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Abstract

This document provides additional information to accompany the paper “Adaptive seeds
tame genomic sequence comparison”. We first describe our algorithm for finding adaptive
seeds and how this is implemented in our software,LAST (Section 1 – Methods). This is
followed by additional results with datasets that complement and expand on themain paper
(Section 2 – Additional Results). Next, we describe the systems used for our experiments,
more information about “pooling”, and our dataset sources as well as any default settings
chosen for local alignment (Section 3 – Materials). Finally, information pertaining to our
analogy in Box 1 (Section 4 – Analogy with Text) and some related work not mentioned in the
main paper is given (Section 5 – Related Work).

1 Methods

1.1 Methods for finding alignment seeds

Here we describe efficient methods for finding seeds (i.e. initial matches) between two sequences.
We will refer to one sequence as the “target”, and the other asthe “query”. The target contains
T bases and the query containsQ bases.A is the number of distinct bases (4 for DNA, 20 for
proteins). The sequences are first translated into a numericencoding, for example:a→ 0,c→ 1,
g→ 2, t→ 3. All of these methods consist of two phases: a preprocessing phase and a scanning
phase. In the preprocessing phase, we analyze the target sequence to make some data structures
(the “index”). In the scanning phase, we scan across the query sequence, looking up matches in
the index.
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A TGAAAC B 2 AA C 0 AA 3 CA 3 GA 4 TA
012345 3 AA 2 AC 3 CC 4 GC 4 TC

4 AC 3 AG 3 CG 4 GG 4 TG
1 GA 3 AT 3 CT 4 GT 5 TT
0 TG 5 TT end

Figure S1: An index for finding fixed-length seeds of length 2. (A) A short DNA sequence, with
positions written below it. (B) The position table, with corresponding 2-mers to the right. (C) The
K-mer table, with 17 entries. Each possible 2-mer is written next to its start offset. The end offset of
each 2-mer is the same as the start offset of the next 2-mer.

1.1.1 Fixed-length seeds

For sake of comparison, we first describe a straightforward method to find fixed-length seeds. In
other words, we wish to find all exact matches of lengthK between two sequences.

In this case, the index consists of two tables: the position table and theK-mer table (Figure S1).
The position table has one entry per position in the target sequence. It stores all the positions in
the target whereaaa...aa occurs, then all the positions whereaaa..ac occurs, then all the
positions whereaaa..ag occurs, etc. TheK-mer table requiresO(AK) memory. It stores, for
each possibleK-mer, the start and end offsets in the position table for thatK-mer.

In the scanning phase, we scan the query sequence from left toright, obtaining theK-mer
starting at each position. This can be done inO(Q) time, independent ofK, by removing one
base from the start of theK-mer and adding one base to the end at each step. TheK-mers are
represented by arithmetically computable indices, for example: I(gtgt) → 2 × 43 + 3 × 42 +
2× 41 + 3× 40. Note that the indices of overlappingK-mer’s can be computed in constant time,
e.g. I(tgtc) = 4 × (I(gtgt)−2 × 43) + 1. For eachK-mer, in constant time, we can use the
K-mer table to find the start and end offsets in the position table. Thus, we can count all theK-mer
matches inO(Q) time. The number of matches, however, might beO(QT ) in the worst case.

The preprocessing phase can be done inO(T +AK) time. One way is to scan the target twice.
In the first scan, count all theK-mers. Use these counts to construct theK-mer table. In the second
scan, populate the position table.

This method is practical only ifAK is not too large, e.g. less than232. BLAST-like methods
often have such a restriction onAK .

1.1.2 Fixed-length spaced seeds

The method described above can be adapted straightforwardly to spaced seeds, whereK is the
number of must-match positions. In this case, however, we cannot compute successiveK-mer
indices by removing one base from the start and adding one base to the end. So the scanning phase
now requiresO(QK) time, and the preprocessing phase requiresO(TK + AK) time.

1.1.3 Adaptive seeds: definition

The simplest definition of adaptive seeds is: all exact matches between query and target sequences,
such that each matching sequence occurs at mostf times in the target. Our algorithm, in fact,
finds something slightly different: all right-minimal exact matches that occur at mostf times in
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the target. “Right-minimal” means that the matches cannot beshortened on the right-hand side
and still satisfy the criterion. Our algorithm records onlythe left-hand edge of each seed match,
and subsequently extends an alignment starting from this edge. Thus, non-right-minimal matches
would be redundant. Figure 1C-D in the main paper shows countsof right-minimal matches.

1.1.4 Adaptive seeds: suffix tree

For contiguous seeds, suffix trees (reviewed in [20]) could be used to implement adaptive seeds.
The suffix treeΨ of a target stringt = t1...tT$ is the trie whose root-to-leaf paths have a direct,
one-to-one correspondence to the suffixes oft; while its root-to-internal-node paths have a one-
to-one correspondence with the right-maximal repetitive substrings oft. Where a right-maximal
repetitive substring oft is a substring which occurs followed by at least two distinctcharacters
in t. We call it repetitive because it occurs at least twice, and right-maximal because it occurs
more times than any string produced by adding one character to its right-hand side. The terminal
character ’$’ is a special character whose purpose is to ensure that no suffix oft is a prefix of any
other suffix oft.

Often suffix trees are considered to include onesuffix link for each internal node. The suffix
link attached to a node whose path from root spells outt1...ti, is a pointer to the node whose path
from root spells outt2...ti. Wheni = 1 the suffix link points to the root, otherwiset2...ti always
corresponds to an internal node. This can be seen by observing that t1...ti being right-maximal
repetitive implies thatt2...ti is also right-maximal repetitive.

Suffix trees with their suffix links can be constructed in timeand space linear in the size of the
target text. OnceΨ is constructed, the frequency statistics of each substringin t can be computed
with a depth first search traversal of the suffix tree. An example suffix tree with frequency statistics
is shown in Figure S2.

For contiguous seeds, suffix links enable scanning a queryq = q1...qQ in O(Q) time. The use
of suffix links for this kind of computation is well known. Here we sketch the method and why it
can be computed efficiently, but omit rigorous proofs.

Consider the process of finding all right-minimal matches (for some frequencyf ) between the
target sequencet and a query sequenceq = q1...qQ. This means finding matches for each suffix of
the query, which is naturally done starting withq1..., thenq2..., etc. Note that:

frequencyin target(qi+1...qj ) ≥ frequencyin target(qi...qj )

Thus ifqi...qj is the right-minimal match for suffixqi..., then the next right-minimal match will
be eitherqi+1...qj itself or an extension of it; and thus proper prefixes ofqi+1...qj never need to be
examined. Conveniently, the last node encountered when looking for qi...qj in Ψ has a suffix link
pointing to exactly where the search forqi+1... should start. Using suffix links in this way, the work
done movingup in sufT is constant for each suffix ofQ. In contrast, the work done moving down
in Ψ is not constant for each query suffix. Fortunately, each downward move inΨ either terminates
the search for that suffix or permanently moves the leftmost character to ever be examined again
in Q to the right. Thus the amortized time of the entire scanning phase isO(Q).

Despite the theoretical good fit that suffix trees have to adaptive seeds, we chose to use suffix
arrays instead when implementingLAST. The reason is twofold. First, standard suffix trees do
not work for spaced or subset seeds, although it seems likelythat suffix trees can be generalized
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Figure S2: An example of a suffix tree with frequency statistics is shown. Colored arrows represent
suffix links. The string istataat$.
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Table S1: The proportion oflastal run time used for finding adaptive seeds, for the protein se-
quences of Figure 3B in the main paper.

Adaptive seed frequency parameter (f ) 1 2 5 10
Proportion of run time used for finding seeds 29% 15% 6% 4%

to support them. We have not confirmed this in detail, but we suspect that such as generalization
would utilize the following inequality, wheres is the span of the seed’s repeating unit:

frequencyin target(qi+s...qj ) ≥ frequencyin target(qi...qj )

Second, and more critically, suffix trees generally requiremore memory than suffix arrays.
Efficient implementations of suffix trees require about 20 bytes per base [5]. So the human genome
(∼3 billion bases) would need∼60 gigabytes, and the largest human chromosome (∼250 million
bases) would need∼5 gigabytes.

1.1.5 Adaptive seeds: enhanced suffix array

Every algorithm that uses a suffix tree can be replaced with analgorithm that uses an enhanced
suffix array and solves the same problem in the same time complexity [5]. The advantage is that
enhanced suffix arrays require less memory: 8 bytes per base according to Table 6 of [5]. So the
human genome would need∼24 gigabytes, and the largest human chromosome would need∼2
gigabytes.

1.1.6 Adaptive seeds: our implementation

Our implementation is simpler than a full-blown enhanced suffix array, and uses even less memory
(≤ 5 bytes per base). Its theoretical time requirement is inferior, but in practice it takes less time to
find the seeds than to extend alignments from them, so the seed-finding is fast enough (Table S1).

Our index consists of two tables: a suffix array and a “bucket table”. The suffix array has one
entry per position in the target sequence. It stores the positions in the target sorted in alphabetical
order of the sequences starting at those positions. Note howsimilar this is to the position table for
fixed-length seeds (Figure S1B). The position table stores the positions sorted according to length
K subsequences: it is like an incompletely-sorted suffix array. Conversely, the suffix array is like
a position table valid for all values ofK.

The bucket table is like theK-mer table for fixed-length seeds (Figure S1C). The difference
is that we store entries for not just one value ofK, but for all values ofK up to some maximum:
K = 1, 2, 3, ..., B. This requiresO(AB) memory.

In the scanning phase, we scan the query sequence from left toright. At each position in the
query, we find the shortestK-mer starting at that position, which occurs no more thanf times in
the target. To do this, we start withK = 1 and increase it one base at a time. WhenK ≤ B, we
look up the number of matches using the bucket table. WhenK > B, we find theK-mer’s start
and end offsets in the suffix array by binary search. The binary search is restricted to the offsets
found in the previous (K − 1 th) step.
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A ATATTC B 2 ATtC
012345 0 ATaTTc

5 C
1 TAtTC
4 TC
3 TTc

Figure S3: A spaced suffix array, using a spaced seed pattern of110. (A) A short DNA sequence,
with positions written below it. (B) The spaced suffix array, with corresponding suffixes to the right.
Lowercase indicates letters that are skipped when ordering suffixes.

For the preprocessing phase, we use an in-place radix sort toconstruct the suffix array [35, 26].
Again, this is not theoretically optimal: there are algorithms to construct suffix arrays inO(T ) time
[40], and the radix sort does not achieve this guarantee. On the other hand, the radix sort is simple,
fast in practice (Table S3), and can be implemented with onlyO(log T ) memory overhead [35].

Our current suffix array implementation uses one 4-byte unsigned integer per entry. This means
that we cannot handle chromosomes larger than232 bases (but we can handle genomes larger than
232 bases, by voluming: see below). By default,B is set to the highest possible value such that the
bucket table consumes at most one byte per entry in the suffix array.

1.1.7 Adaptive spaced seeds

To find adaptive spaced seeds, we use a “spaced suffix array” (Figure S3). Let us explain this
with an example. Suppose we choose a spaced seed pattern of110. Then, the spaced suffix array
will hold the positions in the target sorted in alphabeticalorder, except that every third position
is skipped when ordering suffixes. So, for example,acgc comes beforeacat, andctgatgc
comes beforectgatag. The radix sort and scanning phase can be adapted straightforwardly to
spaced suffix arrays. Moreover, it is possible to construct aspaced suffix array inO(T ) time [24].

1.1.8 Adaptive subset seeds

To find adaptive subset seeds, we use a “subset suffix array”. Let us explain this with an example.
Suppose we choose this subset seed pattern:a, c, g, t a, c, g, t ag, ct . This means that
in the first two positionsa, c, g andt are considered distinct and must match exactly, but in the
third positiona andg are considered equivalent, and so arec andt. As usual, we vary the length
of this pattern by cyclically repeating it. The subset suffixarray will hold the positions in the target
sorted in alphabetical order, except that at every third position, a is considered equivalent tog
andc is considered equivalent tot when ordering suffixes. So, for example,acgc comes before
acat. The radix sort and scanning phase can be adapted straightforwardly to subset suffix arrays.
Theoretically, it is possible to construct a subset suffix array in linear time using techniques similar
to those for linear time spaced suffix array construction [24].

1.1.9 Multiple sequences and edges

The target may consist of multiple sequences (e.g. chromosomes). To handle this, we concatenate
the target sequences into one big sequence, using special delimiter bases as separators. These
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A TGAAAC B 2 AAAC C 0 AA 3 CA 4 GA 5 TA
012345 3 AAC 2 AC 3 CC 5 GC 5 TC

4 AC 3 AG 3 CG 5 GG 5 TG
5 C 3 AT 3 CT 5 GT 6 TT
1 GAAAC 3 AZ 3 CZ 5 GZ 6 TZ
0 TGAAAC 6 Z

Figure S4: An index for finding adaptive seeds, using a bucket table withB = 2. (A) A short DNA
sequence, with positions written below it. (B) The suffix array, with corresponding suffixes to the right.
(C) The bucket table, with 21 entries.

delimiters are guaranteed not to match anything in any querysequence. This prevents artifactual
seed matches that span two target sequences. Delimiters arealso added to the very beginning and
the very end of the query and target. These act as sentinels, so that the scanning phase does not
need special logic to avoid falling off the end of the sequence.

When extending alignments from the seeds, we arrange for the delimiters to have a huge neg-
ative alignment score, so that they automatically terminate the gapless X-drop algorithm. For
gapped extensions, unfortunately, special logic is neededto avoid crossing delimiters.

1.1.10 Reverse strands

In order to compare both strands of two DNA sequences, it suffices to compare one strand of one
sequence to both strands of the other. This is easily done by comparing both strands of the query
to one strand of the target, using two successive scanning phases.

1.1.11 Non-standard bases

DNA sequences in databases frequently contain bases other thanacgt, and protein sequences
often contain amino acids other than the standard twenty. Practical software needs to cope with
such data. In our seed-finding method, non-standard bases are treated just like delimiters: they
never match anything.

1.1.12 An implementation of the bucket table

The bucket table can be implemented in various ways, but it isdesirable to optimize memory
efficiency, so that we can maximize the value ofB for a given amount of memory. Recall that the
bucket table stores, for each possibleK-mer whereK ≤ B, the start and end offsets in the suffix
array for thatK-mer. Our current implementation uses(AB+1 − 1)/(A − 1) entries, where each
entry is one 4-byte unsigned integer (Figure S4).

First, we need to store the start offset of every possibleB-mer, which already requiresAB

entries. This information includes the start offset of every K-mer withK ≤ B: for example, the
start offset ofctg is the same as the start offset ofctgaaa. This information also includes the
end offsets of mostK-mers: for example, the end offset oftgca is the same as the start offset of
tgcc.

However, this information does not include the end offsets of K-mers that end witht. This
is because of delimiters and non-acgt bases. The end offset oftgact might not be the same as
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the start offset oftgaga, because iftgacZ occurs, it will sit between them in the suffix array. (Z
represents a delimiter or non-acgt base, which sorts after the four normal bases.) Therefore, we
additionally need to store the end offset of everyK-mer that ends witht, taking a furtherAK−1

entries. So we need to storeAB+AB−1+...+A+1 entries in total, which equals(AB+1−1)/(A−1)
entries.

1.2 Reducing memory usage

Our seed-finding implementation requires a somewhat large amount of memory: 4-5 bytes per
base for the index, plus 1 byte per base to store the sequence itself. We can reduce this a bit by
not indexing non-acgt bases, of which there are many in current reference genome sequences.
In practice, the largest human chromosome needs∼1.5 gigabytes, and the human genome needs
∼16 gigabytes. There are several ways to reduce this memory usage, though none is without
drawbacks. As computer memories continue to become larger and cheaper, it is not clear whether
these approaches will be needed.

1.2.1 Volumes

We can trivially reduce memory usage by splitting a genome into sets of chromosomes, where each
set is sufficiently small, and making a separate index for each set.LAST does this automatically,
so that the human genome can be processed using 2 gigabytes. In the scanning phase, the software
compares the query sequence(s) to each volume in turn.

The drawback is that the scanning phase becomes slower, because the query has to be re-
scanned for each volume. Moreover, adaptive seeds for each volume are generally different from
adaptive seeds for the whole genome: so this approach does not always produce identical results.

1.2.2 Sparse indexing

Another simple approach is to index only everyN th base in the genome. This method has been used
with success by previous software such asBLAT [27]. This approach carries over straightforwardly
to adaptive seeds and suffix arrays [28], and is an option inLAST.

The drawback is that many seeds can no longer be found, so somesequence similarities may
be missed. On the other hand, when using adaptive seeds, sparse indexing will cause many new
seeds to be found. This is because some matches that occur more than (say) ten times with a full
index will occur less than ten times with a sparse index. So the effect on sensitivity is unclear.

1.2.3 Prefix splitting

We can also reduce memory usage by making separate indexes for genome positions beginning
with different prefixes. For example, we might make 16 indexes: one for positions starting with
aa, another for positions starting withac, and so forth. In the scanning phase, we would compare
the query sequence(s) to each index in turn.

Prefix splitting is similar to voluming, but has some advantages. Firstly, prefix splitting should
cause little slowdown, because we can rapidly skip over query positions that do not start with the
right prefix. Secondly, adaptive seeds found with this approach will be the same as adaptive seeds
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Table S2: Comparison of time and space performance between the originalLAST and CSA version
of LAST. All timings are measured on Mac OS X 10.6 with Core i7 2.8GHz. The 2nd column:
the elapsed time for building index withlastdb -p ce6 ce6-sangerPep.fa. The 3rd col-
umn: the elapsed time for counting matches withlastal -j 0 ce6 dm3-flyBasePep.fa.
The 4th column: the elapsed time for extending matched seeds to gapped alignments with lastal
ce6 dm3-flyBasePep.fa. The 5th column: the memory usage required for suffix indices.

build count extend memory
Original 6.8s 9.6s 73.2s 42MB
CSA version 9.1s 27.2s 511.8s 9MB

found without prefix splitting. This is not quite guaranteed: adaptive seeds shorter than the prefix
length may not be the same, but such short adaptive seeds do not typically occur.

Prefix splitting would complicate tracking gapless alignments on each diagonal (described be-
low). This would cause a (perhaps slight) increase in run time and/or memory usage (if we store
the same gapless alignment more than once).

In summary, prefix splitting seems promising. We have not yetimplemented it, because it
would add complexity and the need for it is unclear.

1.2.4 Compressed suffix array / FM index

Memory usage can be reduced by using the compressed suffix array (CSA) or Burrows-Wheeler
Transform (BWT) techniques, which have been actively studiedin the field of data compression
and have been applied for indexing large texts including genomes [33, 34, 32]. CSA and BWT do
not store suffix indices themselves, but more compressible indices, from which the suffix indices
can be recovered.

We implemented an experimental version ofLAST with compressed indices based on the FM
index using the wavelet tree, a state-of-the-art data structure for CSA and BWT [19]. In order to
employ subset seeds, we applied the lexical naming principle proposed in [24]. We conducted a
benchmark on theC. elegansandD. melanogasterpeptide sequences used in Figure 3B to compare
time and space performance between suffix arrays and compressed suffix arrays.

Table S2 shows that the CSA dramatically reduced the memory usage for suffix indices. For
counting matches, the CSA version is relatively fast (but 3 times as slow as the original) because of
the efficient backward search algorithm on the FM index. Whereas, for extending matched seeds,
the CSA version is 7 times as slow as the original, because it requires much time to recover the
suffix indices from compressed data structures to obtain thematched positions.

In summary, CSA seems promising for small PCs to useLASTwith large genomes. By manag-
ing the maximum hit and minimum length parameters for adaptive seeds, the CSA version ofLAST
might be sufficiently practical. In general, the benefit of CSA/ BWT / FM index is not clear-cut,
because these techniques achieve lower memory usage at the expense of higher time usage.

1.3 Cache (in)efficiency

Cache efficiency is a technique to speed up execution on moderncomputer hardware. Unfortu-
nately, our suffix array algorithm does not have great cache efficiency. On the one hand, by using
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a bucket table, we perform binary searches only in small chunks of the suffix array that are likely
to all be in cache at once. On the other hand, every lookup in the suffix array is accompanied by a
random-access lookup in the target sequence.

A cache-efficient alignment algorithm using fixed-length seeds was recently published [21]. It
requires indexing the query sequence as well as the target. It is possible that a similar approach
could be used for adaptive seeds, but we have not pursued thisidea.

1.4 Alignment extension inLAST

Having found seeds,LAST tries to extend alignments from them. The extension procedure is
broadly the same as inBLAST, but we describe the details here.

1.4.1 Gapless extensions

As each seed is found, we perform gapless extensions in both directions from the left-hand edge
of the seed match. The aligned bases are scored using an arbitrary scoring matrix, and the exten-
sion terminates when the score drops more than some valueY below the maximum seen for that
extension [6]. If the total score of the gapless alignment isbelow a threshold valueD, we discard
it.

We also check whether each gapless alignment is “optimal”. In other words, we check that all
prefixes and suffixes of the alignment have positive score, and that the alignment has no segment
with score< −Y . Alignments that fail these checks are discarded.

1.4.2 Gapped extensions

In this phase,LAST tries to extend gapped alignments, starting from the gapless alignments. It
first sorts the gapless alignments in descending order of score (breaking ties in an arbitrary but
deterministic way, to make the results reproducible). Then, taking each gapless alignment in turn,
it finds the longest run of identical matches within the alignment, and performs gapped extensions
from either end of the run. This procedure trims off possiblyunreliable parts at either end of the
gapless alignment, but it also avoids needless gapped extensions when comparing a sequence to
itself.

The gapped extensions are done with an X-drop algorithm [7].Our method proceeds anti-
diagonal by antidiagonal (Figure S5), as described in Section 2 of [48], except that we do not use
“half-nodes”. For increased speed, we use the dynamic programming rearrangement described in
[14].

If the gapped alignment has score less than some thresholdE, or if it is not “optimal” (see
above), it is discarded. Otherwise, we check whether it overlaps (i.e. shares paired bases with) any
of the remaining gapless alignments. If it does, those gapless alignments are marked as redundant,
and we will not waste time extending gapped alignments from them.

Our alignment extension procedure occasionally produces gapped alignments that overlap one-
another. To reduce this redundancy,LAST has a final step where it discards any alignment that
shares an endpoint (i.e. identical coordinates in both sequences) with a higher-scoring alignment.
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c g a t t c a
0 -2 -4 -6 Match score: +1

g -2 -1 -1 Mismatch score: -1
g -4 -3 Gap score: -2
a -6 Maximum score drop: 10
Z

Figure S5: A gapped extension, with the first four antidiagonals completed. Each cell holds the optimal
score for a gapped extension ending at that point.Z indicates a delimiter. For simplicity, this figure uses
linear gap costs instead of affine gap costs.

1.4.3 Faster gapped extension near sequence ends

The gapped X-drop algorithm is inefficient when it starts near the end of a sequence, which often
happens when aligning short sequences. A simple change makes it more efficient.

Consider the example in Figure S5, where the first four antidiagonals have been filled. When
preparing to fill the fifth antidiagonal, the method checks for delimiters, and finds one (Z) in the
vertical sequence. At this point, the method deduces that the maximum possible score increase is
3 (three matches with a maximum score of +1 each). Therefore,the maximum score drop can be
reduced from 10 to 2, without changing the result. This reduces the number of cells that get filled.

1.5 Self-comparison of large sequences

The basic alignment extension procedure described above will go horribly wrong if we compare
a large sequence to itself. However, it is not uncommon to compare two sequences containing
largely identical segments. Therefore we employ several special techniques to cope with this.

1.5.1 Tracking gapless alignments on each diagonal

Each gapless alignment is on a fixed “diagonal”, which is the coordinate in one sequence minus the
coordinate in the other sequence. While doing gapless extensions, we update a “diagonal table”
that records, for each diagonal, the right-most query-sequence coordinate covered by any non-
discarded gapless alignment so far. By checking this table, we avoid performing gapless extensions
from seeds that are already covered by a gapless alignment. Without doing this, comparison of a
large sequence to itself would be catastrophically slow.

Since the number of diagonals can be huge, the diagonal tabledoes not actually have a separate
entry for each diagonal. Instead, it has 256 slots, each of which stores information for multiple
diagonals. Information for diagonald is stored in slot numberd mod 256. The memory used by a
slot grows when information for a new diagonal is added. To counteract this, we regularly discard
entries with query-sequence coordinates to the left of the current scan position. Fortunately, the
memory and time requirements of the diagonal table are negligible in practice.

We tried a slight variant of this method: tracking all “optimal” gapless alignments even if their
score is less than the gapless extension thresholdD. This variant was slower.
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1.5.2 Redoing gapless extensions with gapped parameters

Apart from gaps, gapless and gapped extensions may differ intwo ways. Firstly, they may use
different X-drop values. Secondly, they may score lowercase letters differently (by using different
score matrices): this allows a kind of soft repeat-masking,where lowercase letters are treated as
mismatches for gapless extensions but not for gapped extensions.

These differences cause trouble when self-comparing a large sequence. The highest-scoring
gapless alignment might only cover a small fraction of the sequence, e.g. because the sequence has
many runs of unknown bases (nnn...), or because of lowercase masking. The gapped extension
might then expand over the remaining, large fraction of the sequence. We call this “death by
dynamic programming”. For example, a gapped extension across the length of human chromosome
1 (250 million bases) would perform dynamic programming in an X-drop-defined band around the
main diagonal, requiring excessive amounts of time and memory.

To address this problem, each gapless extension is repeatedusing the gapped score matrix and
X-drop value, before proceeding to the gapped extension phase. This mostly solves the problem,
but it is still possible to get huge gapped extensions if the GEP (gap extension penalty) is less than
half the cost of aligningn to itself. (Minor details: The gapless extensions are re-done before
sorting them in order of score, and we discard any that are not“optimal”.)

1.5.3 Avoiding gapped extensions from tandem repeats

Biological sequences often contain tandem repeats. When self-comparing a sequence, tandem
repeats produce gapless alignments that are close to, but not on, the main diagonal. When we
perform gapped extension from such a gapless alignment, there is a danger that the alignment
might wander onto the main diagonal and then extend over the entire length of the sequence.

Currently, we avoid this problem in an ad hoc way. When we check for overlaps between
a gapped alignment and remaining gapless alignments, we make one other check too. We take
the run of identical matches that was used to seed the gapped alignment, and look for remaining
gapless alignments that represent tandem repeats within this run, with repeat period≤ 1000. Any
such gapless alignments are marked as redundant, and we do not expand gapped alignments from
them.LAST has an option to turn off this procedure.

To avoid confusion, let us point out that tandem repeats cause two separate problems. One is
the problem just described. The other is that short-period repeats give rise to strong alignments
that are probably not homologous. The maximum period lengththat must be considered when
addressing these two issues need not be the same.

2 Additional Results

The sensitivity ofLAST and its running time has been evaluated for additional datasets and param-
eters which do not appear in the main paper. We report and discuss these results below, according
to data type.
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Figure S6: Performance of various methods for aligningH. sapienspromoters from the Eukaryotic
Promoter Database (limited to max. 5000nt) to a database of the completeM. musculusgenome. In
each panel, circles indicate adaptive seeds and crosses indicate fixed-length seeds. The numbers pro-
vide adaptive seed maximum frequency or fixed seed length. (A) Contiguous vs. spaced seeds. (B)
Merging best results for two seeds. (C) Effect of different query repeat masking strategies (using
WindowMasker). (D) Sparse indexing of the target sequence for different step sizes.
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Figure S7: Performance of various methods for aligningP. yoelii query contigs to a database made
of P. falciparumchromosomes. In each panel, circles indicate adaptive seeds and crosses indicate
fixed-length seeds. The numbers provide adaptive seed maximum frequency or fixed seed length. (A)
Contiguous vs. spaced seeds. (B) Merging best results for two seeds. (C) Effect of different query repeat
masking strategies (usingTandem Repeats Finder). (D) Sparse indexing of the target sequence
for different step sizes.
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2.1 Genomic sequence comparisons

In Figure S6 and Figure S7, we present performance ofLAST aligning human promoters against
the complete mouse genome andP. yoeliicontigs against the wholeP. falciparumgenome, respec-
tively. Each panel presents evaluation of a differentLAST parameter and is discussed below. All
four panels of each figure are drawn to the same coordinate system, and the black points corre-
spond to the same reference alignments obtained with contiguous seeds and unmasked sequences
(Figure 3A,C in the main paper). The circles denote alignments for adaptive seeds with maximum
seed frequenciesf ranging from 1 to 2000, and the crosses correspond to fixed-length seeds with
lengthsl from 12 to 32.

In general, for alignments of genomic sequences we observe that adaptive seeds clearly outper-
form fixed-length seeds. This means that, for a given sensitivity, the same alignments are identified
faster using adaptive seeds than using fixed-length seeds. For lower sensitivities, the time required
for alignment can be reduced by more than an order of magnitude.

2.1.1 Contiguous and spaced seeds

In panels A of Figure S6 and Figure S7, we compare effects of the contiguous seed1 to three spaced
seeds:111001001001010(PH-OPT),110110110000(DATA-OPT) and110. PH-OPT and DATA-
OPT are tuned for noncoding and protein-coding DNA [10]. Spaced seeds improve performance
of alignment for both adaptive and fixed-length cases. Nevertheless, this improvement is much
smaller than one caused by adoption of adaptive seeds instead of fixed-length seeds.

In panel B, we evaluate the effect of performing a single alignment with two different seeds.
For all three pairs of spaced seeds shown in panel A we merged the observed alignment scores. For
each query sequence we selected the alignment which scored better – either with the first seed of
the pair, or with the second one. For computation time we simply summed the individual running
time for each seed of the pair. This procedure seems to produce only a small improvement in
sensitivity as compared to the individual non-contiguous seeds shown in panel A.

2.1.2 Query masking

In panels C of Figure S6 and Figure S7, we compare performanceof LAST on unmasked and
repeat-masked query sequences. For the masked case, initial seed matches are not allowed in the
repetitive regions of the sequence. In addition, we show theeffect of masking during gapless
extensions (i.e. counting masked bases as mismatches).

For the two pairs of genomes studied, masking of repetitive sequences leads to similar de-
creases in sensitivity for adaptive seeds and fixed-seeds when runs with masking and without
masking are compared to each other. In contrast, reduction of calculation time for fixed-length
seeds is noticeably higher than for adaptive seeds. Still, adaptive seeds with no masking display
better performance than fixed-length seeds with any of the tested masking strategies.

2.1.3 Sparse indexes

LAST provides an option to construct the index only for everyN th base in the target genome. This
parameter strongly influences the size of the index.
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The effect on performance of sparse indexing is shown in panels D of Figure S6 and Figure S7.
In both studied datasets, sparse indexing for every second,third or fourth base of the target genome
leads to curves nearly overlapping the curves for the complete index. Even a slight performance
improvement due to sparse indexing is visible for fixed-length seeds of shorter lengths. For the
mouse genome, theLAST index requires 13.5Gb of disk space for the complete index and only
5.4Gb when every fourth base is taken into account. For theP. falciparumdatabase the size of the
index is reduced from 124Mb for the complete index to 49Mb forevery fourth base. Therefore,
for smaller machines it might be advisable to use sparse indexing.

2.2 Protein sequence comparisons

In this section, we expand on our results using protein sequences.

2.2.1 Adaptive seeds

Adaptive seeds seem promising for protein comparison because amino acids are not equally abun-
dant. For example, a match consisting of two tryptophans in arow might be rare enough to merit
an alignment extension, but three alanines in a row might notbe. Adaptive seeds can capture this
idea.

To test this, we aligned fly (Drosophila melanogaster) proteins to worm (Caenorhabditis el-
egans) proteins. These organisms have some highly similar proteins, some extremely diverged
proteins, and everything in between. For each fly protein, weaimed to find the highest-scoring
alignment to any worm protein.

As expected, adaptive seeds find highest-scoring alignments more often than fixed-length seeds
do, for a given running time (Figure S8). From another point of view, adaptive seeds can find
highest scoring alignments as often as fixed-length seeds can, but faster. On the other hand, the
two methods converge in performance as running time and sensitivity increase.

2.2.2 Low complexity masking

The goal of protein sequence comparison is usually (but not always) to identify evolutionary re-
lationships. In this case, we must be careful of low complexity segments, such as short-period
tandem repeats, which are rife in proteins. These lead to strong alignments that do not reflect evo-
lutionary relationships. To avoid such alignments, low complexity segments are typically masked
prior to alignment. Therefore, we did some further tests after hard-masking the query (fly) proteins
with pseg, mirroring the default behavior ofBLAST.

With masking, the advantage of adaptive seeds over fixed-length seeds is reduced (Figure S8B).
This is because masking removes the most egregious non-uniformities in sequence composition.
Nevertheless, adaptive seeds retain a clear advantage.

2.2.3 Subset seeds

Subset seeds are promising for protein comparison, becauseamino acid substitutions are not
equally common. For example, hydrophobic amino acids replace one another more often than
they replace hydrophilic amino acids. Subset seeds can capture this idea [41].
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Figure S8: Performance of various methods for aligning proteins. For panel A the proteins were not
masked, but for panels B-D, low complexity segments in the queries were hard-masked withpseg.
(A) Effect of subset seeds. (B) Performance ofLAST andBLAST. (C) Effect of subset seeds. (Here,
Imai seeds performed worse than cbabcb seeds, and are omitted for clarity.) (D) Effect of the min-score
parameter for the gapless extension phase,d. The other panels all used = 60, except thatBLAST uses
d = 41.
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On the other hand, there are many possible subset seed patterns, and it is hard to know which
is best. We tried just two: “Imai” and “cbabcb”. Imai seeds are matches using a reduced alphabet,
where these groups of amino acids are considered equivalent: ILMV, WYF, P, C, GA, STQN, DE,
KRH. cbabcb seeds use the Imai alphabet in “b” positions, the full alphabet in “c” positions, and
allow any two characters to match in “a” positions (like the don’t care positions in spaced seeds).
As usual, we obtain seeds of any length by cyclically repeating the pattern.

We found that fixed-length subset seeds perform better than fixed-length exact seeds, and adap-
tive subset seeds perform better than adaptive exact seeds (Figure S8A,C). (Figure 3 in the main
paper shows Imai seeds.) With adaptive seeds, the improvement was very slight for unmasked
proteins, but a bit more substantial for masked proteins with the cbabcb pattern. It is likely that
more carefully designed patterns would work better.

2.2.4 BLAST

The standard protein comparison tool isBLAST, which uses yet another seeding strategy: fixed-
lengthvector seeds[6, 11]. These allow inexact matching. Specifically, they are matches whose
score exceeds a threshold, the score being the sum of scores for every matched pair of amino
acids, given by a scoring matrix. It is not obvious whether vector seeds will perform better than
subset seeds: vector seeds capture amino acid relationships more finely, but subset seeds can be
found with less computational cost. There is evidence that subset seeds perform competitively with
vector seeds [41].

BLAST performed slightly worse thanLAST in comparing our proteins (Figure S8B). It is hard
to say why, because these programs differ in many details. (For example:BLAST looks for nearby
pairs of length-3 vector seeds.) We can conclude thatLAST performs competitively overall. This
demonstrates that our main result, the advantage of adaptive over fixed-length seeds, is not an
artifact of implementation.

2.2.5 Minimum gapless alignment score

Finally, we examined an algorithm parameter,d: the minimum score for passing a gapless align-
ment through to the gapped extension stage. This parameter has a big effect on performance.
If it is too high we miss gappy alignments, but if it is too low we risk long run times by trig-
gering expensive gapped extensions too often. The default value of 60 gave good performance
for fast/low-sensitivity alignment, but lower values werebetter for slow/high-sensitivity alignment
(Figure S8D).BLAST’s value of 41 seems appropriate forBLAST’s position on the speed/sensitivity
curve. In any case, our other results are based on a reasonable setting for this important parameter.

2.2.6 Summary

In summary, adaptive seeds are useful for protein comparison. Combining them with subset seeds
leads to even better performance. One idea we did not try is adaptive vector seeds: these would
extend until the accumulated score reaches some rarity in the target. Our methods are aimed
primarily at giga-scale sequence comparison (e.g. the 6-frame translation of the human genome
versus all known proteins); for smaller problems, slower methods such asPSI-BLAST and hidden
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Figure S9: Performance comparison of fixed-length seeds against adaptive seeds for aligning short
reads from next generation sequencers to their respective genomes.(A) Illustrates how various
spaced seeds can affect fixed-length and adaptive seeds using the sameA. thalianadataset from the
main paper (SRR014005, median read length 105). Also, the effect fromsoft repeat-masking with
WindowMasker (with masking in red; without in black) for (B)D. melanogaster(SRR014394) and
(C) P. falciparum(SRR006912) are shown. Median read lengths are 36 and 279, respectively. In all
cases, fixed-length and adaptive seeds are indicated by “+” and “◦”, respectively. As a comparison,
megablast results are indicated as “q”.

Markov models are no doubt more sensitive [7]. On the other hand,LAST can use position specific
scoring matrices [18], so it could be developed along similar lines toPSI-BLAST.

2.3 Short read sequence comparisons

The main paper gives results for one short read sequence dataset. Here, we analyze two additional
datasets, all three of which are obtained from NCBI’s SequenceRead Archive [2]. The dataset used
in the main paper is based onA. thaliana(SRR014005) using the 454 GS 20 platform. The two
additional datasets are based onD. melanogaster(SRR014394) andP. falciparum(SRR006912)
using the Illumina Genome Analyzer and 454 GS 20 platforms, respectively. Further details about
all three datasets are given in Section 3, below.

Figure S9A expands on our analysis of theA. thalianadataset by examining the effect spaced
seeds have on alignment. The contiguous seeds of Figure 3D for both adaptive and fixed-length
seeds are shown as solid lines. The two spaced seeds considered are1111110and11111011000.
No noticeable difference is seen for adaptive seeds. For fixed-length seeds, the seed pattern
11111011000performs slightly worse for longer seed lengths.

The next two panels (Figure S9B-C) present results for soft-masking usingWindowMasker
for D. melanogasterandP. falciparum, respectively. These results complement those of Figure 3D
in the main paper forA. thaliana. In both cases, adaptive seeds outperform fixed-length seeds
when masking is not employed.

When masking is used (shown in red), sensitivity drops below that of unmasked adaptive seeds.
This is expected since parts of the genome are no longer considered when seeds are sought. In-
terestingly, the accuracy for adaptive and fixed-length seeds with masking fall below fixed-length
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Table S3:Run times oflastdb andformatdb. The runs were performed on a 2.53 GHz Intel Xeon
E5540 CPU.

Sequences Preprocessing method Time (sec)

C. elegansproteins lastdb, exact-match seeds 6.35
lastdb, Imai seeds 7.38
lastdb, cbabcb seeds 6.66
formatdb 0.85

D. melanogastergenome lastdb, 1 seeds 98.77
lastdb, 1111110seeds 100.34
lastdb, 11111011000seeds 111.38
formatdb 3.59

P. falciparumgenome lastdb, 1 seeds 9.53
lastdb, 1111110seeds 9.79
lastdb, 11111011000seeds 10.50
formatdb 0.66

seeds without masking forP. falciparum. This is because its highA+T content causes 66.8% of its
genome to be masked (see Table S4).

It is conceivable that fixed-length seeds are inferior in ourresults only because our imple-
mentation of them is slow. To test this possibility, we also obtained results with the popular tool
megablast, which uses fixed-length seeds (triangles in Figure S9). We expectedmegablast
to perform similarly to our fixed-length seeds. Surprisingly, it performs worse, especially for the
D. melanogasterdata. This shows that our implementation of fixed-length seeds is not slow, com-
pared to a widely used alternative.

The performance ofmegablast can be understood by considering its seed search algorithm,
as described in [36].megablast first looks upk-mer matches between the query and target
sequences, wherek is typically less thanthe seed length. It then tries to extend eachk-mer match
to the left and to the right using the sequence data. In comparison,LAST finds fixed-length seeds
by using the bucket table to findk-mer matches, and then extending them up to the seed length
by binary search in the suffix array. Our method is more efficient for highly repeatedk-mers.
megablast has the advantage of using less memory: it only needs to indexeveryw − k + 1th

base, wherew is the seed length, in order to guarantee finding every exact match of sizew.

2.4 Other additional information

All running times reported above and in the main paper exclude the time required bylastdb
to construct the index. Some of these values are reported forseveral datasets in Table S3. For
comparison, we also report the time forformatdb, the preprocessing program used byBLAST.
formatdb is much faster because it does not construct an index.
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Query Maximum alignment score
Pool

sequences System A System B System C
1 40 50 50 50
2 50 30 40 50
3 30 60 – 60
4 – – – –
5 70 70 60 70

Sensitivity 50% 75% 25%

Figure S10: An example illustrating pooling using a set of 5 queries and three systems showing how
their results are combined to form the pool. The query results that are usedto form the pool are shaded.
The last row gives the performance of the three systems.

3 Materials

3.1 Experiment platform

Experiments were performed on two different sets of Linux machines. Therefore, only times within
the same data type are considered comparable. Experiments with genomic data were run on a 2.8
GHz AMD Opteron 854 with 64 GB RAM and 1 MB L2 cache, while proteomic and short-read
data were performed on a set of identical 2.0 GHz Dual-Core AMDOpteron Processor 246 with 6
GB of RAM. No parallelization across servers was employed.

All running times were obtained from the systemtime function by combining the time spent
by the process (user time) with the time spent by the system onbehalf of the process (system time).

3.2 Pooling

When evaluating multiple methods which heuristically attempt to optimize some score, it is con-
venient to compute the actual optimal score for use as a gold standard. In our case this would
correspond to computing the full Smith-Waterman alignmentof each query to its target sequence.
Unfortunately this is difficult to do in practice due to the computation time required.

Fortunately, in order to evaluate relative performance, wedo not really need to have an absolute
gold standard; in the same way that we do not need to know the absolute limit of human running
speed in order to decide who is the fastest runner in a group.

More formally, the evaluation performed in our paper is similar to what is known aspooling in
the information retrieval community [44]. As illustrated in Figure S10, for each evaluation point,
namely query sequence, we adopt the maximum score achieved by any method as the gold standard
score for that evaluation point.

3.3 Masking

Three different systems were used for masking:pseg [47], Tandem Repeats Finder [9],
andWindowMasker [37]. The correspondence between dataset and masking system is shown in
Table S4. The last column gives the percentage of residues that were masked.

Repetitive regions in protein sequences were masked usingpseg with options-z 1 -q.
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Table S4: The size of each masked data set and the percentage of residues that are masked. All data
sets are genomes except for the first and third. The system used for masking is given in the third column
while options used are provided in the accompanying text.

Species
Size Masking

% masked
(×106 residues) system

D. melanogaster(proteins) 12.4 pseg 12.3 %
P. yoelii 20.2 Tandem Repeats Finder 6.3 %
H. sapiensEPD (5k) 9.2 WindowMasker 27.2 %
A. thaliana 119.2 WindowMasker 22.6 %
P. falciparum 23.2 WindowMasker 66.9 %
D. melanogaster 139.7 WindowMasker 23.0 %

The P. yoelii query sequences were masked usingTandem Repeats Finder with the
command line:trf400.linux.exe 2 7 7 80 10 50 500 -h -m. These parameters,
which mask repeats with period≤ 500, are simply the ones recommended at theTandem Repeats
Finder website.

All remaining datasets were masked usingWindowMasker in two-pass mode [37]. The
WindowMasker software is part of theBLAST+ command-line applications (version 2.2.22+)
from NCBI using the NCBI C++ toolkit. The first pass used default options and collected statistics
over the entire genome. The second pass was conducted on eachchromosome individually with
these statistics andDUST enabled (-dust true). DUST is a module withinWindowMasker
for locating and masking low-complexity regions.

3.4 Genomic data

3.4.1 Human and mouse

We used the UCSC Genome Bioinformatics Site as the source of theM. musculusgenomic sequence
(versionmm8). Based on the complete unmasked mouse sequence, fourLAST indexes were cre-
ated, for contiguous seeds and for three different spaced seed patterns:110, 110110110000and
111001001001010. These indexes were queried withH. sapienspromoter sequences obtained
from the Eukaryotic Promoter Database, release 100 [42]. The whole downloaded set contained
1870 human promoters extended to the maximum length of 5000nt upstream of the respective
genes, leading to the total sequence size of approx. 9.2Mnt.

We calculated alignments using a score of 2 for matching nucleotides, cost of 1 for transitions
and cost of 2 for transversions [17]. Moreover, the gap existence was set to 16 and gap extension
cost was equal 1. We studied only alignments of score at least150.

3.4.2 Plasmodium

The Plasmodium genomic sequences were downloaded from the 5.5 release of the PlasmoDB
database. As the query sequences, we used 2960 contigs ofP. yoelii from the file
PyoeliiGenomic_PlasmoDB-5.5.fasta retrieved on 11/08/2009. The length of the con-
tigs varies from 2000nt to 51,480nt with a mean of 6815nt and76.1% A+T content. The database
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was built from 14 chromosomes ofP. falciparumfrom the file
PfalciparumGenomic_PlasmoDB-5.5.fasta retrieved on 07/01/2009. TheA+T content
of this genome is79.3%.

We used a scoring system adjusted for the highA+T content of the Plasmodium sequences.
The match score forA-A andT-T pairs was set to 3, and forC-C andG-G pairs to 9. We used
a mismatch cost of 4, a gap existence cost of 15 and a gap extension cost of 3. We considered
alignments scoring more than 200.

3.4.3 Hits Between Plasmodium Genomes

The example of Figure 2 in the main paper which depicts the positions of hits between aP. yoelii
contig and theP. falciparumgenome employs the same datasets as above. In theP. falciparum
genome, the MB2 gene is on chromosome 5 at positions 686,802 to691,640 (4838 nts in length).
Its homologous gene inP. yoelii has an accession ID of PY03311 and is located at positions 1 to
3342 of contig MALPY00946. The dashed box in blue highlightsthis area. These locations were
identified using the PlasmoDB web interface (http://plasmodb.org/plasmo/).

In the graph for adaptive seeds, another diagonal line appears beyond the top left-hand corner
of the homologous region. This is another homologous region, unrelated to MB2.

3.5 Protein data

Protein sequences were taken from the filesflyBasePep.txt andsangerPep.txt, down-
loaded from the UCSC genome database on 07/08/2009. Sequences with non-standard amino acids
(e.g.X) were excluded. This yielded 21,228 fly proteins and 23,770 worm proteins.

We aligned the proteins using the Blosum62 matrix, with a gap existence cost of 11, a gap
extension cost of 1, and a minimum gapped alignment score of 100. This is a reasonable threshold,
because∼10 alignments with score≥ 100 would be expected between random protein sequences
of the size of these datasets. (We determined this usingALP1.1 [43]). We set the max-drop
parameter for the gapped extension phase to 51 (one of the limited number of valuesBLAST
allows for this parameter).

Some contortions were needed to fix parameters for NCBIBLAST (version 2.2.20). To request
alignments with raw score≥ 100, we used options-C F -Y 1000000000 -e 0.00012. To
set the gapped max-drop parameter to 51, we used options-X 20 -Z 20. We also used-F F
to turn offBLAST’s internal repeat-masking.

The “cbabcb” subset seed pattern was suggested by the subsetseed design toolIEDERA [30].
We did not use the patterns derived by Roytberg et al. [41], because they used multiple simultane-
ous patterns, but we desired single patterns.

3.6 Short reads sequence data

Three short read datasets were downloaded from the NCBI Sequence Read Archive [2], as summa-
rized in Table S5. The first four columns indicate the species, accession ID, sequencing instrument,
and median read length for each dataset. Duplicate sequences were removed and the number pro-
cessed are reported in the fifth column. The last column givesthe size of the pool – the difference
between these two columns is the number of reads whose best alignment score for any method
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Table S5:Datasets selected for our experiments with short reads sequencing data.All data was obtained
from the NCBI Sequence Read Archive [2], with their accession numbers given in the second column.
The median lengths of the reads, the number of queries processed, and the size of their respective pools
are given in the last 3 columns.

Species Accession ID Instrument
Median Unique Pool

read length queries size

A. thaliana SRR014005 454 GS 20 105 133,420 130,500
D. melanogaster SRR014394 Illumina Genome Analyzer 36 898,275 673,682
P. falciparum SRR006912 454 GS 20 279 7,923 7,903

failed to exceed our minimum threshold. The accuracies reported in the graphs are percentages
with respect to this last column’s values.

The genome forA. thalianawas downloaded from the NCBI ftp site [1] on 06/29/2009. Version
3 of theD. melanogastergenome was obtained from the UCSC Genome Browser [3] on the same
date, but withchrUextra excluded. The sameP. falciparumdataset as the one used for our
genome-based experiments was used (version 5.5 of PlasmoDB).

LAST was compiled usinggcc version 3.3.3 with compiler optimizations turned on (-O3).
Local alignment withlastal was performed with match and mismatch scores of 1 and -1,

respectively. A gap existence cost of 2 and a gap extension cost of 1 were also used. The minimum
alignment score was set at 30.

Experiments with various spaced seed patterns were also performed, with accuracy results re-
ported for theA. thalianadataset in Figure S9C. The spaced seed patterns chosen were obtained
from theLAST manual where various patterns were calculated based on the tag size and the num-
ber of allowable mismatches. These patterns were obtained using other software [13, 29]. The
two chosen ones (1111110and11111011000) correspond to a tag length of 36 and one and two
mismatches, respectively.

For comparison toLAST’s fixed-length seed implementation, We selectedmegablast (ver-
sion 2.2.22+) [48], which is part of the NCBIBLAST+ family of programs. In order to improve its
running time, an index was created using themakembindex tool [36], after building the database
with makeblastdb.

The same parameters asLAST were chosen. As withLAST, the running time includes only the
time for alignment and excludes both the database and index creation times. Several values for the
length of the fixed-length seed were chosen, starting with its default of 28.

For each of the three datasets, its respective pool was formed by combining all runs that appear
in the graphs (Figure 3, and Figure S9). This includes all runs of fixed-length and adaptive seeds,
regardless of whether or not masking and spaced seeds were applied. The scores from all indicated
runs ofmegablast were also included. Any other runs not shown in the graphs butreported
elsewhere (such as spaced seed runs oflastdb for SRR014394 and SRR006912 in Table S3)
were excluded from the pool.

Parameters for fixed-length and adaptive seeds (l andf , respectively) were chosen in incre-
ments indicated in Figure 3D. In some cases additional lengths were also computed and shown to
reduce the amount of unused space in the figures.
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3.7 LAST fixed-length seeds compared withLASTZ and BLASTN

Panel A of Figure 4 demonstrates the similar performance ofLAST’s fixed-length seeds and the
ones used byLASTZ. LAST was run with parameters-a15 -b3 -e200 -d120 -x90 -y90
and a scoring matrix adjusted for highA+T content. Additionally, the-l option was used to
specify seed lengths. ForLASTZ we used the following options:--gap=15,3 --xdrop=90
--ydrop=90 --hspthresh=120 --gappedthresh=200 and the same scoring matrix.
Moreover, we added the[multiple] modifier to the database sequence and both input se-
quences were unmasked with[unmask]. Finally, we used the following options:--noentropy
--recoverseeds --notransition. We varied seed lengths with the--seed=match or
--seed=half options.

SinceBLASTN does not support arbitrary scoring matrices, we had to follow another strategy in
order to calculate performance data for panel B of Figure 4. First we defined match (+1), mismatch
(−1), gap existence (−7) and gap extension scores (−1) which could be processed byBLASTN. Ex-
ecuting the program manually for a certain E-value threshold (-e1e-16), we scanned the output
and identified the score thresholds whichBLASTN finds optimal for aligning provided query and
target sequences. Consequently,BLASTN was executed with arguments:-p blastn -e1e-16
-r1 -q -1 -G7 -E1 -X28 -Z28 -y20. Moreover, we used-Fn to disable masking of
repetitive sequences and we used-W to specify length of the seed. These parameters, once con-
verted to the units used byLAST, resulted in the following arguments:-e55 -d15 -r1 -q1
-a7 -b1 -y13 -x17.

3.8 Y chromosome comparison

Here, we aimed to find homologous regions between the chimpanzee and human Y chromosomes.
We used the human sequence from GRCh37, and the chimpanzee sequence from Supplementary
File 2 of [25] (Table S6).

One difficulty is that the sequences have many simple repeatssuch asATATATATATATAT,
leading to regions that are similar but probably not homologous. To deal with this, we identified
simple repeats in both sequences, using Tandem Repeats Finder 4.04 with options2 5 5 80 10
30 200 -h -m -r [9]. We used these options, which mask repeats with period≤ 200, because
they have been shown to supress spurious alignments of mammalian DNA [17]. We marked these
repeats using lowercase letters. We did not identify or markother kinds of repeats, such as LINEs
and SINEs.

Next, we indexed the human sequence usinglastdb -c, and aligned the sequences using
lastal -u1 -q3 -e30. Option-c excludes lowercase letters from seeds, and option-u1
treats them as mismatches during gapless extensions. Option -q3 sets the mismatch cost to 3:
together with the default match score of 1, this scoring scheme is appropriate for sequences with
∼99% identity [45]. Finally,-e30 selects alignments with score≥ 30. This score threshold is
high enough to avoid chance similarities: the expected number of alignments with score≥ 30 in
random sequences of the same size and A+T composition is only0.001. (We determined this using
ALP1.1 [43].)

To quantify the amount of chimpanzee sequence with homologyto human, we counted all
bases that lay within anyLAST alignment. These alignments do not contain huge gaps: the default
setting of the gapped X-drop parameter limits the gap size to20.
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Chromosome Sequenced bases A+T (%) Simple repeats (%)

Human Y 25 653 566 60 11
Chimpanzee Y 26 041 480 60 12

Table S6: Statistics of chimpanzee and human Y chromosomes.

As a negative control, we reversed the repeat-marked chimpanzee sequence (without comple-
menting it), and aligned it to the human sequence, using the same options as above. Because
DNA never evolves by reversal, there are no true homologies in this test. The alignment produced
zero output, suggesting that our procedure is effective at avoiding false-positive (non-homologous)
alignments.

Note that our method is unable to distinguish orthologous regions from paralogous regions. It
seems extremely difficult to distinguish orthologs from paralogs, especially if gene conversion is
rife in Y chromosomes [25].

3.9 Expected frequencies of adaptive seeds

Figure 1C-D in the main paper shows the expected frequencies of adaptive seeds between uni-
formly random sequences. We obtained these frequencies by generating pseudorandom sequences
of the appropriate lengths, and counting the adaptive seed hits.

4 Analogy with Text

For our analogy, the story “Alice’s Adventures in Wonderland”, by Lewis Carroll, was taken
from the Canterbury corpus [8], a publicly-available corpusdeveloped for the evaluation of text
compression systems. The story was pre-processed by converting all letters to lower case (case-
folding), reducing all words to their root form (stemming) [39], and ensuring that the story is a
sequence of words, irrespective of the interleaved punctuation and white space. It is from this
post-processed form where we obtained the given statistics. While a system was used to do this
pre-processing [46], a simpler system could have been used given the story’s small size.

There are significant differences between this analogy and actual sequence alignment:

1. Case-folding and stemming are problems specific to naturallanguages and different prob-
lems would arise for sequence alignment.

2. Given that natural language text can be re-arranged with minimal loss in meaning, alignment
is perhaps inappropriate for text searching.

3. The string being sought (“The Queen of Hearts, she made some tarts”) is known to exist
(exactly) in the story. In practice, more efficient text searching algorithms could have been
deployed.

Despite these differences, the analogy is meant only as an example to introduce the main paper
since text management is a skill that many readers would already be familiar with.
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5 Related Work

Here we describe related work by other researchers. Despiteour efforts we have likely neglected
some relevant work, for which we apologize. To put our methodin historical perspective: we made
a working prototype in 2007 and published it on the Web in 2008.

5.1 Variable length seeds

Adaptive seeds are similar to the “variable length seeds” described earlier by Cs̋urös [16]. Variable
length seeds start with standardK-mer lookup tables for finding fixed-length seeds of lengthK.
Shorter seeds are then created by merging lookup table entries forK-mers with common prefixes.
This merging is guided byK-mer counts in the target sequence (like our method) and by letter
frequencies in the query sequence (unlike our method). The key limitation is that the seeds can
only become shorter: they cannot become longer thanK. (And K cannot be arbitrarily large,
because the memory requirement increases exponentially with K.) Thus, the number of seed
matches remainsO(QT ) in the worst case, just as for fixed-length seeds.

5.2 Sequence comparison with suffix arrays

QUASAR is an early sequence comparison method using a suffix array [12]. This method en-
abled much faster sequence comparison, but is restricted tosearching for strongly similar DNA
sequences. It uses a suffix array to find fixed-length exact matches (“q-grams”): the only advan-
tage of the suffix array over a standard hash table is that different match lengths can be used without
rebuilding the index from scratch.

5.3 Spaced suffix arrays

TheperM algorithm uses periodic spaced seeds to map DNA reads to genomes [15]. Although
the publication does not use the term “suffix array”, it describes a spaced suffix array very similar
to ours. They do not use adaptive seeds, however: instead, they lengthen each seed until it reaches
the end of the DNA read. This method fulfils their objective offinding all alignments with up to
three mismatches, but is not a general approach to finding low-similarity alignments.

BFAST also uses spaced seeds for mapping DNA reads to genomes, and the publication does
use the term “suffix array” [23]. On the other hand, it uses fixed-length seeds. So it does not
make full use of suffix arrays, and it could have used a standard approach of hashing with collision
resolution.

5.4 Maximal unique matches

TheMUMmer system compares large sequences by finding maximal unique matches [31]. It can
find exact matches that are unique in either both, or just one,of the sequences. The latter is
similar to adaptive seeds with a maximum frequency of 1 (except that adaptive seeds are right-
minimal instead of maximal). This approach has been useful for comparing highly similar (but
large) sequences, but the strict uniqueness requirement limits its sensitivity. To overcome this
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limitation, MUMmer has an option to find all (not just unique) maximal matches longer than some
threshold, but this is then similar to fixed-length seeds, with potentiallyO(QT ) matches.

5.5 Rare multiple exact matches

Also related is an algorithm to find rare maximal exact matches (RMEMs) [38]. This method finds
maximal exact matches that occur at mostt1 times in one sequence and at mostt2 times in the
other sequence. Furthermore, the method was generalized tomultiple sequence comparison.

RMEMs are more general than adaptive seeds, but also require amore complex algorithm.
Specifically, they requireO(t2Q+t1t2T ) time andO(t2T ) space [38]. So this algorithm is efficient
only whent1 andt2 are small, whereas adaptive seeds are similar to RMEMs witht2 = ∞.

An interesting difference between RMEMs and adaptive seeds is that RMEMs allow symmetric
matching, by choosingt1 = t2. In some cases, however, asymmetric matching is desirable.Here
are three examples:

• Mapping short DNA reads to a genome. It makes sense to limit matches between one part
of a read and many parts of the genome, but not to limit matchesbetween one part of the
genome and many reads. With adaptive seeds, we use the genomeas the “target” and the
reads as the “query”.

• Annotating repeats in genomes, which is often done by comparing the genome to a library
of repeat sequences. In this case, we do not wish to limit matches between one repeat and
many parts of the genome. Using adaptive seeds, we make the genome the “query” and the
repeat library the “target”.

• Annotating a set of proteins by comparing them to all other known proteins. It makes sense
to limit the number of reference proteins aligned to one query protein, but not vice versa.

In general, asymmetric matching seems desirable whenever we wish to “annotate” query sequences
by comparing them to reference sequences.

As far as we know, RMEMs have not been combined with a subsequent BLAST-like extension
step. Instead, they have been combined with subsequent chaining and filling steps inCoCoNUT
[4]. This system can find chains of colinear non-overlappingRMEMs, and then globally align
the sequences between the RMEMs in each chain. Compared toBLAST-like extension (dynamic
programming with X-drop), chaining and filling may be fasterfor long alignments, and it can be
used for multiple sequence comparison. On the other hand,BLAST-like extension can find subtle
alignments that contain just one seed. In particular, the alignment of a short DNA read to a genome
may include only one RMEM, and chaining does not help in this case. Also, chaining involves an
extra scoring scheme to define scores for chains, and it is notclear how this can be chosen to get
optimal nucleotide-level alignments. The filling step is questionable, because it forces alignments
between sequences no matter how dissimilar they are. In short, chaining and filling is appropriate
for long, strong alignments, but not for short or weak alignments.

5.6 Longest prefix matches

Finally, adaptive seeds have some similarity to the use of longest prefix matches insegemehl,
for mapping short DNA reads to genomes [22]. Taking each position in the read as a starting point,
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segemehl finds the longest exact match to any place in the genome, usingan enhanced suffix
array. If this match occurs fewer than (say) 500 times in the genome,segemehl calculates an
alignment with optimal edit distance for each occurrence. Furthermore,segemehl can allow a
limited number of differences within prefix matches, by enumerating all possible differences at
certain positions.

The sensitivity ofsegemehl with exact matches is inherently limited, because these matches
arelongest. Each match is expected to have about two occurrences in the genome, because matches
with more than two occurrences are unlikely to be longest. The exception is matches that start near
the end of the read, which are limited bysegemehl’s maximum occurrence parameter (e.g. 500).
Adaptive seeds, in contrast, need not be longest matches, and so their sensitivity is arbitrarily
tunable by their maximum frequency parameter. Moreover,segemehl is specialized for short
read mapping, and cannot be used for other alignment tasks.

5.7 Summary

From a theoretical computer science perspective, adaptiveseeds are a minor variant of ideas that
have been published before. Adaptive seeds are deliberately defined in such a way that it is trivial
to find them with suffix tree (or similar) algorithms, compared to, say, RMEMs. On the other hand,
we are the first to unify this approach with spaced and subset seeds, which enables state-of-the-art
sensitivity.

Our main contribution is practical. By adapting and combining previous ideas, we have the
firstBLAST-like method that can find similar regions in giga-scale sequences, with high sensitivity
and without repeat-masking. All previous methods (including short read mappers) either required
repeat masking or had limited sensitivity. Although it often remains desirable to mask simple
repeats (in order to avoid non-homologous alignments), this is not always desirable (e.g. for read
mapping), and these are not the only kind of repeat.
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