SUPPLEMENTAL RESULTS
CAGE peaks in 3’ UTRs

The major class of CAGE peaks in annotated 3 UTRs of protein-coding genes is highly
significant and requires further study. In mammals, cap-trapped and polyadenylated
RNAs associated with CAGE peaks and overlapping 3' UTRs of many protein-coding
transcripts have been described and verified by RACE (Carninci et al. 2006). Similarly,
we observe that in the Drosophila embryo, 60% of protein-coding genes have a
significant CAGE peak within the 3° UTR, and that number is 80% for genes with 5’
UTR CAGE peaks. These peaks tend to be proportionally weaker than the 5' CAGE
peaks of the same transcript. The strength of CAGE peaks correlates much more strongly
with expression level (RPKM) measured by poly(A)+ RNA-seq in 3° UTRs than it does
in 5” UTRs (log linear, r ~ 0.73 in 3’UTRs, vs. r ~ 0.38 for CAGE peaks in 5> UTRs), but
this may be explained simply by the fact that 3> UTRs tend to be unspliced and more
constitutively represented in mRNAs than 5° UTRs, and hence it is easier to correctly
associate each CAGE peak with the appropriate exon for the purposes of computing
expression level. Our statistically based alignment analysis shows that these 3' CAGE
peaks are not an alignment artifact due to the lower sequence complexity in 3' UTRs.

We identified cap-trapped 5’ ESTs from the RE ¢cDNA library for 14 CAGE peaks within
3> UTRs, a sample of convenience and a small minority of the peaks in this class. Full-
insert sequencing of the corresponding cDNAs defined long polyadenylated transcripts,
several of which are polyadenylated at a site downstream of the annotated
polyadenylation site of the parental mRNA transcript. Note that the RE ESTs were
selected against short transcripts by the cDNA library construction process, so the
unannotated polyadenylation sites discovered in these cDNA sequences are biased toward
longer, downstream sites. Thus, 3> UTR CAGE peaks are associated with long transcripts
or transcript fragments that are co-linear with 3> UTRs and can have sufficient length and
stability to be represented in conventional cDNA libraries. The origin of this class of
CAGE peaks and transcripts is a subject for future study. They may represent transcript
fragments resulting from cleavage by microRNAs. Since there is no evidence of these
transcripts in nuclear-fraction short RNA (see (Nechaev et al. 2010) and Results), these
fragments might be re-capped by a recently described cytoplasmic capping complex
(Otsuka et al. 2009).

SUPPLEMENTAL DISCUSSION
Statistical approaches improve analysis of CAGE data

The analysis of CAGE tags presents two primary challenges. First, the tags are short (27
nt). To map these tags to the genome, we used a statistical program called StatMap
(Supplemental Methods). StatMap is an exhaustive approach to mapping that enables the
explicit modeling of CAGE as a sampling process, and in addition to mapped locations
for each tag, it returns an estimate of the underlying probability at each basepair that, if
one more tag were sequenced, its 5’ end would map to that location. StatMap can then



use these probabilities to refine the mappings for tags that align to multiple genomic
locations, which are in turn used to iteratively refine the estimated probabilities. That is,
StatMap models dependence between genomic locations induced by sequence similarity.
These features allowed us to infer that 16M CAGE tags map unambiguously, in that they
map to a location to which they are at least 100-fold more likely to map than to any other
location in the genome. This is a more useful and stronger condition than unique and
exact mappings, which are often reported in the literature for short reads.

The second challenge, as has been previously reported (van Bakel et al. 2010), is that
CAGE tags identify a diverse population of RNA elements, including the 5’ ends of
capped transcripts, some uncapped transcripts including rRNAs which are very abundant,
re-capped transcript fragments, and uncapped transcripts resulting from less-than-100%
efficiency in the cap-trapping protocol. While nearly the entire population of elements
detected by the CAGE assay may be of interest, in this study we were primarily interested
in CAGE tags that mapped to the 5’ ends of transcripts, and which therefore identify
TSSs within promoter regions. To enrich for this population of CAGE tags, we used a
statistical approach. We modeled the distribution of mapped CAGE tags across the
genome as linearly proportional to the distribution of mapped RNA-seq tags from a
developmental time course of embryo total RNA samples(Graveley et al. 2010), and
masked the CAGE tags wherever this linear model could account for the local density.
This two-step analysis removed 18% of mapped CAGE tags and enriched for tags in
promoter elements. However, many CAGE tags still mapped to mitochondrial transcripts,
coding exons and 3’ UTRs. This was not entirely surprising. Re-capping sites, for
instance, will also be enriched by our analysis if the re-capping event is frequent and
occurs at a consistent position in the transcript.

RACE primer design caveats

RACE primer design depends on prior knowledge of transcript structure. In a small
minority (ca. 50) of RACE experiments, primer design appears to have been mis-
targeted. In one set of cases, the inner gene-specific primer sequence overlaps or maps
upstream of a large CAGE peak, so that the RACE experiment artifactually amplifies the
5’ portion of the true TSS distribution. In another set of cases, the inner primer appears to
be too distant (> 500 bp) from a large embryonic CAGE peak to amplify efficiently and
sequence RACE reads corresponding to it. Improved transcriptome annotation from
RNA-seq analysis and correlation with unsupported CAGE tags will facilitate more
accurate targeting of RACE experiments in future work.



SUPLEMENTAL TABLES

Supplemental Table 1. Summary of RE EST, CAGE and RACE datasets.

Number of

Number of

Average Number of aligned spliced
Length (bp) Sequences sequences sequences
5'RE
EST 453 66,169 61,437 47,286
CAGE 27 41,804,261 20,191,962 NA
RACE 149 1,775,191 1,501,415 409,605

Supplemental Table 2. Summary of core promoter motif enrichment in promoters.

' Average Average enrich _
Common Ohler Fitzgerald frgquency frequency enrichment type ment enrlchr_nent pvalue*
name name name in peak in broad class position
promoters promoters
PauseButton 0.87 0.63 positional P +23 8.01E-033
TATA ohler3 DMp1l 0.18 0.19 positional P -32 1.26E-011
INR ohler4 DMp2 2.95 2.59 positional P -1 5.07E-027
INR DMp3 14.33 14.21 positional P -1 7.53E-005
DPE ohler9 DMp4 0.19 0.14 positional P +25 1.29E-011
DPE1 DMp5 0.69 0.59 positional P +26 3.61E-013
DMv1 0.64 0.65 overrepresentation B upstream 0
ohler8 DMv2 10.61 10.69 - - - -
ohler7 DMv3 2.22 2.36 overrepresentation B upstream 4.06E-08
ohlerl DMv4 0.96 0.97 - - - -
ohler6 DMv5 0.11 0.18 overrepresentation B upstream 6.27E-011
GAGA NDM1 0.49 0.29 overrepresentation P upstream 6.32E-012
NDM2 8.87 7.11 - - - -
NDM3 0.38 0.35 - - - -
DRE ohler2 NDM4 15.02 16.15 - - - -
Ebox ohler5 NDM5 0.19 0.22 overrepresentation B upstream 7.45E-004

*p-values are from Wilcoxon rank sum test between peaked and broad promoter classes

with Bonferonni correction for multiple testing.



SUPPLEMENTAL METHODS
CAGE data production

First-strand cDNA was synthesized from 50 ug total RNA using 10 pg of primer RT-
N15-EcoP (5'- AAGGTCTATCAGCAGNNNNNNNNNNNNNNNC -3") and 2 pg
Oligo-dT16-VN (5'- AAGGTCTATCAGCAGTTTTTTTTTTTTTTTTVN -3') using M-
MLV Reverse Transcriptase, RNase H Minus, Point Mutant (Promega) in the presence of
trehalose-sorbitol (0.14M-0.7M) as previously described(Carninci et al. 1998). The RT
reaction was purified by GFX-CTAB purification(Salimullah et al. 2009). Subsequently,
a biotin molecule was added to the CAP site by chemical biotinylation, treated with
RNase I, and subsequently mRNA/cDNA complexes were isolated such that the cDNAs
reached the cap-site, by capturing with streptavidin sepharose beads (GE
Healthcare)(Carninci et al. 1996). The beads were washed 10 times with Binding & Wash
buffer (0.5 M NaCl and 50 mM EDTA), once with B&W buffer containing 0.05% SDS,
and twice with B&W buffer containing 0.1% Tween20.

First strand cDNA was recovered from the beads by denaturation with 50 mM NaOH,
followed by neutralization by addition of Tris pH 7.0 at 100 mM final concentration. The
cDNA was cleaned up and the volume was reduced using a Microcon YM 100 filter
(Millipore). The specific linker 5'SOL41#1 (10 ng), containing ID tags ACA and a
recognition site for the class II restriction enzyme EcoP15I (upper oligonucleotide: 5'-
Biotin CCACCGACAGGTTCAGAGTTCTACAGACACAGCAGNNNNNN -3'; lower
oligonucleotide: 5'- Phosphate
CTGCTGTGTCTGTAGAACTCTGAACCTGTCGGTGGNH?2 -3') was ligated to the 3'
end of the first-strand cDNA with a DNA ligation kit version 2.1 (Takara Bio Inc).

Second-strand cDNA was synthesized using 10 ng of the primer 2nd SOL (5'- Biotin
CCACCGACAGGTTCAGAGTTCTACAG -3') and 5 units of La Taq (TaKaRa). The
resulting double-stranded cDNA was cleaved with 0.1 units of EcoP151 (NEB) in the
presence of 100 uM sinefungin (Sigma) and incubated at 37° for 3 hours. The enzyme
was inactivated by addition of MgCl, to 10 mM and incubation at 65° for 20 minutes.

Next, 10 ng of a second linker 3'SOLX (upper oligonucleotide: 5'- Phosphate
NNTCGTATGCCGTCTTCTGCTTG -3'; lower oligonucleotide: 5'-
CAAGCAGAAGACGGCATACGA -3") was ligated to the restriction digestion products.
Ligation was performed overnight at 16° C with T4 DNA ligase (NEB). Ligation
products (with biotin at the 5' ends) were separated from linker dimers and restriction
fragments from the 3'-end of the cDNA using streptavidin sepharose beads (GE
Healthcare). After binding of biotinylated DNA, beads were washed 10 times with B&W
buffer (0.5 M NaCl and 50 mM EDTA), once with B&W buffer containing 0.05% SDS,
and twice with B&W buffer containing 0.1% Tween20. The washed beads were
resuspended in 20 pl of H,O.

DNA fragments were amplified by PCR with two linker-specific primers, SOLX41F 34
(5'- AATGATACGGCGACCACCGACAGGTTCAGAGTTC -3') and SOLX R (5'-
CAAGCAGAAGACGGCATACGA -3"). PCR was performed in 1xHF buffer



(Finnzymes; 50 mM MgCl,, 33% DMSO), 0.2 mM dNTPs, 0.5 uM of each primer, 1 pl
of DNA template and 1 unit of Phusion polymerase (Finnzymes) in a total volume of 50
ul. The template was denatured at 98° for 30 sec and amplified by 19 cycles of PCR (10
sec at 98°, 10 sec at 60°). The resulting PCR products from 15 separate reactions were
pooled, digested with proteinase K, purified by ethanol precipitation, and resuspended in
12.5 pl of TE.

The PCR products were separated on a 12% PAGE gel, and the 96-bp band was excised
from the gel, crushed, and incubated with 1 ml of elution buffer (0.5 M ammonium
acetate, 10 mM magnesium acetate, | mM EDTA, pH 8.0, 0.1% SDS) overnight at room
temperature. The material was filtered by centrifugation in MicroSpin Empty Columns
(GE Healthcare). Finally, the sample was extracted with phenol-chloroform, ethanol
precipitated, and resuspended in 15 pl of H,O. The DNA concentration was measured
using an Agilent 2100 Bioanalyzer and adjusted to a final concentration of 10 nM for
sequencing operations. A 3.0 pM aliquote of the CAGE library was sequenced on the
[lumina GAI platform using standard protocols and the sequence primer 5'-
CGGCGACCACCGACAGGTTCAGAGTTCTACAG -3'. Multiple lanes of data were
collected to produce a total of 42 million reads.

The StatMap algorithm and CAGE data analysis

Statmap is a statistical framework for mapping short reads back to a (potentially
uncertain) reference genome. It is a tool to find every genomic location from which each
read may have come, given user-defined thresholds. Furthermore, given a model of the
process by which genomic DNA was selected for sequencing, Statmap models the joint
distribution of reads and genomic loci, resulting in a probability distribution on the space
of mappings consistent with the observed data. In order to do this, Statmap takes into
account three key classes of uncertainty:

1) Mapping uncertainty: genomes often contain multiple instances of identical or nearly
identical sequences of length on the scale of read length. Hence, the genomic location
from whence a particular read originated often cannot be ascertained from the sequence
of the read alone.

2) Sequencing uncertainty: reads may contain many sequencing errors in the form of
incorrectly called nucleotides. We assume, out of computational necessity, that these
errors are independent. We do not yet model insertions or deletions. We assume that the
mutation probabilities encoded by the sequencing platform of interest in the FASTQ file
constitute accurate estimates of these probabilities.

3) Genome uncertainty: Statmap maps back to a distribution at each base-pair of the
reference genome. As in 2), above, we assume independence at each position. This
assumption is presently an important computational convenience. We note that GPU
parallelization may ameliorate this problem and permit more complex error distributions.

We model each read as a noisy sample from a population of DNA sequences. Each
sequence has an associated genomic location, typically a chromosome-index pair. To



allow for genomic repeats, we do not insist that each sequence in the population is
unique. Furthermore, to allow for alternate genomes, we do not insist that the set of
genomic locations is unique. However, we do require that the sequence-location pairs are
unique, but this is true by definition for all extant reference genomes.

Formally, consider the sequence-location pair (S,g). Neither S nor ¢ is observed. Our data
are a set of reads R. Each r in R came from some underlying sequence S, where S was the
sequence actually fed into the sequencer. We estimate the probability that s was fed into
the sequencer, given I was the observed read, which we hereafter write Pr[r|s], from the
FASTQ file error model. We estimate Pr[r|s] under positional independence as the
product of the probabilities of point mutations taking the given sequence S into the
observed read r.

We will use the following notation:

Pr[r|s] — probability of observing a read, r, given that it came from a sequence S
This quantifies our uncertainty about the sequencing technology. Given
s, we can estimate this from the FASTQ provided error model.

Pr[g] — probability that a randomly selected read was generated by the sequence
starting at g. That is, the population portion of reads originating at g.
As such, the sum over all g must be 1. Typically, the goal of the assay is to
uncover this quantity.

a, [s | g] — estimate of the probability that the sequence S generating a read comes

from g

This is our model. For instance, in an RNA-seq experiment, if g is in a
single-isoform exon, the sequence S should be entirely contained in the
exon, the value of q,[s|g] should be high for all such s, and zero

otherwise. Note that the sum over all s of g,[s|g] is 1 for each g.

To motivate the following, assume for now that there is no sequencing error. That is, we
assume Pr[r|s] to be one if s is identical to r, and zero otherwise. Furthermore, assume
that the reference genome is known; mathematically, Pr[s|g] is 1 if and only if s is
identical to the sequence at g. Then we can express the probability of observing a read in
the form of an integral equation:

EQ1) Pr[s]=2.q,[s|g]Pr[g]

As described in (Vardi and Lee 1993), this can be solved via an iterative method. Write,
Iy = B [Ef] and P« = Pr[rk ], the estimated probabilities of gj and ry = si. That is, we
initialize ™; to be uniform and update our estimates until convergence via:
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When sequencing error and genomic uncertainty are present, let

f, [rk |g; ]: qu [Sm |9 ]Pr[rk IS, ] Then, with f replacing g, equation 2 becomes:
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Statmap in principle computes Pr[r|S] for each s of the same length as r. In practice, the
space of all sequences is too large to be computationally tractable, and we are generally
interested only in the very small subset of sequences that occur in the reference genome,
or are near in the sense of hamming distance to those that occur. To account for this,
Statmap has two essential operational parameters, and they are thresholds that govern the
algorithms exploration of sequence space. They are as follows:

1) MIN_BND = x: minimum bound on Pr[r|S]: compute Pr[r|s] only when greater than X
Prlr|s]
: compute Pr[s|r] only when
mave (Prfr s, ) comPue Prisir] only

its relative magnitude compared to the Sk that maximizes the likelihood of r is greater
than y.

2) MIN_RAT =y: minimum bound on ratio

Additional parameters may enter through the kernel g, [s | g]. The number and type of

parameters depends on the assay and the particular problem or question at hand. This
kernel is implemented by the user, via the Statmap Python API, which is described in
detail in the code available from the ENCODE consortium at encodestatistics.org.

The formulation used for CAGE is as follows. We mapped the 42M reads using
MIN_BND = 1E-10 and MIN_RAT = 1E-2. We specified q,[s|g] to be a 100 bp

Dirichlet smoothing window (http://en.wikipedia.org/wiki/Dirichlet). We modeled
potential untemplated dG residues on the 5' ends of CAGE reads as a Bernoulli process.
To initialize our iterative mapping procedure, we estimated the Bernoulli parameter as
uniform on mononucleotides. We conducted 200 iterative updates until the mean change
in the updated value across the genome was less than 1e-9. Questions about this analysis
should be directed to N.B. (npboley@gmail.com) and J.B.B. (ben@me.berkeley.edu).
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CAGE tag filtering

We modeled the CAGE assay background as a mixture of signal linearly proportional to
expression level and uniform, unstranded signal that we treat as random noise. To
classify the tags, we first estimated the mixture parameter. Then, we used data from
stranded RNA-seq of total RNA from a timecourse of D. melanogaster embryonic
development (Graveley et al. 2010) to calculate the probability that, under our model,
each tag was drawn from the background distribution. If the probability of a read having
come from the background distribution was less than 1e-3, we labeled it as signal. This
was done as follows: we modeled each mapped tag as having been drawn from a mixture
of two multinomial distributions. The bin frequencies of the first, the signal distribution,
are the parameters of interest. The bin frequencies of the second, the noise, are assumed
to be the same as those from which the mapped RNA-seq tags was drawn. To fit the
mixture parameter and the first multinomial bin frequencies, we initialized the mixture
parameter, 4, to the value which minimized the sum over all basepair positions of

|NAz; €l where N is the total number of reads, pi is the empirical RNA-seq bin
probability at position i, and C; is the expectation of the number of CAGE reads at
position i. Then, for each position, we estimated the marginal probability that the reads at
that position were drawn from the true distribution. Formally, we assumed that each
position i had a bin frequency p; , with a Beta(1+ AC, 1+ (L —4JG) distribution.
Then, we estimated the probability as:

I[:- Eﬂtﬂ-EFHl + ME’ 1 + El - pl}ﬂfjﬂ'mtﬂypyﬁjrﬁpf .

If this estimate fell below 1e-3, we labeled the reads as signal. After having done this for

each position, we re-estimated the mixture parameter by ¥x/M . Then, we re-classified
each read with the new mixture parameter. Further iterations of these estimates yielded

the same classifications, and the procedure was insensitive to our initial estimate of 4.
CAGE tag clustering

An iterative hierarchical clustering approach using the complete divisive method was
applied to arrive at clusters with a maximum span of 300 bp. To remove outliers, small
"singleton" clusters, clusters of at most five tags where the 5' ends of all member tags
map to a single bp, were filtered whenever no other tags mapped within 100 bp. Lastly,
clusters less than 50 bp apart were merged. Changing this threshold from 50 to 200 bp
resulted in changes to less than 1% of clusters, whereas a threshold of fewer than 50 bp
failed to merge clusters associated with the same transcript (determined by overlap with
mapped, associated RACE reads or RE ESTs).

RACE data production
Total RNA (1.25 pg) was treated with calf intestinal alkaline phosphotase (CIP; NEB) to

remove the 5' phosphate from uncapped transripts. The reaction was carried out at 37° for
one hour and was followed by phenol-chloroform extraction and ethanol percipitation.



Dephosphorolated RNA was treated with tobacco acid pyrophosphatase (TAP; NEB) to
remove the 5' cap structure. The reaction was carried out at 37° for one hour and was
followed by phenol-chloroform extraction and ethanol percipitation. A 5' RNA adapter
(Ambion) was ligated to the TAP-treated RNA using T4 RNA ligase (NEB). The reaction
was carried out at 37° for two hours and was followed by phenol-chloroform extraction
and ethanol percipitation. Reverse transcription was perfomed on the oligo-ligated RNA
using M-MLV reverse transcriptase (NEB). The reaction was incubated at 25° for 30
minutes and then at 42° for one hour. The resulting first-strand cDNA was treated with
RNAse H (Invitrogen) at 37° for 20 minutes. The final volume of the cDNA reaction was
100 pl, sufficient for 100 RACE experiments.

Nested RACE PCR reactions were carried out on the first-strand cDNA (1 pl) using
HotFirePol DNA polymerase (Solis Biodyne). The first round of PCR was performed
using a common primer within the 5' adapter sequence (Ambion) and a gene-specific
primer approximately 250 bases downstream of the annotated 5' end. PCR conditions
were as follows: 95°, 15 min.; 20 cycles of 95°, 30 sec., 56°, 30 sec., 72°, 1 min,.
followed by 72°, 15 min. The second round of PCR was performed using a nested
common primer (Ambion) and a nested gene-specific primer approximately 150 bases
downstream of the annoated 5' end. Second-round PCR conditions were as follows: 95°,
15 min.; 20 cycles of 95°, 30 sec., 60°, 30 sec., 72°, 1 min,. followed by 72°, 15 min. For
1453 experiments (see below), the number of cycles ine the seconnd-round PCR reaction
was increased from 20 to 25 to produce sufficient product.

Gel electrophoresis was preformed on a 5 ul aliquot of inner PCR product to assess yield
and product length(s). Gels were stained with ethidium bromide, and images were
captured using a BioRad GelDoc system and analyzed using BioRad Quantity One
software. In cases where no PCR band was visible, the second-round PCR reaction was
repeated using 25 cycles. Individual PCR products were pooled to create a molar-
normalized mixtures of 1,440 to 2,677 poducts using a Tecan Genesis 2 robot. The
sample pools were then concentrated to approximatley 50 ng/ul using Millipore Amicon
Ultra filters.

The concentrated pools were processed through the Roche 454 Genome Sequencer FLX
library construction protocol, including size fractionation by PAGE to remove library
adapter dimers.

RACE pools 1 to 4 were sequenced on Roche 454 FLX instruments at the Washington
Univeristy Genome Sequencing Center. RACE pool 5 was sequences on a Roche 454
Titanium instrument at the QB3 sequencing center at the University of California,
Berkeley.

RACE pool 1 consisted of 1440 experiments, pool 2 consisted of 1920 experiments, pool
3 consisted of 2677 experiments and pool 4 consisted of 2446 experiments. RACE pool 5
consisted of 2787 experiments including 2361 rework experiments and 426 new
experiments. Of the pool 5 rework experiments, 1453 had no PCR bands in previous
attempts and were amplified using 25 cycles in the second-round PCR step. An additional



908 experiments had PCR bands but did not return sequences in previous pools.
RACE data analysis

RACE reads were processed to trim low-quality regions and to identify and trim the
RLM-RACE adapter sequence. Only sequences with a significant match to the 3’ end of
the 3’-most 38 bases of the adapter sequence were retained. The adapter-trimmed
sequence was quality trimmed by searching for the longest sequence that had an
estimated probability of error of 10% or less; at least 35 high-quality bases were retained
in a database, compared to the Release 5 genome sequence using BLASTN (Altschul et
al. 1997), then aligned using sim4 (Florea et al. 1998) to a 200 kb region of the genome
centered on the best scoring BLAST high-scoring segment pair. Only sequences that
were aligned to the genome beginning at the most 5’ nucleotide were used in subsequent
analyses.

Based on these alignments, reads were associated with a targeted transcript from the
corresponding pool of RACE products. Each such read was presumed to represent a
transcription initiation event. Because the protocol relies on PCR amplification, each read
does not necessarily represent an independent event. A read was associated with a
particular transcript and RACE reaction by searching for interrogated transcripts on the
same strand as the aligned sequence and within 5 kb of the 3' end of the aligned
sequence. If there was only one transcript within this region that was a target in the
RACE pool, it was assigned to the read. If there were multiple targeted transcripts within
the region, then the sequence was assigned to the transcript and RACE reaction with the
highest scoring BLAST hit to the inner transcript-specific PCR primer if applicable, or to
the highest scoring BLAST hit to a targeted transcript.

Associated RACE reads were clustered to define promoter regions. The unique locations
of all reads associated with a given target were collected, and the Euclidian distances
between all pairs of distinct start locations were calculated. An iterative hierarchical
clustering approach using the "complete" agglomeration method was applied to find the
minimum number of clusters for which the number of TSS in a cluster is greater than
three and the cluster span is less than 300 bp. To remove outliers, tags that mapped
farther away than 1.5 times the inter-quartile range were excluded from a promoter
region.

Promoter classification

To determine whether sequencing depth was sufficient to classify a promoter as peaked
or broad, we sampled tags and computed the fraction of sites we could rediscover within
a promoter. At each stage k in the sampling, we limited the sampling to clusters that had
greater than k reads. We estimated that peaked promoters require approximately 20
products per cluster to rediscover 80% of the unique tags in that cluster, while broad
promoters require approximately 100 tags to rediscover 80% of the unique TSS in that
cluster (Supplementary Fig. 5).

To assess confidence, we ensured that the classification would remain the same under a



bootstrapped sample of the tag distribution and if we added a single tag in the worst
possible location. That is, for each broad promoter, we took N bootstrap samples from the
tag distribution and, for each sample, added a single tag at the location with the highest
tag count. For a peaked promoter, we bootstrapped from the tags and added a single tag
to a uniform, random position within the promoter region. If less than 99% of the
bootstrap samples changed classification, then we classified the region as ‘unknown’ (U).
Under this model, 1,484 (83%) promoters retained their ‘peaked’ classification.

Similarly, 6005 (87%) broad promoters retained their broad classification. This is
consistent with the analysis above: greater tag depths are necessary to confidently classify
broad promoters.

Motif analysis

The match score, or probability of observing a motif along a given sequence, was
calculated as the sum of nucleotide frequencies given by the PSSM, and has been shown
to be correlated to the equilibrium occupancy of a TF to a given sequence ina simple
thermodynamic model(Schneider et al. 1986; Berg and von Hippel 1987). Aggregate
plots of motif occurrence were made by aligning promoter sequences at the tallest TSS
peak within each promoter and averaging motif occurrences across all positions within
the aligned sequences.

Defining promoters

We modeled the joint distributions of the mapped tag counts at each bp as follows:
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where the distributions of tag counts are uniformly "shifted", or "offset" versions of some
underlying “summary” or “consensus’” multinomial. We estimated the optimal shifts non-
parametrically under cross correlation at each shift from -5 to +5 bp. We also studied
cross correlation at each promoter for all shifts from -50 to +50 bp, but the extended
width of the analysis improved the maximal correlation of the pairs of assays in only 10%
of cases, and these cases corresponded to marginal improvements. We performed kernel
density smoothing under a uniform kernel of width determined by the above estimate of
the optimal shift on each of the three tag distributions from the three assays. We
combined the tag distributions into a single, consensus PDF by computing the variance
normalized estimate of pj, above, at each position in the promoter. Variance
normalization here prevents one assay with much greater tag counts (usually CAGE)



from washing out the other two.

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1. Peaked and broad TSS distributions defined by RE ESTs. The
5’-end alignments of the indicated ESTs are shown. In parentheses are indicated the
number of redundant, near-identical EST reads (same number of splice-sites, exon
boundaries are within 5% of the figure range). (a) RE ESTs associated with the peaked
promoter of dhd. (b) RE ESTs associated with the broad promoter of CG4769.

Supplemental Figure 2. CAGE peaks map to the mitochondrial genome and the rDNA
repeat. (a) The entire D. melanogaster mitochondrial genome is shown with CAGE peaks
in the top track and mitochondrial genes in the bottom track. (b) The alignment of 1.4M
CAGE reads to the D. melanogaster rDNA tandem repeat sequence (Tautz et al. 1988)
(GenBank acc. no. M21017) is shown. Peaks map to each of the processed rRNAs: 18S,
5.88S, 28, and 28S. The locations of the mature rRNAs within the rDNA repeat are
indicated by the green bars. The interdigitated black bars correspond to the internal
transcribed spacers (ITS). The peak at zero on the x-axis corresponds to the Pol |
transcription start site (arrow) for the long primary transcript. A small fraction (5%) of
reads map to the antisense strand, which is shown in red, with the y-axis scaled
differently for visibility.

Supplemental Figure 3. Promoter classification. (a) The relationship between width of
promoter clusters and shape index is plotted. Promoter widths (histogram projection of x-
axis) are bimodally distributed with a trough at approximately 20 nt. The shape index
(histogram projection of y-axis) is continuously distributed. Promoters with SI > -1
(above the dotted line) were classified as peaked; promoters with SI <= -1 were classified
as broad. (b) The average fraction of distinct start sites rediscovered by sampling tags
within peaked and broad promoters, under a multinomial model of TSS distribution.
Approximately 20 and 100 tags are necessary to discover 80% of the TSS locations
within peaked and broad promoters, respectively.

Supplemental Figure 4. Embryo RACE versus Adult RACE. The relative offsets of TSS
locations in embryo RACE and TSS locations in adult RACE is indicated.

Supplemental Figure 5. Positional histograms of 16 core promoter motifs mapped on
both strands. Peaked promoters are positionally enriched for the pause button, TATA,
INR (DMp2 and DMp3) and DPE (DMp4 and DMp5) motifs. Broad promoters are
generally enriched for the DMv1, DMv3, Dmv5, NDml and NDMS5 motifs.

Supplemental Figure 6. Analysis of CAGE peaks in 3’ UTRs. Forty percent of CAGE
peaks overlap 3° UTRs. These peaks are positionally enriched for the PB motif at -10 nt
relative to the primary TSS location in the CAGE peak.
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