
pyrosequencing. 

Increased recombination frequency results in loss of linkage between QTLs and nearby loci, 
and resulted in narrower mapped QTL peaks. Allele frequency was measured at three positions 
(-20, 0 and 20Kb) for two strong QTLs. The relative abundance of beneficial allele is the ratio of 
beneficial allele frequency at genotyped locus (e.g. +20kb) and the beneficial allele frequency at 
QTL site. 

Fig. S4. Bioinformatics analysis of IRA1 

a. A logo representation of position weight matrix (PWM) constructed based on an alignment of 
proteins homologous to Ira1 used by SIFT to perform the prediction. The alanine 1246 in Ira1p 
is well-conserved and a SNP in the WA lineage (A to S) is predicted to be intolerable. 
b. Evolutionary tree constructed for IRA1 gene in the WA, NA, the reference and S. paradoxus 
as outgroup. No significant divergence between WA and NA lineages is observed compared to 
what is expected genome-wide (see(Liti et al. 2009), Fig. 1c). 

Fig. S5. Growth curves for IRA1 and IRA2 reciprocal hemizygotes. 

a-b. Growth curves in a show a difference in growth between WA and NA strains (left plot) and 
a temperature dependent effect of hemizygous knockouts of IRA1 (center plot) and IRA2 (right 
plot) from the WA/NA hybrid on growth with maximum final OD difference at 41-41.5oC. 
Interestingly, both panel a and b also indicate haploisufficiency of IRA2 showing the WA allele 
still contributing to the heat phenotype in the hybrid. Growth rate and efficiency values show in b 
were extracted from growth curves show in a. 
c. Growth defect of WA IRA1 and IRA2 alleles is specific to high temperature. The graphs show 
average doubling time (growth rate) of four replicas in five conditions for which deletions of IRA 



genes had an effect compared to the wild type in screening the S. cerevisiae deletion collection 
mutants.  
 

Fig. S6. Phenotypic analysis of double reciprocal hemizygotes of IRA1 
and IRA2 alleles. 

A. Average doubling time of 20 IRA1/2 double hemizygotes grown at 40oC. The double 
hemizygote IRA1 WA/IRA2 WA grows significantly slower (p < 10-21, two-sided t-test with 
unequal variance) than each of IRA1 WA/IRA2 NA (23% slower), IRA1 NA/IRA2 WA (21% 
slower) and IRA1 NA/IRA2 NA (26% slower).  

B. Doubling time defect of IRA1 WA/IRA2 WA compared to multiplicative expectation indicate 
strong negative epistatic interaction between the WA alleles. 

Fig. S7. Summaries of allele frequency changes between consecutive 
timepoints. 

Histogram (left column) and scatterplot (middle column) of changes in inferred allele frequency 
between control experiment and initial pool (first row), control experiment and first timepoint (T1) 
of heat selection (second row), T2 and T1 of heat selection (third row) and T3 and T2 of heat 
selection (last row). Right column shows histograms of allele frequency changes relative to the 
average standard deviation of the compared posteriors between the same set of samples. All 
data are from replica 2. 

Fig. S8. Comparison of alternative assays for allele frequency 
estimation. 

Every marker corresponds to the WA allele frequency of one QTL locus after heat stress 
measured by genotyping (y-axis) or sequencing (x-axis) in first replica (blue) or second replica 
(green). Sequencing allele frequencies are taken from timepoint T2 for both replicas. Genotyped 
allele frequencies for replica 1 are assayed from 96 segregants genotyped at 11 loci, and for 
replica 2 from 960 segregants genotyped at 24 loci (Dataset 2). Genotypes from sequencing 
data were inferred using a smoothing approach, which underestimates the extremity of the allele 
frequencies, and explains the difference between genotyping and sequencing-derived estimates 
at low WA allele frequencies. 

Fig. S9. Control experiment allele frequency change summaries. 

QQ plot (left panel) and histogram with a normal distribution fit (matching sample mean and 
standard deviation, red line) of allele frequency changes between control experiment T2 and 
initial pool. Sites from subtelomeric regions (up to 30kb from chromosome end) are excluded 



due to repetitive nature of the regions resulting in low sequencing coverage and high variance 
posterior allele frequencies.  

Fig. S10. Mapping resolution for simulated QTL peaks. 

Mapping resolution, quantified by the width wp of the inferred peak in cM (see text above), for 
QTLs with different final allele frequencies fq. The thin line corresponds to the mean inferred 
allele frequency, dashed line to mean + one standard deviation, thick line to the region with 
allele frequency change from 50% above 10%, and the thickest line to the mapped QTL region. 
Dashed black line shows the 10% change cutoff. 

 

Fig. S11. Changes in allele frequency in simulated data. 

Haploid (solid lines) and diploid (dashed lines) pool allele frequency changes for 1-locus (a) and 
2-locus effects (b). Initial allele frequency of a locus is 0.6. Individual lines correspond to 
different fitness modifiers (see Supporting Text), from top to bottom: +1, +0.3, +0.1, +0.03, -
0.03, -0.3, -1. 

 
 

Dataset 1 

Genotypes of three regions for 96 segregants from each of F6, F12, and F18 generations 
isolated before selection to assess increase in segregants recombinant in the regions using 
HRM PCR.  
 

Dataset 2 

Genotypes for 960 individual segregants isolated after heat selection (T2.5) genotyped for 19 
QTLs using the Sequenom platform and 96 segregants isolated at T3.5 genotyped for 11 QTLs 
using HRM PCR. 
 

Dataset 3 

Allele frequencies for different timepoints, cross generations, and ploidies for the 21 QTLs 
detected. Each window corresponds to 80kb, centered on the variant with the largest change in 
frequency. See Fig. 3d for details on legend. Top panel – haploid timepoints; middle panel – F6 
and F12 generations; bottom panel – haploid and diploid pools. Dashed lines indicate 
boundaries for the inferred QTL region. 



 

Supporting Tables 

Supplementary Table 1. Strains used. 

 
Name Derived from Genotype and notes Ref. 

YPS128 Wild type isolate 
Isolated in Pennsylvania (1999) by P. Sniegowski from soil 
beneath Quercus alba. 

(Sniegowski et al. 2002) 

DBVPG6044 Wild type isolate 
Isolated in West Africa (pre-1914) by A. Guilliermond from 
bili wine from Osbeckia grandiflora 

(Liti et al. 2005) 

NCYC3607 YPS128 Mat a, ura3::KanMX4, ho::HphMX4 (Cubillos et al. 2009) 
NCYC3625 DBVPG6044 Mat , ura3::KanMX4, ho::HphMX4 (Cubillos et al. 2009) 

YFCL1 DBVPG6044 Mat , ura3::KanMX4, ho::HphMX4, lys2::URA3 (Cubillos et al. 2009) 

CC35 
F1 Hybrid: NCYC3607 

x YFCL1 
Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4, LYS2/lys2::URA3 

This study 

YCC22F 
F1 Hybrid: NCYC3607 

x YFC3625 
Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4 

(Cubillos et al. 2011) 

YCC23F 
F1 Hybrid NCYC3607 x 

YFC3625 
Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4 

(Cubillos et al. 2011) 

YFCRH101 YCC22F Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4, ira1(na)::URA3/IRA1(WA) 

This study 

YFCRH102 YCC22F Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4, ira1(wa)::URA3/IRA1(NA) 

This study 

YFCRH103 YCC22F Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4, ira2(na)::URA3/IRA2(WA) 

This study 

YFCRH104 YCC22F Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4, ira2(wa)::URA3/IRA2(NA) 

This study 

YFCRH117 YFCRH101 
Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4, ira1(na)::URA3/IRA1(WA), 
ira2(na)::NatMX/IRA2(WA) 

This study 

YFCRH118 YFCRH102 
Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4, ira1(wa)::URA3/IRA1(NA), 
ira2(na)::NatMX/IRA2(WA) 

This study 

YFCRH119 YFCRH102 
Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4, ira1(wa)::URA3/IRA1(NA), 
ira2(wa)::NatMX/IRA2(NA) 

This study 

YFCRH120 YFCRH104 
Mat a/, ura3::KanMX4/ura3::KanMX4, 
ho::HphMX4/ho::HphMX4, ira1(na)::NatMX/IRA1(WA), 
ira2(wa)::URA3/IRA2(NA) 

This study 

  
 
 



Supplementary Table 2. Regions selected for during rounds 6-12 of 
the intercross. 
 

Chr, 
Location 

Combined 
allele 

frequency 
change 

(R1 + R2) 

Region 
start 
(bp) 

Region 
end 
(bp) 

Region 
length 
(bp) 

Number of 
genes in 
region 

Region 
genes 

2, 132336 0.23 81134 187145 106011 68  

2, 475979 0.38 469724 477009 7285 3 LYS2, YBR116C, TKL2 

4, 408754 0.34 400287 420414 20127 13  

4, 469197 0.39 433335 527824 94489 51  

4, 573669 0.56 570208 579573 9365 5 
MAK21, YDR061W, 
LCB2, YDR063W, RPS13  

4, 709767 -0.37 703851 817213 113362 52  

4, 892054 0.25 890414 895198 4784 4 
UPC2, AHA1, YDR215C, 
ADR1  

4, 1452475 -0.27 1449398 1459253 9855 7 

LCD1, RPL37B, PLM2, 
SAM2, LPP1, SPG3, 
PSP1  

5, 26206 -0.21 25590 28600 3010 4 
YEL068C, YEL067C, 
HPA3, SIT1  

7, 934217 0.22 928940 939704 10764 5 
CCH1, CRM1, YGR219W, 
MRPL9, TOS2  

8, 57903 0.27 55475 62378 6903 3 SNF6, RIM4, RMD11  

8, 256539 0.32 249529 280866 31337 15  

9, 79354 0.3 76340 90209 13869 10  

10, 451935 0.26 444889 453307 8418 5 
APL1, YJR005C-A, 
POL31, SUI2, YJR008W  

10, 604363 0.46 600041 618895 18854 11  

12, 391582 -0.4 387520 583104 195584 122  

12, 912538 -0.28 895661 921060 25399 15  

12, 970723 -0.35 959600 971646 12046 4 
YLR419W, URA4, 
RPN13, YLR422W  

14, 41217 0.28 16112 50093 33981 21  

15, 178731 0.45 174849 183754 8905 4 
IRA2, REX4, YOL079W, 
AVO1  

15, 234578 -0.27 66457 244782 178325 98  

15, 571166 -0.33 567019 601747 34728 15  
 



 

Supplementary Table 3. Average sequencing coverage of analysed 
samples. 
 

Sample Generation Replica Type Ploidy Condition Timepoint 

Average 
coverage at 
segregating 

sites 

SRA 
Accession 

number 

Initial_R1_F6_T0 6 1 Pool Haploid Permissive 0 23.8 ERS002654 
Initial_R2_F6_T0 6 2 Pool Haploid Permissive 0 13.1 ERS002657 
Heat_R1_F6_T2 6 1 Pool Haploid Heat 40C 2 19.3 ERS002655 
Heat_R2_F6_T2 6 2 Pool Haploid Heat 40C 2 25.7 ERS002658 
Initial_R1_F6_S1 6 1 Segregant Haploid Permissive 0 20.3 ERS002656 
Initial_R2_F6_S1 6 2 Segregant Haploid Permissive 0 27.4 ERS002659 

Mock_R1_F12_T2 12 1 Pool Haploid Permissive 2 115.4 ERS018247 
Heat_R1_F12_T2 12 1 Pool Haploid Heat 40C 2 129.3 ERS018248 
Mock_R2_F12_T2 12 2 Pool Haploid Permissive 2 105.7 ERS018249 
Initial_R2_F12_T0 12 2 Pool Haploid Permissive 0 107.3 ERS018250 
Heat_R2_F12_T1 12 2 Pool Haploid Heat 40C 1 54.8 ERS018251 
Heat_R2_F12_T2 12 2 Pool Haploid Heat 40C 2 83.7 ERS018252 
Heat_R2_F12_T3 12 2 Pool Haploid Heat 40C 3 65.9 ERS018253 

Diploid-
heat_R2_F12_T3 

12 2 Pool Diploid Heat 40C 3 32.6 
ERS018255 

Diploid-
heat_R1_F12_T2 

12 1 Pool Diploid Heat 40C 2 88.6 
ERS018256 

Paraquat-
R1_F12_T2 

12 1 Pool Haploid Paraquat 2 150 
ERS018258 

 
 



Supplementary Table 4. Regions selected for upon heat selection for 
F12 pool after 96h. 
 
 

Chr, 
Location 

Combined 
allele 

frequency 
change (R1 + 

R2) 

Region 
start 
(bp) 

Region 
end 
(bp) 

Region 
length 
(bp) 

Number 
of genes 
in region 

Region 
genes 

1, 119382 0.34 118724 125287 6563 5 
YAL018C, PSK1, YAL016C-B, 
YAL016C-A, TPD3  

2, 519399 -0.7 515930 522327 6397 2 YBR139W, IRA1  

4, 461085 -0.33 457812 463886 6074 5 
MAF1, SOK1, TRP1, YDR008C, 
GAL3  

4, 802325 0.22 797088 805655 8567 1 SEC7  
4,1050116 -0.23 1046548 1051757 5209 2 SSD1, DPL1  
4, 1307579 0.44 1305616 1314837 9221 2 HKR1, ARO80  

5, 526677 -0.27 522500 536992 14492 7 
CCA1, RPH1, ADK2, RAD3, 
BRR2, YER172C-A, RAD24  

6, 150543 -0.27 148802 154639 5837 5 
LOC1, NIC96, YPI1, RPN11, 
SAD1  

7, 127600 0.32 125071 135730 10659 3 MDS3, DSD1, GCN1  
7, 858516 0.88 856677 859960 3283 4 TIM13, YGR182C, QCR9, UBR1  

9, 292345 -0.35 287155 295587 8432 7 
CST6, CKA1, CAP2, BCY1, 
YIL032C, ULP2, YIL030W-A  

10, 238929 -0.45 235471 240115 4644 3 GSH1, LSB6, CHS6  

10, 423960 -0.48 420008 425480 5472 5 
YJL009W, CCT8, YJL007C, 
CTK2, CYR1  

12, 137312 0.41 134931 140165 5234 4 
YLL007C, YLL006W-A, MMM1, 
SPO75  

12, 735715 -0.34 733797 737572 3775 2 MET17, ACO1  

13, 749977 -0.32 743628 753953 10325 6 
BCH1, DFG5, RNT1, CUS1, 
YHM2, RPL20A  

13, 895955 -0.59 891318 898276 6958 4 PSE1, NIP1, YMR310C, GLC8  

14, 480653 0.54 476889 485871 8982 6 
EOS1, TPM1, NIS1, APJ1, MKS1, 
IMP4  

14, 685970 -0.22 683792 688334 4542 4 SSK2, PPG1, HUB1, ABZ1  
15, 182170 -1.31 176359 183754 7395 4 IRA2, REX4, YOL079W, AVO1  
15, 1031113 -0.8 1028004 1032237 4233 4 RAD17, RPS12, MRS6, GPB1  

  
 
 



 

Supplementary Table 5. Copy number variable genes upon heat 
selection. 

 

Gene F12 T2 copy number F12 T0 copy number Change T0-T2 
Q0045 0.4 36.5 -36.1 
Q0250 2 37 -35 
Q0255 1.7 36.1 -34.4 
Q0060 0.3 31.9 -31.6 
Q0115 1.2 32 -30.8 
Q0275 1.8 32.3 -30.5 
Q0105 3.3 32.8 -29.5 
Q0050 0.2 27.7 -27.5 
Q0120 1.6 28.3 -26.7 
Q0070 0.2 26 -25.8 
Q0085 1.9 26.1 -24.2 
Q0065 0.2 22 -21.8 
Q0182 0.7 18.3 -17.6 
Q0032 0.9 12.3 -11.4 
Q0142 0.3 11.3 -11 

YLR162W 44.5 55.4 -10.9 
Q0140 3.3 13.2 -9.9 
Q0130 2.7 11.4 -8.7 
Q0144 2.2 10.8 -8.6 
Q0143 0.7 7.9 -7.2 
Q0080 0.1 6.2 -6.1 

YDR366C 11.5 17.6 -6.1 
Q0110 0.7 6 -5.3 
Q0010 13.7 18 -4.3 
Q0092 0 3.5 -3.5 
Q0017 0.1 2.5 -2.4 

YEL074W 4.1 5.9 -1.8 
YIR044C 1.1 2.9 -1.8 
YIL174W 0.7 1.9 -1.2 
YJL225C 2.1 3.3 -1.2 
YNL337W 1.6 2.8 -1.2 
YOL166C 1.6 2.8 -1.2 
YHR216W 3.4 4.4 -1 
YLR465C 2.6 0.9 1.7 
YDR340W 8.3 3.9 4.4 

 

 

 



Supplementary Table 6. Allele frequencies at QTL loci during 
selection. 

 

Chr Location 

Initial 
R2 F12 

T0 

Mock 
R2 F12 

T2 

Heat 
R2 F12 

T1 

Heat 
R2 F12 

T2 

Heat 
R2 F12 

T3 

DipHeat 
R2 

F12 
T2 

DipHeat 
R2  

F12  
T3 

Mock 
R1 F12 

T2 

Heat 
R1 F12 

T2 

Paraquat 
R1 

F12 
T2 

1 119382 53.7 52.6 63.2 70.6 71.5 57.5 60.8 48 64 42.1 

2 519399 36.2 37.1 15.7 0.3 1.2 18.3 2.1 33.7 0.6 39 

4 461085 84.1 84 75.9 66.2 64.8 70.8 53.9 71.8 56.3 59.5 

4 802325 34.1 32.5 41.1 44 46.1 39.9 54.2 40.9 51.4 51.6 

4 1050116 38.4 37.7 31 25.3 25 34.5 27.3 37.5 26.5 33.9 

4 1307579 43 42.3 52.5 63.7 65.8 50.7 65.3 40.8 63 33 

5 526677 54.9 56.8 54.5 41.3 42.1 47.4 32.2 50 38.3 41.4 

6 150543 60.5 64 59.7 49.4 48.5 52.7 40.6 56.8 44.2 56.9 

7 127600 39 39.1 45.4 54.3 58.3 38.7 44 37.7 54.7 51.1 

7 858516 43.1 43 67.1 86.2 86.3 63.9 86.5 40.6 85 38.5 

9 292345 59.8 62.7 53 40.4 40.9 50.5 35.7 51.5 38.9 38.4 

10 238929 58.7 60.5 48 35 34.6 43.8 28.2 47.2 27.8 45.5 

10 423960 65.8 68.7 58.1 43.9 43.2 57.1 44.8 71.8 48.2 72.3 

12 137312 35 35.4 43.6 58.2 56.2 43.3 54.9 37.9 56.4 29.3 

12 735715 39.6 42.8 35.5 23.3 25.6 32.6 22.9 38.2 23.6 36.7 

13 749977 43.1 45.8 38.3 31.2 33.9 36 25.2 49 32 44.3 

13 895955 27.9 27.6 5.5 1.6 2.9 25 10.6 35.1 2.1 23.6 

14 480653 46.9 47 60.6 71.5 74.8 61.3 81.7 40.4 69.4 50.8 

14 685970 39.2 38.9 37.1 28.6 29.2 40.2 36.8 48 36.8 46.5 

15 182170 85 87.8 60.3 17.2 16 58.2 17.7 77.5 16.7 67.1 

15 1031113 62.2 61.9 40.3 19.3 21.4 41.3 18.5 58.3 20.4 51.8 

 



 

 

Supplementary Table 7. Top SIFT scores for 7 strongest QTLs. 

 

Gene QTL region 
Chr  

locus 
Ref 

(S288c) 
DBVPG6044 

(WA) 
YPS128 

(NA) 
Protein 
locus 

Ref (S288c) 
AA 

DBVPG6044 
(WA) AA 

YPS128 
(NA) AA 

GPB2 ChrI 36-49 kb 40524 A T . 422 K I . 

IRA1 
ChrII 518-

523kb 
522887 G T . 1246 A S . 

HKR1 
ChrIV 1306-

1312 kb 
No 

prediction 
       

GPA2 
ChrV 93-

207kb 
196109 A G . 315 T A . 

GSH1 
ChrX 229-

237kb 
235664 C T . 230 S F . 

GPB1 
ChrXV 1032-

1037kb 
1031596 C A . 862 T N . 

IRA2 
ChrXV 168-

183kb 
172081 G C . 338 A P . 

  

 
Strongest predictions by SIFT for 7 well-characterized genes associated with heat resistance 
QTL regions. All the predictions are associated with SNPs in WA lineage. "." means equal to 
S288c reference. 
 
 
 

  

 

 

 

 

 

 



 

Supplementary Table 8. SIFT analysis of IRA1 non-synonymous 
variants. 

 

ChrII 
locus 

Ref 
(S288c) 

DBVPG6044 
(WA) 

YPS128 
(NA) 

Protein 
locus 

Ref 
(S288c) 

AA 

DBVPG6044 
(WA) AA 

YPS128 
(NA) AA 

SIFT 
score 

Tolerable-
Intolerable 

522887 G T G 1246 A S . 0 Intolerable 
517820 G A G 2935 V M . 0.01 Intolerable 
518671 T C T 2651 V A . 0.02 Intolerable 
520745 T A T 1960 F I . 0.18 Tolerable 
520381 T C T 2081 V A . 0.18 Tolerable 
523279 T . C 1115 L . P 0.19 Tolerable 
520334 A G A 2097 I V . 0.19 Tolerable 
520084 G C G 2180 G A . 0.19 Tolerable 
520246 G A G 2126 S N . 0.25 Tolerable 
518563 C T C 2687 A V . 0.27 Tolerable 
524465 G A G 720 A T . 0.31 Tolerable 
524102 G . A 841 D . N 0.35 Tolerable 
522736 C T . 1296 S L . 0.39 Tolerable 
523094 G A . 1177 A T . 0.4 Tolerable 
521572 T C . 1684 I T . 0.49 Tolerable 
521279 A G . 1782 I V . 0.64 Tolerable 
517394 G A . 3077 E K . 0.68 Tolerable 
524309 C T . 772 P S . 0.72 Tolerable 
519853 A G . 2257 N S . 0.8 Tolerable 
526588 T . C 12 F . S 0.84 Tolerable 
520667 A G . 1986 N D . 0.86 Tolerable 
521896 G C . 1576 S T . 0.95 Tolerable 
519341 G A . 2428 V I . 1 Tolerable 
526602 A . T 7 Q . H ? ? 
525205 C T . 473 T I . ? ? 
525008 G A . 539 A T . ? ? 

 
 
Predictions by SIFT for the QTL IRA1. "." means equal to S288c reference. 



Supplementary Table 9. Most significant 2-locus interactions. 

 

nominal p 
Bonferroni-
corrected p 

FDR at 
cutoff WA/WA NA/WA WA/NA NA/NA Locus 1 Locus 2 

0.0007 0.116 0.116 98 177 156 484 chr10 235663 chr12 730764 

0.0024 0.398 0.199 5 153 83 697 chr15 1032447 chr15 172081 

0.0026 0.433 0.144 155 250 250 267 chr7 131690 chr12 140165 

 

Interaction p-value was calculated using two-sided Fisher’s exact test in R (function 
fisher.test), on the two-locus genotype frequencies from 960 segregants (Dataset 2) as 
described in SI. Bonferroni-corrected p-value (166 tests), and false discovery rate (FDR) 
using the nominal p-value as a cutoff are given, along with genotype frequencies. No 
other interactions are significant at 0.3 FDR. 



Supplementary Table 10. Sequencing primers used in the multiplexed 
library creation. 

 
Primer Name Sequence (5’-3’) 
inoPCR_B1 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCATCACGTTATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B2 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCCGATGTTTATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B3 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCTTAGGCATATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B4 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCTGACCACTATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B5 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCACAGTGGTATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B6 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGCCAATGTATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B7 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCCAGATCTGATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B8 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCACTTGATGATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B9 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGATCAGCGATCTCGTATGCCGTCTTCTGCTT*G 

inoPCR_B10 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCTAGCTTGTATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B11 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGGCTACAGATCTCGTATGCCGTCTTCTGCTT*G 
inoPCR_B12 GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCCTTGTACTATCTCGTATGCCGTCTTCTGCTT*G 

  



 

 

Supplementary Table 11. Synonymous and non-synonymous 
polymorphisms in IRA1. 
 
Strain Ka Ks Ka/Ks 
S. paradoxus 152 707 0.21 
S288c 6 4 1.5 
DBVPG6044 (WA) 14 29 0.48 
YPS128 (NA) 3 4 0.75 

 
Synonymous and non-synonymous polymorphism data between S288c, DBVPG6044 (WA) and 
YPS128 (NA) lineage and their outgroup S. paradoxus. No significant divergence between WA 
and NA lineages is observed from the Ka/Ks ratios. 
 



Supplementary Table 12. Primers used for IRA1 and IRA2 deletion.  
 

Primer name 
Target 

coordinates 
Sequence (TARGET, BARCODE, ura3) 

IRA1-FW-YPS128 517266-517344 
CAACAAATATAAAACAAAATATAATTATAAGGAAAAACGTATATAATCACTGCA

ATACTCTAATTTAAAATGGACTCagcttttcaattcaattcatcat 
IRA1 FW1-

DBVPG6044 
517266-517344 

CAACAAATATAAAACAAAATATAATTATAAGGAAAAACGTATATAATCACTGCA
ATACTCTAATTTAAAATCACTCGagcttttcaattcaattcatcat 

IRA1-RV 526622-526702 
TTTTGCCCTGCAAATAGAGCTTCAAACTTAACATTCTTCTTCAGCATATAACAT

ACAACAAGATTAAGGCTCTTTCTAAAAagctttttctttccaatt 

IRA2-FW-YPS128 171000-171070 
TTTCCCCCAACGTTACACCATTTTTTGATATCAACTAAACTGTATACATTATCT

TTCTTCAGGGAGAAGCAGGACTCagcttttcaattcaattcatcat 
IRA2-FW-

DBVPG6044 
171000-171070 

TTTCCCCCAACGTTACACCATTTTTTGATATCAACTAAACTGTATACATTATCT
TTCTTCAGGGAGAAGCACACTCGagcttttcaattcaattcatcat 

IRA2-RV1 180309-180389 
AGAAAACCCTAACATGAGATATGTACATTCATGCTTACAGATAGATATTGATA

TTTCTTTCATTAGTTTATGTAACACCTCagctttttctttccaatt 

  
  
Sequence coordinates for chromosome II (IRA1) and XV (IRA2) are based on the S288c 
genome from the SGD database. The target sequence in the primers is shown in upper case, 
the unique sequence tag used for the real time PCR is underlined and the sequence that 
amplifies the selectable marker (URA3) is in lower case. 
 



Supplementary Table 13. Primers used for pyrosequencing. 
 
 

Chr Kb Forward primer Reverse Primer Sequencing primer 

II 497 
CTTTTCTGTTTCCAGAGATTTC

AA 
GCCCCCGCCCGTTAAATGAAAAAATC

GGTTTGTTG 
TCTATATCTGAATTTGAACTAGTA 

II 517 
GCCCCCGCCCGCTGAGTCTG

AACTTAGCCAGTTGA 
TTGTTACTTGAAGTCGGCTTCG 

GGTACCTTTAAATAATACACTAAA
A 

II 538 
GCCCCCGCCCGTTGACTTCAG

GGGGGAAACAA 
TGCGTGCATTCTACCCTTTGA GCTCTTCCTCCCAAGATA 

IV 1286 
ACCTTGGGAACATCGGACTAT

T 
GCCCCCGCCCGCATGACATCGTGTTA

TAAGAGTTCAGA 
GTGTTGGTTTTTCACAAT 

IV 1306 TTAGTCACAATCCGAAGTCCG 
GCCCCCGCCCGGTACCGCTGAACTAT

CGGATG 
CAGATAGCGATACAACCT 

IV 1321 
CCGGTGGCAAAAGTAAGAACA

A 
GCCCCCGCCCGGCCCACTGTTTGCTT

TTTGGTA 
AAAAGCTAGACCTAGATTGA 

XV 171 
CGATTTATCATTGCCTACTTTT

GC 
GCCCCCGCCCGGGCCTAGCCATTAT

CCAAAACAT 
CATTACAGCGCCAAA 

 

 



Supplementary Table 14. QTL mapping resolution for simulated data. 
 
 
 
fq 0.99 0.9 0.8 0.65 
wi (cM) 159.6 139.2 110.4 41.2 
wp (cM) 4.8 6.6 8.4 12.8 

 

The influence of the final allele frequency fq on the mapping resolution quantified by the width of 
the interval inferred to be changing in allele frequency (wi), and the width of the QTL peak (wp). 
See Supporting Text for details on the simulation procedure. To give intuition for 
correspondance with physical map, under the assumption of 100 uniformly distributed 
recombination events per segregant for 12th generation, one centimorgan corresponds to 
roughly one kilobase. 
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