1

Supporting Online Material for “Adaptive seeds tame
genomic sequence comparison”

Szymon M. Kietbasg Raymond Wa#h Kengo Sat®,
Paul Hortor, Martin C. Frith?

!Department of Computational Biology, Max Planck Institute
for Molecular Genetics, lhnestr 63-73, 14195 Berlin, Gerynan
2Computational Biology Research Center, AIST,

2-4-7, Aomi, Koto-ku, Tokyo, 135-0064, Japan
3Graduate School of Frontier Sciences, University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan

December 15, 2010

Abstract

This document provides additional information to accompany the paperptidaseeds
tame genomic sequence comparison”. We first describe our algorithnrmtbndi adaptive
seeds and how this is implemented in our softwamST (Section[1 — Methods). This is
followed by additional results with datasets that complement and expand anaihepaper
(Section2 — Additional Results). Next, we describe the systems used if@xpariments,
more information about “pooling”, and our dataset sources as well wslefault settings
chosen for local alignment (Sectigh 3 — Materials). Finally, information peng to our
analogy in Box 1 (Sectidn 4 — Analogy with Text) and some related work notiored in the
main paper is given (Sectigh 5 — Related Work).

Methods

1.1 Methods for finding alignment seeds

Here we describe efficient methods for finding seeds (i.&almhatches) between two sequences.
We will refer to one sequence as the “target”, and the othéh@squery”. The target contains
T bases and the query contai@sbases. A is the number of distinct bases (4 for DNA, 20 for
proteins). The sequences are first translated into a numecding, for examplea — 0,¢c — 1,

g — 2,t — 3. All of these methods consist of two phases: a preprocggdiase and a scanning
phase. In the preprocessing phase, we analyze the targetreeqgto make some data structures
(the “index”). In the scanning phase, we scan across theyqgesuence, looking up matches in
the index.

A TGAAAC B 2 AA C OAA 3CA 3GA 4 TA
012345 3 AA 2 AC 3CC 4 C 4TC
4 AC 3 AG 3CG 4 GG 4 TG
1 GA 3 AT 3CT 4 GIr 51TT

0 TG 5 TTend

Figure S1:. An index for finding fixed-length seeds of length 2. (A) A short DNA seaqce, with
positions written below it. (B) The position table, with corresponding 2-mersdaitiht. (C) The
K-mer table, with 17 entries. Each possible 2-mer is written next to its start.offbe end offset of
each 2-mer is the same as the start offset of the next 2-mer.

1.1.1 Fixed-length seeds

For sake of comparison, we first describe a straightforwagthod to find fixed-length seeds. In
other words, we wish to find all exact matches of lenftibetween two sequences.

In this case, the index consists of two tables: the positibtetand thé<-mer table (Figure[S1).
The position table has one entry per position in the targgtiesece. It stores all the positions in
the target wher@aa. . . aa occurs, then all the positions whem@a. . ac occurs, then all the
positions whereaa. . ag occurs, etc. The<-mer table require®(AX) memory. It stores, for
each possiblé-mer, the start and end offsets in the position table for itvaher.

In the scanning phase, we scan the query sequence from Ilefhtp obtaining thek-mer
starting at each position. This can be don&f()) time, independent of{, by removing one
base from the start of th&-mer and adding one base to the end at each step.KFheers are
represented by arithmetically computable indices, fomgXa: 7(gt gt) — 2 x 43 + 3 x 4% +
2 x 41 + 3 x 4%, Note that the indices of overlappidg-mer’s can be computed in constant time,
e.g. I(tgtc) =4 x (I(gt gt)—2 x 43) + 1. For eachK-mer, in constant time, we can use the
K-mer table to find the start and end offsets in the positioletakhus, we can count all thg-mer
matches irD(Q) time. The number of matches, however, mightlg)7") in the worst case.

The preprocessing phase can be don@(iiv + AX) time. One way is to scan the target twice.
In the first scan, count all th&-mers. Use these counts to constructihener table. In the second
scan, populate the position table.

This method is practical only ifi is not too large, e.g. less tha®. BLAST-like methods
often have such a restriction off*.

1.1.2 Fixed-length spaced seeds

The method described above can be adapted straightfopMardipaced seeds, whefe is the
number of must-match positions. In this case, however, vimma@acompute successive-mer
indices by removing one base from the start and adding oreetbdke end. So the scanning phase
now requiresD(Q K) time, and the preprocessing phase requidEK + AX) time.

1.1.3 Adaptive seeds: definition

The simplest definition of adaptive seeds is: all exact nestdietween query and target sequences,
such that each matching sequence occurs at rhashes in the target. Our algorithm, in fact,
finds something slightly different: all right-minimal examatches that occur at mogttimes in

2

the target. “Right-minimal” means that the matches cannathHmetened on the right-hand side

and still satisfy the criterion. Our algorithm records ot left-hand edge of each seed match,
and subsequently extends an alignment starting from tlge.ethus, non-right-minimal matches

would be redundant. Figure 1C-D in the main paper shows cadmight-minimal matches.

1.1.4 Adaptive seeds: suffix tree

For contiguous seeds, suffix trees (reviewed in [20]) co@dibed to implement adaptive seeds.
The suffix treeV of a target string = ¢,...tr$ is the trie whose root-to-leaf paths have a direct,
one-to-one correspondence to the suffixes; afhile its root-to-internal-node paths have a one-
to-one correspondence with the right-maximal repetitivessrings oft. Where a right-maximal
repetitive substring of is a substring which occurs followed by at least two disticlthracters
in t. We call it repetitive because it occurs at least twice, aghtqimaximal because it occurs
more times than any string produced by adding one charaxtey tight-hand side. The terminal
character '$’ is a special character whose purpose is torertisat no suffix of is a prefix of any
other suffix oft.

Often suffix trees are considered to include sné#ix linkfor each internal node. The suffix
link attached to a node whose path from root spellstput;, is a pointer to the node whose path
from root spells out,...t;. When: = 1 the suffix link points to the root, otherwise...t; always
corresponds to an internal node. This can be seen by obgehaitt;...t; being right-maximal
repetitive implies that,...¢; is also right-maximal repetitive.

Suffix trees with their suffix links can be constructed in tiara&l space linear in the size of the
target text. Onca is constructed, the frequency statistics of each subsiningan be computed
with a depth first search traversal of the suffix tree. An eXarapffix tree with frequency statistics
is shown in Figure[S2.

For contiguous seeds, suffix links enable scanning a queryy;...qo in O(Q) time. The use
of suffix links for this kind of computation is well known. Hewe sketch the method and why it
can be computed efficiently, but omit rigorous proofs.

Consider the process of finding all right-minimal matches ¢fame frequency) between the
target sequenceand a query sequenge= ¢;...qg. This means finding matches for each suffix of
the query, which is naturally done starting with.., thengs..., etc. Note that:

frequencyin_target(g;+1...q;) > frequencyin_target(q;...q;)

Thus ifg,...q; is the right-minimal match for suffiy;..., then the next right-minimal match will
be eitherg;...g; itself or an extension of it; and thus proper prefixeg;Qf...q; never need to be
examined. Conveniently, the last node encountered whemlgd&r ¢;...¢; in ¥ has a suffix link
pointing to exactly where the search igr ;... should start. Using suffix links in this way, the work
done movingupin sufT is constant for each suffix @. In contrast, the work done moving down
in ¥ is not constant for each query suffix. Fortunately, each dwavd move in¥ either terminates
the search for that suffix or permanently moves the leftmbatacter to ever be examined again
in @ to the right. Thus the amortized time of the entire scannimasp i0(Q).

Despite the theoretical good fit that suffix trees have to takapeeds, we chose to use suffix
arrays instead when implementih@\ST. The reason is twofold. First, standard suffix trees do
not work for spaced or subset seeds, although it seems likatysuffix trees can be generalized

Figure S2: An example of a suffix tree with frequency statistics is shown. Coloredvarrepresent
suffix links. The string i¢ at aat $.

Table S1: The proportion ofl ast al run time used for finding adaptive seeds, for the protein se-
quences of Figure 3B in the main paper.

Adaptive seed frequency parameté) (1 2 5 10
Proportion of run time used for finding seeds 29% 15% 6% 4%

to support them. We have not confirmed this in detail, but wepsat that such as generalization
would utilize the following inequality, whereis the span of the seed’s repeating unit:

frequencyin_target(g;.s...q;) > frequencyin_target(q;...q;)

Second, and more critically, suffix trees generally requiie memory than suffix arrays.
Efficient implementations of suffix trees require about 2ebyer base [5]. So the human genome
(~3 billion bases) would need60 gigabytes, and the largest human chromosor#s(Q million
bases) would need5 gigabytes.

1.1.5 Adaptive seeds: enhanced suffix array

Every algorithm that uses a suffix tree can be replaced withlgorithm that uses an enhanced
suffix array and solves the same problem in the same time exip[5]. The advantage is that
enhanced suffix arrays require less memory: 8 bytes per lcaseding to Table 6 of [5]. So the
human genome would need24 gigabytes, and the largest human chromosome would «w@ed
gigabytes.

1.1.6 Adaptive seeds: our implementation

Our implementation is simpler than a full-blown enhancdibsarray, and uses even less memory
(<5 bytes per base). Its theoretical time requirement isimfdout in practice it takes less time to
find the seeds than to extend alignments from them, so thefseldg is fast enough (Tabld 51).

Our index consists of two tables: a suffix array and a “buckieket’. The suffix array has one
entry per position in the target sequence. It stores thdiposiin the target sorted in alphabetical
order of the sequences starting at those positions. Noteshoilar this is to the position table for
fixed-length seeds (Figur€IS1B). The position table storepdisitions sorted according to length
K subsequences: it is like an incompletely-sorted suffixyar@onversely, the suffix array is like
a position table valid for all values df.

The bucket table is like thé&-mer table for fixed-length seeds (Figurie S1C). The diffegenc
is that we store entries for not just one valuefofbut for all values of’ up to some maximum:
K =1,2,3,..., B. This requireg)(A?) memory.

In the scanning phase, we scan the query sequence from kghto At each position in the
guery, we find the shortegt-mer starting at that position, which occurs no more tlidimes in
the target. To do this, we start with = 1 and increase it one base at a time. Wienr< B, we
look up the number of matches using the bucket table. Wkien B, we find the/K'-mer’s start
and end offsets in the suffix array by binary search. The pisaarch is restricted to the offsets
found in the previousk — 1 ™) step.

A ATATTC B 2 ATtC
012345 0 ATaTTc

@]

At TC
C
Tc

wWwhPE O
— <

Figure S3: A spaced suffix array, using a spaced seed pattetril@f (A) A short DNA sequence,
with positions written below it. (B) The spaced suffix array, with correspunduffixes to the right.
Lowercase indicates letters that are skipped when ordering suffixes.

For the preprocessing phase, we use an in-place radix sgyhgiruct the suffix array [35, 26].
Again, this is not theoretically optimal: there are alguwmits to construct suffix arrays M(7") time
[40], and the radix sort does not achieve this guaranteeh®ather hand, the radix sort is simple,
fast in practice (Table[$3), and can be implemented with Orlgg 7") memory overhead [35].

Our current suffix array implementation uses one 4-bytegmesi integer per entry. This means
that we cannot handle chromosomes larger @amases (but we can handle genomes larger than
232 bases, by voluming: see below). By defaduttjs set to the highest possible value such that the
bucket table consumes at most one byte per entry in the suféiy.a

1.1.7 Adaptive spaced seeds

To find adaptive spaced seeds, we use a “spaced suffix arragliré@$3). Let us explain this
with an example. Suppose we choose a spaced seed pattetl afhen, the spaced suffix array
will hold the positions in the target sorted in alphabeticader, except that every third position
is skipped when ordering suffixes. So, for examplegc comes beforacat , andct gat gc
comes beforet gat ag. The radix sort and scanning phase can be adapted straigattiy to
spaced suffix arrays. Moreover, it is possible to constrsptaeed suffix array i) (7") time [24].

1.1.8 Adaptive subset seeds

To find adaptive subset seeds, we use a “subset suffix array’ud_explain this with an example.
Suppose we choose this subset seed patternc, g,t [a,c,g,t | ag,ct |. This means that

in the first two positions®, ¢, g andt are considered distinct and must match exactly, but in the
third positiona andg are considered equivalent, and so a@ndt . As usual, we vary the length

of this pattern by cyclically repeating it. The subset sudiisay will hold the positions in the target
sorted in alphabetical order, except that at every thirdtipos a is considered equivalent @
andc is considered equivalent towhen ordering suffixes. So, for examp#ggc comes before
acat . The radix sort and scanning phase can be adapted straigattly to subset suffix arrays.
Theoretically, it is possible to construct a subset suffrayam linear time using techniques similar
to those for linear time spaced suffix array constructior).[24

1.1.9 Multiple sequences and edges

The target may consist of multiple sequences (e.g. chromesp To handle this, we concatenate
the target sequences into one big sequence, using spebimltéiebases as separators. These

6

A TGAAAC B 2 AAAC C 0OAA 3CA 4G 5TA
012345 3 AAC 2 AC 3 CC 56 5 TC
4 AC 3 AG 3CG 5 GG 5 TG

5 C 3 AT 3CT 5GI 6 TT

1 GAAAC 3AZ 3C 5& 6 TZ

0 TGAAAC 6 Z

Figure S4: An index for finding adaptive seeds, using a bucket table With- 2. (A) A short DNA
sequence, with positions written below it. (B) The suffix array, with cqoesling suffixes to the right.
(C) The bucket table, with 21 entries.

delimiters are guaranteed not to match anything in any gseguence. This prevents artifactual
seed matches that span two target sequences. Delimitestsaradded to the very beginning and
the very end of the query and target. These act as sentiwelbasthe scanning phase does not
need special logic to avoid falling off the end of the seqeenc

When extending alignments from the seeds, we arrange fordlimaiters to have a huge neg-
ative alignment score, so that they automatically terneirthe gapless X-drop algorithm. For
gapped extensions, unfortunately, special logic is ne&aladoid crossing delimiters.

1.1.10 Reverse strands

In order to compare both strands of two DNA sequences, itcasfio compare one strand of one
sequence to both strands of the other. This is easily doneimparing both strands of the query
to one strand of the target, using two successive scanniaggsh

1.1.11 Non-standard bases

DNA sequences in databases frequently contain bases o#eatgt , and protein sequences
often contain amino acids other than the standard twentyctiéal software needs to cope with
such data. In our seed-finding method, non-standard basdseated just like delimiters: they
never match anything.

1.1.12 Animplementation of the bucket table

The bucket table can be implemented in various ways, butdesrable to optimize memory
efficiency, so that we can maximize the valueibfor a given amount of memory. Recall that the
bucket table stores, for each possiblemer whereK < B, the start and end offsets in the suffix
array for thatK-mer. Our current implementation use$”®™ — 1)/(A — 1) entries, where each
entry is one 4-byte unsigned integer (Figuké S4).

First, we need to store the start offset of every possiblmer, which already required”
entries. This information includes the start offset of gv&r-mer with X' < B: for example, the
start offset ofct g is the same as the start offsetaifgaaa. This information also includes the
end offsets of mosi’-mers: for example, the end offsettofca is the same as the start offset of
tgcc.

However, this information does not include the end offsét&’emers that end with . This
is because of delimiters and naie-gt bases. The end offset bfjact might not be the same as

7

the start offset of gaga, because it gacZ occurs, it will sit between them in the suffix array. (
represents a delimiter or n@cgt base, which sorts after the four normal bases.) Therefage, w
additionally need to store the end offset of evéfymer that ends with , taking a furtherd®-!
entries. So we need to sta# + A1 +...+ A+1 entries in total, which equal(si®**—1)/(A-1)
entries.

1.2 Reducing memory usage

Our seed-finding implementation requires a somewhat langeuat of memory: 4-5 bytes per
base for the index, plus 1 byte per base to store the sequisetie We can reduce this a bit by
not indexing nomacgt bases, of which there are many in current reference genoquesees.

In practice, the largest human chromosome neetl$ gigabytes, and the human genome needs
~16 gigabytes. There are several ways to reduce this memageushough none is without
drawbacks. As computer memories continue to become langkcl@eaper, it is not clear whether
these approaches will be needed.

1.2.1 Volumes

We can trivially reduce memory usage by splitting a genortesets of chromosomes, where each
set is sufficiently small, and making a separate index foh eat. LAST does this automatically,
so that the human genome can be processed using 2 gigalwytkes.Scanning phase, the software
compares the query sequence(s) to each volume in turn.

The drawback is that the scanning phase becomes slowemideetae query has to be re-
scanned for each volume. Moreover, adaptive seeds for edoimg are generally different from
adaptive seeds for the whole genome: so this approach doasvays produce identical results.

1.2.2 Sparse indexing

Another simple approach is to index only evé¥§f base in the genome. This method has been used
with success by previous software suctBR&T [27]. This approach carries over straightforwardly
to adaptive seeds and suffix arrays! [28], and is an optiduABT.

The drawback is that many seeds can no longer be found, so segnence similarities may
be missed. On the other hand, when using adaptive seedsespdexing will cause many new
seeds to be found. This is because some matches that occaitimaar(say) ten times with a full
index will occur less than ten times with a sparse index. &ae&ffect on sensitivity is unclear.

1.2.3 Prefix splitting

We can also reduce memory usage by making separate indexgsrfome positions beginning
with different prefixes. For example, we might make 16 index@ne for positions starting with
aa, another for positions starting witkic, and so forth. In the scanning phase, we would compare
the query sequence(s) to each index in turn.

Prefix splitting is similar to voluming, but has some advget Firstly, prefix splitting should
cause little slowdown, because we can rapidly skip overygpesitions that do not start with the
right prefix. Secondly, adaptive seeds found with this apgowill be the same as adaptive seeds

Table S2: Comparison of time and space performance between the orighl and CSA version

of LAST. All timings are measured on Mac OS X 10.6 with Core i7 2.8GHz. The 2nd column:
the elapsed time for building index withast db -p ce6 ce6-sanger Pep. fa. The 3rd col-
umn: the elapsed time for counting matches withstal -j 0 ce6 dnB-fl yBasePep.fa.

The 4th column: the elapsed time for extending matched seeds to gapped alignvitbrh ast al

ce6 dnB-fl yBasePep. f a. The 5th column: the memory usage required for suffix indices.

build count extend memory
Original 6.8s 9.6s 73.2s 42MB
CSAversion 9.1s 27.2s 511.8s 9MB

found without prefix splitting. This is not quite guaranteadaptive seeds shorter than the prefix
length may not be the same, but such short adaptive seeds tgivally occur.

Prefix splitting would complicate tracking gapless aligmiseon each diagonal (described be-
low). This would cause a (perhaps slight) increase in rue tamd/or memory usage (if we store
the same gapless alignment more than once).

In summary, prefix splitting seems promising. We have notiygtiemented it, because it
would add complexity and the need for it is unclear.

1.2.4 Compressed suffix array / FM index

Memory usage can be reduced by using the compressed suéix (@8EA) or Burrows-Wheeler
Transform (BWT) techniques, which have been actively studhatie field of data compression
and have been applied for indexing large texts includingpgess [33, 34, 32]. CSA and BWT do
not store suffix indices themselves, but more compressible@sdifrom which the suffix indices
can be recovered.

We implemented an experimental versiornL@ST with compressed indices based on the FM
index using the wavelet tree, a state-of-the-art datatstresdor CSA and BWT([19]. In order to
employ subset seeds, we applied the lexical naming pr@pposed in [24]. We conducted a
benchmark on th€. eleganandD. melanogastepeptide sequences used in Figure 3B to compare
time and space performance between suffix arrays and cosepresffix arrays.

Table $2 shows that the CSA dramatically reduced the memagyeufor suffix indices. For
counting matches, the CSA version is relatively fast (buts as slow as the original) because of
the efficient backward search algorithm on the FM index. Waeréor extending matched seeds,
the CSA version is 7 times as slow as the original, becauseutines much time to recover the
suffix indices from compressed data structures to obtaimidtehed positions.

In summary, CSA seems promising for small PCs tolu&8T with large genomes. By manag-
ing the maximum hit and minimum length parameters for aslateeds, the CSA versionloAST
might be sufficiently practical. In general, the benefit of CBWT / FM index is not clear-cut,
because these techniques achieve lower memory usage ap#ese of higher time usage.

1.3 Cache (in)efficiency

Cache efficiency is a technique to speed up execution on madenputer hardware. Unfortu-
nately, our suffix array algorithm does not have great caffi@escy. On the one hand, by using

a bucket table, we perform binary searches only in small kbahthe suffix array that are likely
to all be in cache at once. On the other hand, every lookupeistiffix array is accompanied by a
random-access lookup in the target sequence.

A cache-efficient alignment algorithm using fixed-lengted®was recently published [21]. It
requires indexing the query sequence as well as the targistpéssible that a similar approach
could be used for adaptive seeds, but we have not pursuedehis

1.4 Alignment extension inLAST

Having found seedd,AST tries to extend alignments from them. The extension prosedu
broadly the same as BLAST, but we describe the details here.

1.4.1 Gapless extensions

As each seed is found, we perform gapless extensions in lreittidns from the left-hand edge
of the seed match. The aligned bases are scored using amrisitoring matrix, and the exten-
sion terminates when the score drops more than some Yahelow the maximum seen for that
extension([B]. If the total score of the gapless alignmebei®w a threshold valu®, we discard
it.

We also check whether each gapless alignment is “optimaldtther words, we check that all
prefixes and suffixes of the alignment have positive score tlaat the alignment has no segment
with score< —Y. Alignments that fail these checks are discarded.

1.4.2 Gapped extensions

In this phaseAST tries to extend gapped alignments, starting from the gamégnments. It
first sorts the gapless alignments in descending order o€ qbtoeaking ties in an arbitrary but
deterministic way, to make the results reproducible). Thaking each gapless alignment in turn,
it finds the longest run of identical matches within the afigamt, and performs gapped extensions
from either end of the run. This procedure trims off possilotyeliable parts at either end of the
gapless alignment, but it also avoids needless gappedsextesrwhen comparing a sequence to
itself.

The gapped extensions are done with an X-drop algorithm Qir method proceeds anti-
diagonal by antidiagonal (FiguréIS5), as described in 8e@iof [48], except that we do not use
“half-nodes”. For increased speed, we use the dynamic anagiing rearrangement described in
[14].

If the gapped alignment has score less than some threghotd if it is not “optimal” (see
above), itis discarded. Otherwise, we check whether itlapsr(i.e. shares paired bases with) any
of the remaining gapless alignments. If it does, those ga@égnments are marked as redundant,
and we will not waste time extending gapped alignments frioamt

Our alignment extension procedure occasionally produapped alignments that overlap one-
another. To reduce this redundantyST has a final step where it discards any alignment that
shares an endpoint (i.e. identical coordinates in bothesazps) with a higher-scoring alignment.

10

c,glalt|t|c|a
0(-2|-4|-6 Match score: +1
g|-2|-1|-1 Mismatch score: -1
g|-4]|-3 Gap score: -2
al|-6 Maximum score drop: 10
Z

Figure S5: A gapped extension, with the first four antidiagonals completed. Eachatddi the optimal
score for a gapped extension ending at that pdimtdicates a delimiter. For simplicity, this figure uses
linear gap costs instead of affine gap costs.

1.4.3 Faster gapped extension near sequence ends

The gapped X-drop algorithm is inefficient when it startsrritba end of a sequence, which often
happens when aligning short sequences. A simple changesritakere efficient.

Consider the example in Figur&]S5, where the first four amjahials have been filled. When
preparing to fill the fifth antidiagonal, the method checksdelimiters, and finds on&Zf in the
vertical sequence. At this point, the method deduces tleatidiximum possible score increase is
3 (three matches with a maximum score of +1 each). Therefiloeenaximum score drop can be
reduced from 10 to 2, without changing the result. This redube number of cells that get filled.

1.5 Self-comparison of large sequences

The basic alignment extension procedure described abdivgavnorribly wrong if we compare
a large sequence to itself. However, it is not uncommon topare two sequences containing
largely identical segments. Therefore we employ severiaptechniques to cope with this.

1.5.1 Tracking gapless alignments on each diagonal

Each gapless alignment is on a fixed “diagonal”, which is herdinate in one sequence minus the
coordinate in the other sequence. While doing gapless eates)sve update a “diagonal table”
that records, for each diagonal, the right-most query-sege coordinate covered by any non-
discarded gapless alignment so far. By checking this taldewsid performing gapless extensions
from seeds that are already covered by a gapless alignmatitowdoing this, comparison of a
large sequence to itself would be catastrophically slow.

Since the number of diagonals can be huge, the diagonaldabkenot actually have a separate
entry for each diagonal. Instead, it has 256 slots, each afhwdtores information for multiple
diagonals. Information for diagonadlis stored in slot numbet mod 256. The memory used by a
slot grows when information for a new diagonal is added. Tanéeract this, we regularly discard
entries with query-sequence coordinates to the left of thieeat scan position. Fortunately, the
memory and time requirements of the diagonal table aregibtgiin practice.

We tried a slight variant of this method: tracking all “optithgapless alignments even if their
score is less than the gapless extension thresholthis variant was slower.

11

1.5.2 Redoing gapless extensions with gapped parameters

Apart from gaps, gapless and gapped extensions may diffevarways. Firstly, they may use
different X-drop values. Secondly, they may score lowexdaters differently (by using different
score matrices): this allows a kind of soft repeat-maskiviggre lowercase letters are treated as
mismatches for gapless extensions but not for gapped éatens

These differences cause trouble when self-comparing a keguence. The highest-scoring
gapless alignment might only cover a small fraction of thepusaice, e.g. because the sequence has
many runs of unknown basesr(n. . .), or because of lowercase masking. The gapped extension
might then expand over the remaining, large fraction of thguence. We call this “death by
dynamic programming”. For example, a gapped extensiorsathe length of human chromosome
1 (250 million bases) would perform dynamic programmingniXadrop-defined band around the
main diagonal, requiring excessive amounts of time and nmgmo

To address this problem, each gapless extension is repesitegthe gapped score matrix and
X-drop value, before proceeding to the gapped extensioaghBhis mostly solves the problem,
but it is still possible to get huge gapped extensions if tBGgap extension penalty) is less than
half the cost of aligningn to itself. (Minor details: The gapless extensions are needbefore
sorting them in order of score, and we discard any that aréopbimal”.)

1.5.3 Avoiding gapped extensions from tandem repeats

Biological sequences often contain tandem repeats. Whert@®lparing a sequence, tandem
repeats produce gapless alignments that are close to, bannthe main diagonal. When we
perform gapped extension from such a gapless alignmentg thea danger that the alignment
might wander onto the main diagonal and then extend overttieedength of the sequence.

Currently, we avoid this problem in an ad hoc way. When we checloYerlaps between
a gapped alignment and remaining gapless alignments, we orak other check too. We take
the run of identical matches that was used to seed the gagigachant, and look for remaining
gapless alignments that represent tandem repeats withiruth, with repeat periogl 1000. Any
such gapless alignments are marked as redundant, and we expamd gapped alignments from
them.LAST has an option to turn off this procedure.

To avoid confusion, let us point out that tandem repeatsectwms separate problems. One is
the problem just described. The other is that short-permpeats give rise to strong alignments
that are probably not homologous. The maximum period lettggh must be considered when
addressing these two issues need not be the same.

2 Additional Results

The sensitivity olLAST and its running time has been evaluated for additional degasd param-
eters which do not appear in the main paper. We report andstigbese results below, according
to data type.

12

Percentage of queries achieving the best score

o o
O O
- 1 =& - 1 oz 2@F ©
- - 111001001001010 o= - - 110+1101... 28777
- - 110110110000 o o0 - - 110+1110... a0 40
110 076" o o F 1101..+1110... ST 0
- = 73
o | Z = 8 o/ 7 / o 0"© o/
© .9 — / 5] 2 —
/6), /O // + ,/O /O "+
/& -9 "7+ / -9 7‘[
< _0 P & O
SAe) Z 0
@o #+ '+ 0
o ;'* / o
3 o A 4 8 1 o A
£/ o
+ + =+
i 4
A
5 E ° Bl
¥ F AT ¥ A
+- - +F
47 /+ /+
W ¥ *
i #
o o
N N
T T T T T T T T T T T T T T T T T T T T
2 5 10 20 50 100 500 2000 2 5 10 20 50 100 500 2000
C D
o o
S A) S A
— |—— no repeat masking — |— all (13.5G)
- - seed step=2 (8.1G)
- - seed+gapless o step=3 (6.3G) /00/9,0
o— ° + step=4 (5.4G) -4 4 +
2 - 0.0 " / S - ’o,yo»“” -/"/
[¢5) O/ _0~ © 09’
9% - _ =P _e& '+
ol & _ -0 ;})@ 4
05~ ’0’140 .o / &;& 4
00 o7 & it
Oo_o~" (g [eVare) +
10 .+ ‘O .
3 2 e} .7 3 - 97 o /
o© +7 + o © o
S X / 7
+ + ++
+ / i
-I'P + 4+
< ~ / o &7
< 7] g + < 7] -Igl-
1 /
§ 7 &
t ! &
* #+ &
g1 % R
T T T T T T T T T T T T T T T T T T T T
2 5 10 20 50 100 500 2000 2 5 10 20 50 100 500 2000

Time (minutes)

Figure S6: Performance of various methods for aligniHg sapienspromoters from the Eukaryotic
Promoter Database (limited to max. 5000nt) to a database of the convpleteisculuggenome. In
each panel, circles indicate adaptive seeds and crosses indicatéefigtu-seeds. The numbers pro-
vide adaptive seed maximum frequency or fixed seed length. (A) Conigus spaced seeds. (B)
Merging best results for two seeds. (C) Effect of different quepeat masking strategies (using
W ndowiVasker). (D) Sparse indexing of the target sequence for different step.size

13

Percentage of queries achieving the best score

o o
Sha 1 © S 1 &= &
- - 111001001001010 o @—olﬁ’o%“ - - 110+1101... o @:06‘/:6§' ,
- - 110110110000'_ (—’O’""%ﬂ/o/ - - - 110+1110... ot @g;o/ H T
110 oe 95 %— 4 1101..+1149=6" 0 — Ty
gé&-o 4 +7 §-0 _H_—H‘_l_/
& 1 Lo~ Ay & 1 o” A
o’ AT ¥ o’ g
(o) Pa o +
L e
4 + + +
g+ / ++ /
/—l_-'_/ + +4/_, +
3 7 +7': / 3 7 + /
/ + +
£ / /
" r 7r
+ +
o o
] /] /
/ /
+ +
+ +
o | o |
N N
T T T T T T T T T T T T T T
1 5 10 50 100 500 1 5 10 50 100 500
S S
—— no repeat masking — all (124Mm)
- - seed o—° - - step=2 (77M) o= ®
0 .
- - seed+gapless) o otp‘ 8 - - step=3 (62M) 9,&/6?'«
o’o.oo———’ ST T step=4 (49M) &0 + +
8=0%—9" e et o
8 - i =Ty 8 1 P +%
B 7 o° ¥
7 +/ ”+/
Pl e fl:/
3 i / 3 b
© ” © 3
+ i o
) | i
+
; J i
g t / g
H +
+
" /
[+
++ +
o + o g
(S (S
T T T T T T T T T T T T T T
1 5 10 50 100 500 1 5 10 50 100 500

Time (minutes)

Figure S7: Performance of various methods for aligniRgyoelii query contigs to a database made
of P. falciparumchromosomes. In each panel, circles indicate adaptive seeds andschodicate
fixed-length seeds. The numbers provide adaptive seed maximumriooiefixed seed length. (A)
Contiguous vs. spaced seeds. (B) Merging best results for two.4€5d=ffect of different query repeat
masking strategies (usintandem Repeat s Fi nder). (D) Sparse indexing of the target sequence
for different step sizes.

14

2.1 Genomic sequence comparisons

In Figure $6 and Figure[§7, we present performandeAST aligning human promoters against
the complete mouse genome dngroeliicontigs against the whole falciparumgenome, respec-
tively. Each panel presents evaluation of a diffedleAST parameter and is discussed below. All
four panels of each figure are drawn to the same coordinatersysnd the black points corre-
spond to the same reference alignments obtained with esmigyseeds and unmasked sequences
(Figure 3A,C in the main paper). The circles denote alignshéar adaptive seeds with maximum
seed frequencieg ranging from 1 to 2000, and the crosses correspond to fixegtheseeds with
lengthsl from 12 to 32.

In general, for alignments of genomic sequences we obseavadaptive seeds clearly outper-
form fixed-length seeds. This means that, for a given seitgjtihe same alignments are identified
faster using adaptive seeds than using fixed-length seedfwrer sensitivities, the time required
for alignment can be reduced by more than an order of magmitud

2.1.1 Contiguous and spaced seeds

In panels A of Figure[S6 and FigurElS7, we compare effectseafdintiguous seetito three spaced
seeds11100100100101(PH-OPT),11011011000QDATA-OPT) and110 PH-OPT and DATA-
OPT are tuned for noncoding and protein-coding DNA [10]. gubseeds improve performance
of alignment for both adaptive and fixed-length cases. Nbedrss, this improvement is much
smaller than one caused by adoption of adaptive seedsdnstéaed-length seeds.

In panel B, we evaluate the effect of performing a single alignt with two different seeds.
For all three pairs of spaced seeds shown in panel A we mehngeatbserved alignment scores. For
each query sequence we selected the alignment which scetted b either with the first seed of
the pair, or with the second one. For computation time we lyirsppmmed the individual running
time for each seed of the pair. This procedure seems to peodoly a small improvement in
sensitivity as compared to the individual non-contiguaesds shown in panel A.

2.1.2 Query masking

In panels C of Figure[$6 and Figur€lS7, we compare performaht&ST on unmasked and
repeat-masked query sequences. For the masked casé¢ sediibmatches are not allowed in the
repetitive regions of the sequence. In addition, we showeffect of masking during gapless
extensions (i.e. counting masked bases as mismatches).

For the two pairs of genomes studied, masking of repetitespiences leads to similar de-
creases in sensitivity for adaptive seeds and fixed-see@s wms with masking and without
masking are compared to each other. In contrast, reductiealoulation time for fixed-length
seeds is noticeably higher than for adaptive seeds. Stdptave seeds with no masking display
better performance than fixed-length seeds with any of g#tedemasking strategies.

2.1.3 Sparse indexes

LAST provides an option to construct the index only for evaiy base in the target genome. This
parameter strongly influences the size of the index.

15

The effect on performance of sparse indexing is shown inlpdhef Figure §6 and Figurd 57.
In both studied datasets, sparse indexing for every setiind or fourth base of the target genome
leads to curves nearly overlapping the curves for the camphelex. Even a slight performance
improvement due to sparse indexing is visible for fixed-trgeeds of shorter lengths. For the
mouse genome, theAST index requires 13.5Gb of disk space for the complete indexaanty
5.4Gb when every fourth base is taken into account. FoPti@ciparumdatabase the size of the
index is reduced from 124Mb for the complete index to 49Mbdweery fourth base. Therefore,
for smaller machines it might be advisable to use sparseinge

2.2 Protein sequence comparisons

In this section, we expand on our results using protein sszpse

2.2.1 Adaptive seeds

Adaptive seeds seem promising for protein comparison lsecamino acids are not equally abun-
dant. For example, a match consisting of two tryptophansrowamight be rare enough to merit
an alignment extension, but three alanines in a row mighbaotAdaptive seeds can capture this
idea.

To test this, we aligned fly(frosophila melanogastgmproteins to worm Caenorhabditis el-
egan3 proteins. These organisms have some highly similar prsfesome extremely diverged
proteins, and everything in between. For each fly proteinaimged to find the highest-scoring
alignment to any worm protein.

As expected, adaptive seeds find highest-scoring aligremeaite often than fixed-length seeds
do, for a given running time (Figure_58). From another pointview, adaptive seeds can find
highest scoring alignments as often as fixed-length seedsbca faster. On the other hand, the
two methods converge in performance as running time andtsgysncrease.

2.2.2 Low complexity masking

The goal of protein sequence comparison is usually (but matya) to identify evolutionary re-
lationships. In this case, we must be careful of low compyegegments, such as short-period
tandem repeats, which are rife in proteins. These leaddogt@lignments that do not reflect evo-
lutionary relationships. To avoid such alignments, low ptarity segments are typically masked
prior to alignment. Therefore, we did some further testsrdfard-masking the query (fly) proteins
with pseg, mirroring the default behavior BLAST.

With masking, the advantage of adaptive seeds over fixegtheseeds is reduced (Figuiig S8B).
This is because masking removes the most egregious nooHmities in sequence composition.
Nevertheless, adaptive seeds retain a clear advantage.

2.2.3 Subset seeds

Subset seeds are promising for protein comparison, becaug® acid substitutions are not
equally common. For example, hydrophobic amino acids oeptane another more often than
they replace hydrophilic amino acids. Subset seeds canregibis ideal [41].

16

Percentage of queries achieving the best score

A B
S
o Adaptive seeds /p+ o Adaptive seeds /,o-l_'-_
+ Fixed-length seeds o 8 - + Fixed-length seeds o/_Q -
o A
o _ . o
© /O/ '.+ O&Q
(<} . o | o
e 8 o
7 - o
o o .
~ v * OF
o . o | o L
/ ° ~ A
6 , /S
© o) + / +
/ - (=3 N
. © .
87 o + o+
N o | Lz
o | + +
< N
o + Subset seeds (Imai) Q4 °4
Subset seeds (cbabcb) — LAST
o | + —— Exact seeds + —— BLAST
@ T T T T T T T T T T T T T T T T
1 2 5 10 20 50 100 200 500 1 2 5 10 20 50 100 200
C D
. . oF
5 o AQaptlve seeds 9 /,o+ o AQaptlve seeds /8"'/
& - + Fixed-length seeds ——9 + Fixed-length seeds o0 =0+
Lo S 4 oA
O&Q . T .
o | o/
o%. < -
o/+ A
A
2 - o°
/o S
o) .
/ +
o |
© N (=g
LV ©
° +
B 3 -
+
g4 o + Q - — d=60
- Subset seeds (cbabch) — d=50
+ —— Exact seeds ++ — d=41
T T T T T T T T T T T T T T T
1 2 5 10 20 50 100 200 1 2 5 10 20 50 100 200

Time (minutes)

Figure S8: Performance of various methods for aligning proteins. For panel A thieips were not
masked, but for panels B-D, low complexity segments in the queries wedentasked withpseg.

(A) Effect of subset seeds. (B) Performancel&ST andBLAST. (C) Effect of subset seeds. (Here,

Imai seeds performed worse than cbabcbh seeds, and are omitteditgndB) Effect of the min-score
parameter for the gapless extension phdsd@he other panels all use= 60, except thaBLAST uses

d=41.

17

On the other hand, there are many possible subset seechgatiad it is hard to know which
is best. We tried just two: “Imai” and “cbabcb”. Imai seeds aratches using a reduced alphabet,
where these groups of amino acids are considered equivalev, WYF, P, C, GA, STQN, DE,
KRH. cbabcb seeds use the Imai alphabet in “b” positions, tHefphabet in “c” positions, and
allow any two characters to match in “a” positions (like ttend care positions in spaced seeds).
As usual, we obtain seeds of any length by cyclically repegtthe pattern.

We found that fixed-length subset seeds perform better tkad-fength exact seeds, and adap-
tive subset seeds perform better than adaptive exact segse $8A,C). (Figure 3 in the main
paper shows Imai seeds.) With adaptive seeds, the improvenss very slight for unmasked
proteins, but a bit more substantial for masked proteink tie cbabcb pattern. It is likely that
more carefully designed patterns would work better.

2.2.4 BLAST

The standard protein comparison tooBAST, which uses yet another seeding strategy: fixed-
lengthvector seed§6, [11]. These allow inexact matching. Specifically, theg aratches whose
score exceeds a threshold, the score being the sum of savresdry matched pair of amino
acids, given by a scoring matrix. It is not obvious whethertoeseeds will perform better than
subset seeds: vector seeds capture amino acid relatisnsioe finely, but subset seeds can be
found with less computational cost. There is evidence thagest seeds perform competitively with
vector seeds [41].

BLAST performed slightly worse thadnAST in comparing our proteins (Figur&€IS8B). It is hard
to say why, because these programs differ in many detaits.effample BLAST looks for nearby
pairs of length-3 vector seeds.) We can conclude th&T performs competitively overall. This
demonstrates that our main result, the advantage of adapter fixed-length seeds, is not an
artifact of implementation.

2.2.5 Minimum gapless alignment score

Finally, we examined an algorithm parametérthe minimum score for passing a gapless align-
ment through to the gapped extension stage. This paramasea lvig effect on performance.
If it is too high we miss gappy alignments, but if it is too lowewisk long run times by trig-
gering expensive gapped extensions too often. The defaluewof 60 gave good performance
for fast/low-sensitivity alignment, but lower values wéetter for slow/high-sensitivity alignment
(Figure $8D)BLAST's value of 41 seems appropriate BItAST’s position on the speed/sensitivity
curve. In any case, our other results are based on a reas@®tdhg for this important parameter.

2.2.6 Summary

In summary, adaptive seeds are useful for protein compariSombining them with subset seeds
leads to even better performance. One idea we did not trydpta@ vector seeds: these would
extend until the accumulated score reaches some rarityeiriaifyet. Our methods are aimed
primarily at giga-scale sequence comparison (e.g. thamdrtranslation of the human genome
versus all known proteins); for smaller problems, slowettrads such aBSI - BLAST and hidden

18

A B C
o 8 8 o o o0 o S o
5 « ® =} o0 © B o 0oO0P©O o
3 & ++ o + 4, o ©
@ &G~ Iy o o © © o
3 o® + ° &0 +
8 o'oo'o /:t 2] b o + + A
2 87 /9 +* + + a 8 1 LFT s
g] A - Y
5 Fhoa + +*t .
5 o +a ot)
2 5 7 ol . T
2 . %
5 + o
s J * a 37+ © o0+
5 3 //’ + A @3 o4°
o o
g + 3 ot
c ot
3 / ! o 10
S oo - - 1111110 o |
a © + A - 11111011000 Q4+ A © 1o
T T
1 5 10 50 500 2 5 10 20 50 200 500 05 1 2 5 10 50 200

Time (minutes)

Figure S9: Performance comparison of fixed-length seeds against adaptive fealigning short
reads from next generation sequencers to their respective genofAgslllustrates how various
spaced seeds can affect fixed-length and adaptive seeds usirenibé sthalianadataset from the
main paper (SRR014005, median read length 105). Also, the effectdaftrepeat-masking with
W ndowMasker (with masking in red; without in black) for (B). melanogaste(SRR014394) and
(C) P. falciparum(SRR006912) are shown. Median read lengths are 36 and 279ctigspe In all
cases, fixed-length and adaptive seeds are indicated-bwarfid “o”, respectively. As a comparison,
megabl ast results are indicated ash””.

Markov models are no doubt more sensitive [7]. On the othedHaAST can use position specific
scoring matrices [18], so it could be developed along sintiitees toPSI - BLAST.

2.3 Short read sequence comparisons

The main paper gives results for one short read sequenceetlatiere, we analyze two additional
datasets, all three of which are obtained from NCBI's SequBeaeal Archivel[2]. The dataset used
in the main paper is based @n thaliana(SRR014005) using the 454 GS 20 platform. The two
additional datasets are based@nmelanogaste{SRR014394) ané. falciparum(SRR006912)
using the lllumina Genome Analyzer and 454 GS 20 platforespectively. Further details about
all three datasets are given in Secfidon 3, below.

Figure $9A expands on our analysis of thethalianadataset by examining the effect spaced
seeds have on alignment. The contiguous seeds of Figurer3idfo adaptive and fixed-length
seeds are shown as solid lines. The two spaced seeds cewalsaitet111110and11111011000
No noticeable difference is seen for adaptive seeds. Fod-feregth seeds, the seed pattern
1111101100(@erforms slightly worse for longer seed lengths.

The next two panels (Figuré S9B-C) present results for softking usingWW ndowivasker
for D. melanogasteandP. falciparum respectively. These results complement those of Figure 3D
in the main paper foA. thaliana In both cases, adaptive seeds outperform fixed-lengthsseed
when masking is not employed.

When masking is used (shown in red), sensitivity drops belhawdf unmasked adaptive seeds.
This is expected since parts of the genome are no longerdsmesi when seeds are sought. In-
terestingly, the accuracy for adaptive and fixed-lengthisedth masking fall below fixed-length

19

Table S3: Run times of ast db andf or nat db. The runs were performed on a 2.53 GHz Intel Xeon
E5540 CPU.

Sequences Preprocessing method Time (sec)
C. elegangproteins | ast db, exact-match seeds 6.35
| ast db, Imai seeds 7.38
| ast db, cbabcb seeds 6.66
for mat db 0.85
D. melanogastegenome | ast db, 1 seeds 98.77
| ast db, 1111110seeds 100.34
| ast db,1111101100Geeds 111.38
format db 3.59
P. falciparumgenome | ast db, 1 seeds 9.53
| ast db, 1111110seeds 9.79
| ast db, 1111101100@eeds 10.50
f or mat db 0.66

seeds without masking fét. falciparum This is because its hight+T content causes 66.8% of its
genome to be masked (see Tallé S4).

It is conceivable that fixed-length seeds are inferior in msults only because our imple-
mentation of them is slow. To test this possibility, we alstained results with the popular tool
nmegabl ast , which uses fixed-length seeds (triangles in Figure S9). ¥gecednregabl ast
to perform similarly to our fixed-length seeds. Surprisyng performs worse, especially for the
D. melanogastedata. This shows that our implementation of fixed-lengtlise® not slow, com-
pared to a widely used alternative.

The performance afegabl ast can be understood by considering its seed search algorithm,
as described in_[36].megabl ast first looks upk-mer matches between the query and target
sequences, whetfeis typically less tharthe seed length. It then tries to extend eaainer match
to the left and to the right using the sequence data. In casgat AST finds fixed-length seeds
by using the bucket table to fifdkmer matches, and then extending them up to the seed length
by binary search in the suffix array. Our method is more efiicier highly repeated:-mers.
megabl ast has the advantage of using less memory: it only needs to iedesyw — k + 1™
base, wherev is the seed length, in order to guarantee finding every exatthhof sizew.

2.4 Other additional information

All running times reported above and in the main paper exclilng time required by ast db

to construct the index. Some of these values are reportesief@ral datasets in Table]|S3. For
comparison, we also report the time foor mat db, the preprocessing program usedBiyAST.

f or mat db is much faster because it does not construct an index.

20

Query Maximum alignment score
sequences System A SystemB System

Féf)ol

1 40 50 50 50
2 50 30 40 50
3 30 60 - 60
4 — — — —
5 70 70 60 70
Sensitivity 50% 75% 25%

Figure S10: An example illustrating pooling using a set of 5 queries and three systemsnghloow
their results are combined to form the pool. The query results that areaugmth the pool are shaded.
The last row gives the performance of the three systems.

3 Materials

3.1 Experiment platform

Experiments were performed on two different sets of Linuxhiaes. Therefore, only times within
the same data type are considered comparable. Experimghtgemomic data were run on a 2.8
GHz AMD Opteron 854 with 64 GB RAM and 1 MB L2 cache, while pratgo and short-read
data were performed on a set of identical 2.0 GHz Dual-Core ABfileron Processor 246 with 6
GB of RAM. No parallelization across servers was employed.

All running times were obtained from the systémne function by combining the time spent
by the process (user time) with the time spent by the systebebalf of the process (system time).

3.2 Pooling

When evaluating multiple methods which heuristically agpeho optimize some score, it is con-
venient to compute the actual optimal score for use as a gafdiard. In our case this would
correspond to computing the full Smith-Waterman alignneérgach query to its target sequence.
Unfortunately this is difficult to do in practice due to thengoutation time required.

Fortunately, in order to evaluate relative performancedwaot really need to have an absolute
gold standard; in the same way that we do not need to know tha&wtk limit of human running
speed in order to decide who is the fastest runner in a group.

More formally, the evaluation performed in our paper is amio what is known apoolingin
the information retrieval community [44]. As illustratenl Figure §1D, for each evaluation point,
namely query sequence, we adopt the maximum score achigaet/method as the gold standard
score for that evaluation point.

3.3 Masking

Three different systems were used for maskipgeg [47], Tandem Repeat s Fi nder [9],
andW ndowivasker [37]. The correspondence between dataset and maskingrsigsgiown in
Table $4. The last column gives the percentage of residaesvdre masked.

Repetitive regions in protein sequences were masked psiag with options-z 1 -q.

21

Table S4: The size of each masked data set and the percentage of residue timatséked. All data
sets are genomes except for the first and third. The system used kinm&sgiven in the third column
while options used are provided in the accompanying text.

. Size Masking
Species (x10° residues) system % masked
D. melanogaste(proteins) 12.4 pseg 12.3%
P. yoelii 20.2 Tandem Repeat s Fi nder 6.3 %
H. sapien€EPD (5k) 9.2 W ndowivasker 27.2%
A. thaliana 119.2 W ndowvasker 22.6 %
P. falciparum 23.2 W ndowivasker 66.9 %
D. melanogaster 139.7 W ndowivasker 23.0 %

The P. yoelii query sequences were masked usliemdem Repeat s Fi nder with the
command lineitrf 400. 1 inux.exe 2 7 7 80 10 50 500 -h -m These parameters,
which mask repeats with periad 500, are simply the ones recommended atfhedem Repeat s
Fi nder website.

All remaining datasets were masked usMgndowiasker in two-pass mode [37]. The
W ndowivasker software is part of th&8LAST+ command-line applications (version 2.2.22+)
from NCBI using the NCBI C++ toolkit. The first pass used defaulta and collected statistics
over the entire genome. The second pass was conducted octgachosome individually with
these statistics andUST enabled {dust true). DUST is a module withinW ndowivasker
for locating and masking low-complexity regions.

3.4 Genomic data
3.4.1 Human and mouse

We used the UCSC Genome Bioinformatics Site as the source bf.theisculugenomic sequence
(versionnm8). Based on the complete unmasked mouse sequencd, ASTr indexes were cre-
ated, for contiguous seeds and for three different spaced satterns110, 11011011000@&nd
111001001001010These indexes were queried with sapienspromoter sequences obtained
from the Eukaryotic Promoter Database, release 100 [42¢ Wiole downloaded set contained
1870 human promoters extended to the maximum length of 50@fstream of the respective
genes, leading to the total sequence size of approx. 9.2Mnt.

We calculated alignments using a score of 2 for matchingeaticles, cost of 1 for transitions
and cost of 2 for transversions |17]. Moreover, the gap erist was set to 16 and gap extension
cost was equal 1. We studied only alignments of score at 1&d5st

3.4.2 Plasmodium

The Plasmodium genomic sequences were downloaded from.5heelgase of the PlasmoDB
database. As the query sequences, we used 2960 conBgga#liifrom the file

Pyoel i1 Genom c Pl asnpoDB- 5. 5. f ast a retrieved on 11/08/2009. The length of the con-
tigs varies from 2000nt to 51,480nt with a mean of 6815nt&htl% A+T content. The database

22

http://genome.ucsc.edu
http://hgdownload.cse.ucsc.edu/goldenPath/mm8/chromosomes/
http://www.epd.isb-sib.ch/
http://plasmodb.org
PyoeliiGenomic_PlasmoDB-5.5.fasta
http://plasmodb.org/common/downloads/release-5.5/Pyoelii/PyoeliiGenomic_PlasmoDB-5.5.fasta

was built from 14 chromosomes Bf falciparumfrom the file
Pf al ci parunGenom ¢ Pl asnpoDB- 5. 5. f ast aretrieved on 07/01/2009. The+T content
of this genome i§9.3%.

We used a scoring system adjusted for the Mgl content of the Plasmodium sequences.
The match score foA-A and T-T pairs was set to 3, and f@-C and GG pairs to 9. We used
a mismatch cost of 4, a gap existence cost of 15 and a gap @xerwst of 3. We considered
alignments scoring more than 200.

3.4.3 Hits Between Plasmodium Genomes

The example of Figure 2 in the main paper which depicts théipos of hits between &. yoelii
contig and theP. falciparumgenome employs the same datasets as above. IR. tiadciparum
genome, the MB2 gene is on chromosome 5 at positions 686,80211640 (4838 nts in length).
Its homologous gene iR. yoeliihas an accession ID of PY03311 and is located at positions 1 to
3342 of contig MALPY00946. The dashed box in blue highlighis area. These locations were
identified using the PlasmoDB web interfate { p: / / pl asnodb. or g/ pl asno/).

In the graph for adaptive seeds, another diagonal line appegond the top left-hand corner
of the homologous region. This is another homologous regiorelated to MB2.

3.5 Protein data

Protein sequences were taken from the filegBasePep. t xt andsanger Pep. t xt , down-
loaded from the UCSC genome database on 07/08/2009. Seguweititaon-standard amino acids
(e.g.X) were excluded. This yielded 21,228 fly proteins and 23,7@0wproteins.

We aligned the proteins using the Blosum62 matrix, with a gagtence cost of 11, a gap
extension cost of 1, and a minimum gapped alignment scor@@fThis is a reasonable threshold,
because-10 alignments with scorg 100 would be expected between random protein sequences
of the size of these datasets. (We determined this uairigl. 1 [43]). We set the max-drop
parameter for the gapped extension phase to 51 (one of thedimumber of value8LAST
allows for this parameter).

Some contortions were needed to fix parameters for NELAST (version 2.2.20). To request
alignments with raw score 100, we used optionsC F -Y 1000000000 -e 0.00012. To
set the gapped max-drop parameter to 51, we used opt¥n20 -Z 20. We also used F F
to turn off BLAST's internal repeat-masking.

The “cbabcb” subset seed pattern was suggested by the selesketesign todl EDERA [30].
We did not use the patterns derived by Roytberg et al. [41absethey used multiple simultane-
ous patterns, but we desired single patterns.

3.6 Short reads sequence data

Three short read datasets were downloaded from the NCBI Segjiad Archive [2], as summa-
rized in Table §5. The first four columns indicate the speeaesession ID, sequencing instrument,
and median read length for each dataset. Duplicate seqaiereze removed and the number pro-
cessed are reported in the fifth column. The last column divesize of the pool — the difference
between these two columns is the number of reads whose ligistnaint score for any method

23

PfalciparumGenomic_PlasmoDB-5.5.fasta
http://plasmodb.org/common/downloads/release-5.5/Pfalciparum/PfalciparumGenomic_PlasmoDB-5.5.fasta
http://plasmodb.org/plasmo/
http://plasmodb.org/plasmo/

Table S5: Datasets selected for our experiments with short reads sequencingliidtda was obtained
from the NCBI Sequence Read Archive [2], with their accession nusiigen in the second column.
The median lengths of the reads, the number of queries processedeaizktbf their respective pools
are given in the last 3 columns.

Median Unique Pool

Species Accession ID Instrument : .
read length queries size
A. thaliana SRR014005 454 GS 20 105 133,420 130,500
D. melanogaster SRR014394 Illumina Genome Analyzer 36 898,275 673,682
P. falciparum SRR006912 454 GS 20 279 7,923 7,903

failed to exceed our minimum threshold. The accuraciesrtegan the graphs are percentages
with respect to this last column’s values.

The genome foA. thalianawas downloaded from the NCBI ftp site [1] on 06/29/2009. Vartsio
3 of theD. melanogastegenome was obtained from the UCSC Genome Browser [3] on the same
date, but withchr Uext r a excluded. The samB. falciparumdataset as the one used for our
genome-based experiments was used (version 5.5 of PlasmoDB)

LAST was compiled usingcc version 3.3.3 with compiler optimizations turned erOg).

Local alignment with ast al was performed with match and mismatch scores of 1 and -1,
respectively. A gap existence cost of 2 and a gap extensgtro€@ were also used. The minimum
alignment score was set at 30.

Experiments with various spaced seed patterns were alformexd, with accuracy results re-
ported for theA. thalianadataset in Figure[$9C. The spaced seed patterns chosen waireedb
from theLAST manual where various patterns were calculated based oadrstze and the num-
ber of allowable mismatches. These patterns were obtaised wther software [13, 29]. The
two chosen onesl(11110and1111101100Pcorrespond to a tag length of 36 and one and two
mismatches, respectively.

For comparison t&. AST’s fixed-length seed implementation, We seleategjabl ast (ver-
sion 2.2.22+)([48], which is part of the NCBLAST+ family of programs. In order to improve its
running time, an index was created using ek enbi ndex tool [36], after building the database
with makebl ast db.

The same parametersla8ST were chosen. As withAST, the running time includes only the
time for alignment and excludes both the database and inéexicn times. Several values for the
length of the fixed-length seed were chosen, starting wstdefault of 28.

For each of the three datasets, its respective pool was tbboyneombining all runs that appear
in the graphs (Figure 3, and Figurg] S9). This includes ak mfrfixed-length and adaptive seeds,
regardless of whether or not masking and spaced seeds waiedad he scores from all indicated
runs of megabl ast were also included. Any other runs not shown in the graphgdparted
elsewhere (such as spaced seed rurisasft db for SRR014394 and SRR006912 in Tablé S3)
were excluded from the pool.

Parameters for fixed-length and adaptive seédsd f, respectively) were chosen in incre-
ments indicated in Figure 3D. In some cases additional kesngere also computed and shown to
reduce the amount of unused space in the figures.

24

3.7 LAST fixed-length seeds compared with. ASTZ and BLASTN

Panel A of Figure 4 demonstrates the similar performandeAST’s fixed-length seeds and the
ones used by ASTZ. LAST was run with parametersal5 - b3 -e200 -d120-x90 -y90

and a scoring matrix adjusted for higkT content. Additionally, the | option was used to
specify seed lengths. FwASTZ we used the following options: - gap=15, 3 - - xdr op=90
--ydrop=90 - - hspt hresh=120 - - gappedt hr esh=200 and the same scoring matrix.
Moreover, we added thenul ti pl e] modifier to the database sequence and both input se-
guences were unmasked witbnmask] . Finally, we used the following options:- noent r opy
--recoverseeds --notransi ti on. We varied seed lengths with the seed=mat ch or

- - seed=hal f options.

SinceBLASTNdoes not support arbitrary scoring matrices, we had toicdinother strategy in
order to calculate performance data for panel B of Figurarét e defined match1), mismatch
(—1), gap existence{7) and gap extension scoresi) which could be processed By ASTN. Ex-
ecuting the program manually for a certain E-value thregkotle- 16), we scanned the output
and identified the score thresholds whBbASTN finds optimal for aligning provided query and
target sequences. ConsequerBlyASTN was executed with argumentsp bl astn-ele- 16
-rl -q -1-G7 -E1 -X28 -2Z28 -y20. Moreover, we used Fn to disable masking of
repetitive sequences and we usatfto specify length of the seed. These parameters, once con-
verted to the units used WyAST, resulted in the following argumentse55 -d15-r1 -ql
-a7 -bl-y13 -x17.

3.8 Y chromosome comparison

Here, we aimed to find homologous regions between the chirggeand human Y chromosomes.
We used the human sequence from GRCh37, and the chimpanzemsedwm Supplementary
File 2 of [25] (Table 8b).

One difficulty is that the sequences have many simple regeats asATATATATATATAT,
leading to regions that are similar but probably not homoieg To deal with this, we identified
simple repeats in both sequences, using Tandem Repeats &i@devith option®2 5 5 80 10
30 200 -h -m -r [9]. We used these options, which mask repeats with pefi@d0, because
they have been shown to supress spurious alignments of miaanraNA [17]. We marked these
repeats using lowercase letters. We did not identify or noénker kinds of repeats, such as LINEs
and SINEs.

Next, we indexed the human sequence usiagt db - ¢, and aligned the sequences using
| astal -ul -g3 -e30. Option-c excludes lowercase letters from seeds, and optioh
treats them as mismatches during gapless extensions. rOmi® sets the mismatch cost to 3:
together with the default match score of 1, this scoring sehes appropriate for sequences with
~99% identity [45]. Finally,- e30 selects alignments with score 30. This score threshold is
high enough to avoid chance similarities: the expected murmabalignments with scorg: 30 in
random sequences of the same size and A+T composition i9dy. (We determined this using
ALP1. 1[43])

To quantify the amount of chimpanzee sequence with homologyuman, we counted all
bases that lay within anyAST alignment. These alignments do not contain huge gaps: taeltle
setting of the gapped X-drop parameter limits the gap sizdto

25

Chromosome Sequenced bases A+T (%) Simple repeats (%)

HumanY 25 653 566 60 11
Chimpanzee Y 26 041 480 60 12

Table S6: Statistics of chimpanzee and human Y chromosomes.

As a negative control, we reversed the repeat-marked chpggasequence (without comple-
menting it), and aligned it to the human sequence, using @dhgesoptions as above. Because
DNA never evolves by reversal, there are no true homologidisis test. The alignment produced
zero output, suggesting that our procedure is effective@tiang false-positive (non-homologous)
alignments.

Note that our method is unable to distinguish orthologogsores from paralogous regions. It
seems extremely difficult to distinguish orthologs fromalags, especially if gene conversion is
rife in Y chromosomes [25].

3.9 Expected frequencies of adaptive seeds

Figure 1C-D in the main paper shows the expected frequentiadaptive seeds between uni-
formly random sequences. We obtained these frequenciesrigrating pseudorandom sequences
of the appropriate lengths, and counting the adaptive sged h

4 Analogy with Text

For our analogy, the story “Alice’s Adventures in Wondedgnby Lewis Carroll, was taken
from the Canterbury corpus![8], a publicly-available corpleseloped for the evaluation of text
compression systems. The story was pre-processed by tiogvall letters to lower case (case-
folding), reducing all words to their root form (stemmin@@R], and ensuring that the story is a
sequence of words, irrespective of the interleaved putiotu@and white space. It is from this
post-processed form where we obtained the given statisfidsle a system was used to do this
pre-processing [46], a simpler system could have been uged the story’s small size.
There are significant differences between this analogy angbsequence alignment:

1. Case-folding and stemming are problems specific to natamgluages and different prob-
lems would arise for sequence alignment.

2. Given that natural language text can be re-arranged withmal loss in meaning, alignment
is perhaps inappropriate for text searching.

3. The string being sought (“The Queen of Hearts, she made sarts”) is known to exist
(exactly) in the story. In practice, more efficient text sftaémg algorithms could have been
deployed.

Despite these differences, the analogy is meant only asaange to introduce the main paper
since text management is a skill that many readers would@rbe familiar with.

26

5 Related Work

Here we describe related work by other researchers. Desmitefforts we have likely neglected
some relevant work, for which we apologize. To put our metinddstorical perspective: we made
a working prototype in 2007 and published it on the Web in 2008

5.1 Variable length seeds

Adaptive seeds are similar to the “variable length seedstudeed earlier by Gg0s [16]. Variable
length seeds start with standakdtmer lookup tables for finding fixed-length seeds of lenfth
Shorter seeds are then created by merging lookup tablegfdri/-mers with common prefixes.
This merging is guided by<-mer counts in the target sequence (like our method) andtbsr le
frequencies in the query sequence (unlike our method). Egdiknitation is that the seeds can
only become shorter: they cannot become longer than(And K cannot be arbitrarily large,
because the memory requirement increases exponentiatyAv) Thus, the number of seed
matches remain®(Q71") in the worst case, just as for fixed-length seeds.

5.2 Sequence comparison with suffix arrays

QUASAR is an early sequence comparison method using a suffix &rey [Lhis method en-
abled much faster sequence comparison, but is restrictedaiching for strongly similar DNA
sequences. It uses a suffix array to find fixed-length exaatheat(4-grams”): the only advan-
tage of the suffix array over a standard hash table is thardift match lengths can be used without
rebuilding the index from scratch.

5.3 Spaced suffix arrays

The per Malgorithm uses periodic spaced seeds to map DNA reads targend5]. Although
the publication does not use the term “suffix array”, it déss a spaced suffix array very similar
to ours. They do not use adaptive seeds, however: insteadleghgthen each seed until it reaches
the end of the DNA read. This method fulfils their objectivefiatiing all alignments with up to
three mismatches, but is not a general approach to findinglowarity alignments.

BFAST also uses spaced seeds for mapping DNA reads to genomes$eapdidtication does
use the term “suffix array [23]. On the other hand, it usesdilength seeds. So it does not
make full use of suffix arrays, and it could have used a stahaaproach of hashing with collision
resolution.

5.4 Maximal unique matches

The MUMrer system compares large sequences by finding maximal unigtehese[31]. It can
find exact matches that are unique in either both, or just ohéhe sequences. The latter is
similar to adaptive seeds with a maximum frequency of 1 (ekteat adaptive seeds are right-
minimal instead of maximal). This approach has been usefutémparing highly similar (but
large) sequences, but the strict uniqueness requirenmaits lits sensitivity. To overcome this

27

limitation, MUMrer has an option to find all (not just unique) maximal matchegésrthan some
threshold, but this is then similar to fixed-length seed#h wotentiallyO(Q1T") matches.

5.5 Rare multiple exact matches

Also related is an algorithm to find rare maximal exact masdiRMEMS) [38]. This method finds
maximal exact matches that occur at mgstimes in one sequence and at mgstimes in the
other sequence. Furthermore, the method was generaliredltiple sequence comparison.

RMEMs are more general than adaptive seeds, but also requiere complex algorithm.
Specifically, they requir® (¢, +t1t2T') time andO (¢, T') spacel[3B]. So this algorithm is efficient
only whent; andt, are small, whereas adaptive seeds are similar to RMEMstwithoo.

An interesting difference between RMEMSs and adaptive sesttieit RMEMSs allow symmetric
matching, by choosing, = ¢,. In some cases, however, asymmetric matching is desirbialee
are three examples:

e Mapping short DNA reads to a genome. It makes sense to lintitlmea between one part
of a read and many parts of the genome, but not to limit matbkeéseen one part of the
genome and many reads. With adaptive seeds, we use the gasadime “target” and the
reads as the “query”.

e Annotating repeats in genomes, which is often done by compéne genome to a library
of repeat sequences. In this case, we do not wish to limitmeatbetween one repeat and
many parts of the genome. Using adaptive seeds, we make tioengethe “query” and the
repeat library the “target”.

e Annotating a set of proteins by comparing them to all othevkm proteins. It makes sense
to limit the number of reference proteins aligned to one gpeotein, but not vice versa.

In general, asymmetric matching seems desirable whenevetish to “annotate” query sequences
by comparing them to reference sequences.

As far as we know, RMEMSs have not been combined with a subse&L&ST-like extension
step. Instead, they have been combined with subsequemtiratpand filling steps irCoCoNUT
[4]. This system can find chains of colinear non-overlapfRMEMs, and then globally align
the sequences between the RMEMSs in each chain. CompaRidAST-like extension (dynamic
programming with X-drop), chaining and filling may be faster long alignments, and it can be
used for multiple sequence comparison. On the other IBIDAST-like extension can find subtle
alignments that contain just one seed. In particular, tigmadent of a short DNA read to a genome
may include only one RMEM, and chaining does not help in theec#lso, chaining involves an
extra scoring scheme to define scores for chains, and it isl@at how this can be chosen to get
optimal nucleotide-level alignments. The filling step isegtionable, because it forces alignments
between sequences no matter how dissimilar they are. I, slh@ining and filling is appropriate
for long, strong alignments, but not for short or weak aligmts.

5.6 Longest prefix matches

Finally, adaptive seeds have some similarity to the usergdst prefix matches imegenehl ,
for mapping short DNA reads to genomes|[22]. Taking eachtiposin the read as a starting point,

28

segenehl finds the longest exact match to any place in the genome, asirenhanced suffix
array. If this match occurs fewer than (say) 500 times in theogne,segenehl calculates an
alignment with optimal edit distance for each occurrencertifermoresegenehl can allow a
limited number of differences within prefix matches, by emeuating all possible differences at
certain positions.

The sensitivity osegenehl with exact matches is inherently limited, because thesemeat
arelongest Each match is expected to have about two occurrences irettente, because matches
with more than two occurrences are unlikely to be longese &tception is matches that start near
the end of the read, which are limited bggenehl ’'s maximum occurrence parameter (e.g. 500).
Adaptive seeds, in contrast, need not be longest matchdssatheir sensitivity is arbitrarily
tunable by their maximum frequency parameter. Moreosegenehl is specialized for short
read mapping, and cannot be used for other alignment tasks.

5.7 Summary

From a theoretical computer science perspective, adagtieds are a minor variant of ideas that
have been published before. Adaptive seeds are delibedd®hed in such a way that it is trivial
to find them with suffix tree (or similar) algorithms, compate, say, RMEMs. On the other hand,
we are the first to unify this approach with spaced and suleselss which enables state-of-the-art
sensitivity.

Our main contribution is practical. By adapting and comhjnprevious ideas, we have the
first BLAST-like method that can find similar regions in giga-scale seges, with high sensitivity
and without repeat-masking. All previous methods (inahgdshort read mappers) either required
repeat masking or had limited sensitivity. Although it ofteemains desirable to mask simple
repeats (in order to avoid non-homologous alignments3,ighnot always desirable (e.g. for read
mapping), and these are not the only kind of repeat.

References

[1] NCBIgenomesftp://ftp.ncbi.nih.gov/genomnes/.
[2] NCBI sequence read archivket t p: / / www. ncbi . nl m ni h. gov/ Traces/sra/ .
[3] UCSC genomesht t p: / / hgdownl oad. cse. ucsc. edu/ downl oads. ht m .

[4] M. Abouelhoda, S. Kurtz, and E. Ohlebusch. CoCoNUT: an ieffitsystem for the compar-
ison and analysis of genome3MC Bioinformatics9:476, 2008.

[5] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacinfiistrees with enhanced suffix
arrays.Journal of Discrete Algorithms:53—-86, 2004.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.grhan. Basic local alignment
search toolJ. Mol. Biol, 215:403-410, 1990.

[7] S.F. Altschul, T. L. Madden, A. A. Sdiffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI-BLAST: a new generation of protein dalsearch programs.
Nucleic Acids Res25:3389-3402, 1997.

29

ftp://ftp.ncbi.nih.gov/genomes/
http://www.ncbi.nlm.nih.gov/Traces/sra/
http://hgdownload.cse.ucsc.edu/downloads.html

[8] R. Arnold and T. Bell. A corpus for the evaluation of losslempression algorithms. In
Proc. 1997 IEEE Data Compression Conferenoages 201-210, 1997.

[9] G. Benson. Tandem Repeats Finder: a program to analyze @§AencesNucleic Acids
Res, 27:573-580, 1999.

[10] B. Brejova, D. G. Brown, and T. Vina Optimal spaced seeds for homologous coding regions.
J Bioinform Comput Bigl1:595-610, 2004.

[11] B. Brejova, D. G. Brown, and T. Vina Vector seeds: An extension to spaced seddsrnal
of Computer and System Sciencé3364—-380, 2005.

[12] S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, ZaRj and M. Vingron. g-gram
based database searching using a suffix array (QUASARPrdao. 3rd Annual Conference
on Research in Computational Molecular Biologyages 77-83, 1999.

[13] S. Burkhardt and J. &kkainen. Better filtering with gapped g-gramBundamenta Infor-
maticae XXIl] pages 1001-1018, 2003.

[14] M. Cameron, H. E. Williams, and A. Cannane. Improved gappkgnment in BLAST.
IEEE/ACM Transactions on Computational Biology and Bioinfatics 1:116-129, 2004.

[15] Y. Chen, T. Souaiaia, and T. Chen. PerM: efficient mappinghort sequencing reads with
periodic full sensitive spaced seed&oinformatics 25:2514-2521, 2009.

[16] M. Cdirds. Performing local similarity searches with variableggnseeds. IfProc. 15th
Annual Symposium on Combinatorial Pattern Matchimglume 3109 ofLecture Notes in
Computer Sciencgages 373-387, 2004.

[17] M. C. Frith, M. Hamada, and P. Horton. Parameters for esteugenome alignmen8MC
Bioinformatics 11:80, 2010.

[18] M. C. Frith, R. Wan, and P. Horton. Incorporating sequequelity data into alignment
improves DNA read mappindNucleic Acids Res38:e100, 2010.

[19] R. Grossi, A. Gupta, and J. Vitter. High-order entropyvpressed text indexes. Rioc. 14th
Annual ASM-SIAM Symposium on Discrete Algorithms (SODA {£8yes 841-850, 2003.

[20] D. Gusfield.Algorithms on Strings, Trees and Sequendeambridge Press, New York, NY,
1997.

[21] F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, |. Bir&. E. Eichler, and S. C. Sahinalp.
mrsFAST: a cache-oblivious algorithm for short-read magpNature Methods7:576-577,
2010.

[22] S. Hoffmann, C. Otto, S. Kurtz, C. Sharma, P. Khaitovichyagel, P. Stadler, and J. Hack-
ermuller. Fast mapping of short sequences with mismatchesitions and deletions using
index structuresPLoS Comput. Bial5:e1000502, 2009.

30

[23] N. Homer, B. Merriman, and S. Nelson. BFAST: an alignmewl for large scale genome
resequencingPLoS One4:e7767, 2009.

[24] P. Horton, S. M. Kietbasa, and M. C. Frith. DisLex: a trinmmation for discontiguous suffix
array construction. IfProc. of the Workshop on Knowledge, Language, and Learning in
Bioinformatics (KLLBI) pages 1-11, 2008.

[25] J. Hughes, H. Skaletsky, T. Pyntikova, T. Graves, S.Daalen, P. Minx, R. Fulton, S. Mc-
Grath, D. Locke, C. Friedman, B. Trask, E. Mardis, W. WarreiR&oping, S. Rozen, R. Wil-
son, and D. Page. Chimpanzee and human Y chromosomes ar&kabiyativergent in
structure and gene contemMature 463:536-539, 2010.

[26] J. Karkkainen and T. Rantala. Engineering radix sort for string®roc. 15th International
Symposium on String Processing and Information Retrjex@lme 5280 olLNCS pages
3-14, 2008.

[27] W. J. Kent. BLAT —the BLAST-like alignment toolGenome Research2:656-664, 2002.

[28] Z. Khan, J. Bloom, L. Kruglyak, and M. Singh. A practicagarithm for finding maximal
exact matches in large sequence datasets using sparsasaf§is.Bioinformatics 25:1609—
1616, 2009.

[29] G. Kucherov, L. N&, and M. Roytberg. Multiseed lossless filtratidEEEE/ACM Transac-
tions on Computational Biology and Bioinformati@51-61, 2005.

[30] G. Kucherov, L. N&, and M. Roytberg. A unifying framework for seed sensitivatyd its
application to subset seeddournal of Bioinformatics and Computational Biolqgy.553—
569, 2006.

[31] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M. Shumway. Antonescu, and S. Salzberg.
Versatile and open software for comparing large genor@esiome Biology5:R12, 2004.

[32] B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ulstadad memory-efficient align-
ment of short DNA sequences to the human genad@enome Biologyl0:R25, 2009.

[33] H. Li and R. Durbin. Fast and accurate short read aligrimatin Burrows-Wheeler trans-
form. Bioinformatics 25:1754-1760, 2009.

[34] R. Li, C. Yu, Y. Li, T. Lam, S. Yiu, K. Kristiansen, and J. Wgn SOAP2: an improved
ultrafast tool for short read alignmerioinformatics 25:1966-1967, 2009.

[35] P. M. Mcllroy, K. Bostic, and M. D. Mcllroy. Engineeringadix sort. Computing Systems
6:5-27, 1993.

[36] A. Morgulis, G. Coulouris, Y. Raytselis, T. L. Madden, R. @&gvala, and A. A. Schffer.
Database indexing for production MegaBLAST searchBsinformatics 24:1757-1764,
2008.

[37] A. Morgulis, E. M. Gertz, A. A. Scéffer, and R. Agarwala. WindowMasker: window-based
masker for sequenced genomB#informatics 22:134-141, 2005.

31

[38] E. Ohlebusch and S. Kurtz. Space efficient computatiorage maximal exact matches
between multiple sequencek.Comput. Biol.15:357-377, 2008.

[39] M. F. Porter. An algorithm for suffix stripping?rogram 14:130-137, 1980.

[40] S. J. Puglisi, W. F. Smyth, and A. H. Turpin. A taxonomysofffix array construction algo-
rithms. ACM Computing Survey89, 2007.

[41] M. Roytberg, A. Gambin, L. Ne, S. Lasota, E. Furletova, E. Szczurek, and G. Kucherov. On
subset seeds for protein alignmelEEE/ACM Transactions on Computational Biology and
Bioinformatics 6:483—-494, 20009.

[42] C.D. Schmid, R. Perier, V. Praz, and P. Bucher. EPD in itstigéh year: towards complete
promoter coverage of selected model organisigcleic Acids Res34:D82-D85, 2006.

[43] S. Sheetlin, Y. Park, and J. Spouge. The Gumbel preifdctor gapped local alignment
can be estimated from simulations of global alignmeticleic Acids Res33:4987-4994,
2005. ht t p: // ww. ncbi . nl m ni h. gov/ CBBr esear ch/ Spouge/ ht nl . ncbi /

I ndex/ software. htm .

[44] K. Sparck Jones and C. V. Rijsbergen. Report on the need for and mo$ an “ideal”
information retrieval test collection. Technical repd@pmputer Laboratory, University of
Cambridge, 1975.

[45] D. J. States, W. Gish, and S. F. Altschul. Improved deiitsi of nucleic acid database
searches using application-specific scoring matritdéesthods 3:66—70, 1991.

[46] R. Wan. Browsing and Searching Compressed DocumeRtsD thesis, University of Mel-
bourne, Australia, Dec. 2003.

[47] J. C. Wootton and S. Federhen. Analysis of compositigriaibsed regions in sequence
databasedVlethods in Enzymolog@66:554-571, 1996.

[48] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedgorithm for aligning DNA
sequences]. Comput. Biol.7:203-214, 2000.

32

http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/index/software.html
http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/index/software.html

	Methods
	Methods for finding alignment seeds
	Fixed-length seeds
	Fixed-length spaced seeds
	Adaptive seeds: definition
	Adaptive seeds: suffix tree
	Adaptive seeds: enhanced suffix array
	Adaptive seeds: our implementation
	Adaptive spaced seeds
	Adaptive subset seeds
	Multiple sequences and edges
	Reverse strands
	Non-standard bases
	An implementation of the bucket table

	Reducing memory usage
	Volumes
	Sparse indexing
	Prefix splitting
	Compressed suffix array / FM index

	Cache (in)efficiency
	Alignment extension in LAST
	Gapless extensions
	Gapped extensions
	Faster gapped extension near sequence ends

	Self-comparison of large sequences
	Tracking gapless alignments on each diagonal
	Redoing gapless extensions with gapped parameters
	Avoiding gapped extensions from tandem repeats

	Additional Results
	Genomic sequence comparisons
	Contiguous and spaced seeds
	Query masking
	Sparse indexes

	Protein sequence comparisons
	Adaptive seeds
	Low complexity masking
	Subset seeds
	BLAST
	Minimum gapless alignment score
	Summary

	Short read sequence comparisons
	Other additional information

	Materials
	Experiment platform
	Pooling
	Masking
	Genomic data
	Human and mouse
	Plasmodium
	Hits Between Plasmodium Genomes

	Protein data
	Short reads sequence data
	LAST fixed-length seeds compared with LASTZ and BLASTN
	Y chromosome comparison
	Expected frequencies of adaptive seeds

	Analogy with Text
	Related Work
	Variable length seeds
	Sequence comparison with suffix arrays
	Spaced suffix arrays
	Maximal unique matches
	Rare multiple exact matches
	Longest prefix matches
	Summary

