Supporting information

Figure S1:
Relationship between gene family size and production of alternatively spliced variants in
human. Fraction of genes containing more than one splice variant is displayed. Binning is

similar to Kopelman ef al. (6) (see also Figure 1A).

Figure S2:

Regression between gene family size and the proportion of genes undergoing alternative
splicing in human. Legend similar to Figure 1. A linear regression was tested against a
parabola (polynomial regression of order 2; see Methods). Both regression curves are

displayed on the graph.

Figure S3:
Relationship between gene family size and the proportion of genes undergoing alternative

splicing in mouse (Mus musculus). Legend similar to Figure 1.

Figure S4:
Relationship between gene family size and the proportion of genes undergoing alternative

splicing in zebrafish (Danio rerio). Legend similar to Figure 1.

Figure S5:
Relationship between gene family size and the proportion of genes undergoing alternative
splicing in human. Ensembl protein families were used to calculate family size. Legend

similar to Figure 1.

Figure S6:

Relationship between gene family size and the proportion of genes undergoing alternative
splicing in human. UCSC genome browser was used to estimate number of splice forms per

gene. Legend similar to Figure 1.

Figure S7:
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Relationship between gene family size and the proportion of genes undergoing alternative
splicing in human. Four bins of genes were created using quartiles of EST counts (see

Methods) and the trend is displayed for each sub-groups. Legend similar to Figure 1.

Figure S8:

Relationship between gene family size and the proportion of genes undergoing alternative
splicing in human. Four bins of genes were created depending on their number of constitutive
exons and the trend is displayed for each sub-groups. Genes with no constitutive exon are by
definition all undergoing alternative splicing and are not included here. Legend similar to

Figure 1.

Figure S9:

Relationship between gene family size and the proportion of genes undergoing alternative
splicing in human. Four bins of genes were created using quartiles of dn/ds values (calculated
with mouse; see Methods) and the trend is displayed for each sub-groups. Legend similar to

Figure 1.

Figure S10:
Relationship between gene family size and the proportion of genes undergoing alternative
splicing in human. Four bins of genes were created using quartiles of their maximum

transcript length and the trend is displayed for each sub-groups. Legend similar to Figure 1.

Figure S11:
Relationship between gene family size and the proportion of genes undergoing alternative
splicing in human. Recent duplicates specific to Homo sapiens were excluded from the

dataset because they might be assembly artefacts. Legend similar to Figure 1.

Figure S12:
Relationship between mean number of alternative spliced variants and age of genes last

duplication in human. Legend similar to Figure 2A. The x-axis is in shown linear-scale.

Figure S13:
Relationship between proportion of genes undergoing alternative splicing and age of genes

last duplication in huamn. Legend similar to Figure 2.
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Figure S14:
Relationship between mean number of alternative spliced variants and age of genes last
duplication in human. The analysis was performed separately with the genes mapped to each

top-level Gene Ontology functional categories (see Methods). Legend similar to Figure 2.

Figure S15:

Relationship between the difference of number of alternative spliced variants for gene
duplicate pairs and age of genes last duplication in human. The analysis was restricted to
duplicate pairs for which no later duplication occurred (see Methods). Legend similar to

Figure 2.

Figure S16:
Histograms comparing the number of splice forms between genes whose last duplication is

old (Bilateria; in black) and genes whose last duplication is recent (Homo sapiens; in gray).

Figure S17:
Relationship between proportion of singleton genes undergoing alternative splicing and their

age in human. Legend similar to Figure 2.

Figure S18:
Relationship between mean number of alternative spliced variants and age of singletons in

human. Legend similar to Figure 2B. The x-axis is in shown linear-scale.

Figure S19:
Relationship between mean number of alternative spliced variants and age of singletons in
human. Four bins of genes were created using quartiles of dn/ds values (calculated with

mouse; see Methods) and the trend is displayed for each sub-groups. Legend similar to Figure

2.

Figure S20:
(A) Comparison of proportion of genes undergoing alternative splicing for groups of genes
with different evolutionary histories in human. “Duplicates” are genes that kept in duplicate

after the whole-genome duplications ancestral to vertebrates (2R; later duplications allowed).
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“Singletons” are genes whose duplicate was not retained after 2R whole-genome duplications
(later duplications not allowed). “Singletons (+ later duplications)” represent genes whose
duplicate was not retained after 2R whole-genome duplications, but later duplications were
experienced.

(B) Comparison of mean number of alternative spliced variants for groups of genes with
different evolutionary histories in human.

Legend similar to Figure 1.

Figure S21:
Relationship between mean number of alternative spliced variants and age of genes last
duplication in human. Only Ensembl transcripts encoding for a protein were kept in the

dataset. Legend similar to Figure 2.

Figure S22:

(A) Relationship between proportion of genes undergoing alternative splicing and age of
genes last duplication in human. Only alternative splice forms annotated by Swiss-Prot as
“experimentally validated” were kept in the dataset.

(B) Relationship between mean number of alternative spliced variants and age of genes last
duplication in human. Only alternative splice forms annotated by Swiss-Prot as

“experimentally validated” were kept in the dataset. Legend similar to Figure 2.

Figure S23:

(A) Relationship between proportion of genes undergoing alternative splicing and age of
genes last duplication in human. Only alternative splice forms conserved with mouse
(extracted from the H-DBAS database) were kept in the dataset.

(B) Relationship between mean number of alternative spliced variants and age of genes last
duplication in human. Only alternative splice forms conserved with mouse (extracted from the

H-DBAS database) were kept in the dataset. Legend similar to Figure 2.

Figure S24:
Comparison of linear regression models explaining the mean number of alternative spliced
variants by the age of singletons in human. Data were split in sub-groups and the curves are

displayed for each sub-group (see legend on the graph).
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(A) Linear models were adjusted on four bins of genes depending on number of constitutive
exons (see Figure S8).

(B) Linear models were adjusted on four bins of genes depending on maximum transcript
length (see Figure S10).

(C) Linear models were adjusted on four bins of genes depending on dn/ds values (see Figures
S9 and S19).

(D) Linear models were adjusted on four bins of genes depending on EST counts (see Figure
S7).

(E) Linear models were adjusted on four datasets where only splice forms corresponding to a

given type of splicing events (e.g., cassette exons, CE) were kept.

Figure S25:

(A) Relationship between mean number of alternative spliced variants and the age of human
genes whose last duplication occurred in the branch leading to Homo sapiens.

(B) Relationship between mean number of alternative spliced variants and the age of human
genes whose last duplication occurred in the branch leading to Eutheria.

Legend similar to Figure 2.

Figure S26:
Relationship between mean rate of sequence evolution (mean log dn/ds) of singleton genes

and their age in human. Legend similar to Figure 2.

Figure S27:
Relationship between gene age and production of alternatively spliced variants in Drosophila

melanogaster.
(A) Legend as in Figure 2A.
(B) Legend as in Figure S17.

Dataset S1:
Excel file gathering the dataset used for this study.
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