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1 Overview

CENTIPEDE applies a hierarchical Bayesian mixture model to infer regions of the genome that are bound by
particular transcription factors. It starts by identifying a set of candidate binding sites (e.g., sites that match a
certain position weight matrix (PWM)), and then aims to classify the sites according to whether each site is bound
or not bound by a TF. CENTIPEDE is an unsupervised learning algorithm that discriminates between two different

types of motif instances using as much relevant information as possible. In brief, the procedure is as follows:

1. Scan the genome for all approximate matches to a target PWM of interest. Each site that matches the PWM

is considered a candidate binding site (Section 2.1).

2. Extract the relevant data for every candidate binding site. For this paper we extracted the following. Data
for the prior (Section 2.2): PWM match score, conservation score, distance to the nearest transcription start
site. Data for the likelihood (Section 2.3): DNase-seq and histone ChIP-seq data from windows of 200 bp
and 400 bp, respectively, centered on each PWM match.

3. Fit a mixture model in which there are two kinds of sites (labeled “bound” and “unbound”). The two classes
of sites are characterized by having (potentially) different distributions for each of the measured data types.
The parameters to be estimated by the model are: (i) the distributions of each data type in the bound and
unbound classes, separately, and (ii) the posterior probability that each site is in the bound, and unbound
classes, respectively. We use an EM (expectation maximization) algorithm to find the values of (i) and (ii)

that maximize the overall likelihood of the data across all sites (Section 3).

4. Report the set of candidate binding sites with high posterior probability (e.g., > 0.99) of being in the bound

class.

5. Validation of the high posterior TF-bound sites using ChIP-seq (Section 4.1) or sequence conservation if

ChIP-seq is not available (in this case, conservation is not included in the model; Section 4.3).

CENTIPEDE separates the available information into two components. We think of the genomic information
(e.g., PWM match score) as telling us something about the propensity for a particular site to be actively bound,
without directly depending on the tissue or cell type or experimental conditions. Based on this information we
compute a prior probability that each site is bound (using a logistic function, the parameters of which are estimated
by the mixture model).

In contrast to the genomic prior information, we treat experimental data (DNasel and histone modifications) as
being dependent on the particular cell type or experimental condition. Each data type is modeled with a mixture of
two distributions with an independent set of parameters for the bound and unbound state. Although we focus on a
single cell-type here, this framework extends naturally to the setting in which experimental data are available from
multiple tissues, cell types or experimental conditions.

For unsupervised mixture models, the labeling of the clusters is sometimes arbitrary (i.e., in this context it

might be unclear which cluster corresponds to “bound” sites). This problem was largely solved by forcing one



class (the “unbound” state) to have a uniform distribution of DNase cuts across the region around the motif. In
a handful of CENTIPEDE runs, label switching could be detected if, for example, “unbound” sites were more
conserved, had more DNase-seq reads, or tended to be closer to the nearest TSS than “bound” sites. In practice,

we minimized label switching by choosing an appropriate starting point (Section 3.2).

2 Data sources and processing

2.1 PWM scanning.

Candidate binding sites were identified using either pre-estimated position weight matrices (PWMs) or words that
we determined to be enriched in hypersensitive sites (see Section 5.1). PWMs were defined based on TRANSFAC
(TRANSFAC®Professional 2009.1 (2009-03-27)) and JASPAR (http://jaspar.genereg.net/, core set
downloaded on 2009-09-01). All matrices from those two sources were considered for inclusion (see below for
further discussion). We generated random PWMs by permuting the JASPAR matrices using an online tool available
at http://jaspar.genereg.net/. We further eliminated any randomly generated PWMs that showed
significant similarity to a known PWM using TomTom (Leaving 47 of 200 PWMs, [1]).

We scanned the human genome sequence (hg18) for matches to each PWM using our implementation of the

following commonly used formula [2]:

W1 . -
P (seeing S, at position w|PWM)
PWM )y = 1 1
score (1) wz::o ©82 (P (seeing ;1| background model) M
Ww-1 W—1
= D 108y (p[Stvw,wl) = ) log, (0.25)
w=0 w=0
w-1
= ) 10gy (p[Siyw, w]) —log, (0.25) W
w=0

where PWM score(l) denotes the PWM score for a specified PWM of length W in the sequence between positions
land [ + W — 1 in a DNA sequence, where S;,, denotes the nucleotide observed at position ! + w, where the
PWM model is given by the probability p [}, w] of observing the nucleotide S, (A,C,G,T) at position w (W
is the motif length), and where it is assumed that the probability of observing each nucleotide on the background
distribution is 0.25. The probabilities of the PWM model were taken directly from the database, or estimated from
the base counts at each position. In the latter case, we estimated the probabilities by adding 0.05 pseudo-counts
to avoid having a very strong score against a sequence for which binding affinity may have not been tested (this is
especially helpful for PWMs obtained using electrophoretic mobility shift assays (EMSA), which often have small
sample sizes).

We used a relatively permissive threshold for defining candidate binding sites, considering all sites for which
PWM Score(l) > log2(10000) = 13.288). The median number of matches for a PWM was ~ 96,000. We filtered
out the matrices that were unusually abundant (> 500, 000 matches in the genome), or that were not found (i.e.,
0 matches). Using these criteria and combining both databases (TRANSFAC and JASPAR), we obtained 756
position weight matrices (PWMs), out of the original ~ 1000 PWM matrices from both datasets.



In many cases there is similarity between multiple PWMs; this occurs for two major reasons. First, a single TF
may be represented by two or more similar PWMs (e.g., NRSF also known as REST is represented by M00256
in TRANSFAC, and MAO138 in JASPAR). Second, closely related TFs may have similar motifs (e.g. E-box, GC-
box, GATA, and CAAT). Since it is difficult to know a priori which motifs are best, we fit the model first using
all motifs. Motifs that do not correspond closely to any active TF are filtered out by our conservation criterion
(Section 4.3). Additionally, our map reports ambiguity in cases where a single location is estimated to be bound

by PWMs corresponding to multiple factors (Section 5.3).

2.2 Data for the prior.

For each PWM or word and for each motif match in the genome (as defined in the previous section), we obtained

the following genomic data for use in the prior (see also Table S1):
e PWM score(l), calculated based on eq. 1.

e The average PhastCons conservation score on the motif match region across the plancental mammals on the
44-way multiple alignment (ftp: //hgdownload.cse.ucsc.edu/goldenPath/hgl8/phastCons44way/

placentalMammals/)

e Distance to the closest annotated Ensembl transcription start site (TSS) (ftp://hgdownload.cse.
ucsc.edu/goldenPath/hgl8/database/ensGene.sqgl). The following distance formula was
used to calculate the TSS Proximity, score, where TSS Distance; is the distance in base pairs from the motif

center to the nearest TSS:

TSS Distance; ) - )

TSS Proximity, = (1 + 1000

Table S1: Summary of data sources used as prior information.

Data type Source Publications
PWM matrices TRANSFAC [3]
PWM matrices JASPAR [4]
PhastCons conservation score  UCSC browser [5]
Ensembl gene annotion UCSC browser [6]

2.3 Experimental data.

Table S2 summarizes the experimental information used in this paper. The ENCODE Project data were down-
loaded (on 2010-07-01) from the main ENCODE data distribution center at the University of California Santa Cruz
(UCSC), publicly available at ftp: //hgdownload.cse.ucsc.edu/goldenPath/hgl8/encodeDCC/.
We thank the ENCODE Project for making these data available pre-publication (see release dates on Table S2).



We generated additional DNase-seq data for the GM 18507 and GM 18507 HapMap LCLs (8 lanes each on the
Illumina GAII sequencer) using the same protocol as for the ENCODE GM 12878 sample (http://genome.
ucsc.edu/ENCODE/protocols/general/Duke_DNase_protocol.pdf). We thank Greg Crawford

for assistance in implementing the DNase-seq protocol.

Table S2: Summary of experimental data used by CENTIPEDE.

Data type Cell-line Source Lab Publications ~ Embargo end date ~ # mapped reads
DNase-seq GM12878  EncodeDCC  Crawford [7] 2009-12-20 62.3M
DNase-seq GM18507 GEO Pritchard ~ This study NA 77.6M
DNase-seq  GM19239  GEO Pritchard ~ This study NA 76.3M
H3K4mel GM12878 EncodeDCC  Bernstein NA 2009-10-05 20.5M
H3K4me2 GM12878 EncodeDCC  Bernstein NA 2009-10-05 14.0M
H3K4me3 GM12878 EncodeDCC  Bernstein NA 2009-10-05 13.5M
H3K9ac GM12878 EncodeDCC  Bernstein NA 2009-10-05 16.1M
H3K27ac GM12878 EncodeDCC  Bernstein ~ NA 2009-10-05 13.9M
H3K27me3 GMI12878 EncodeDCC Bernstein NA 2009-10-05 18.1M
H4k20mel GM12878 EncodeDCC  Bernstein NA 2009-10-05 16.9M

Read mapping. We used the raw sequencing reads (‘“*.fastq.gz” files) and mapped them on the human reference
genome (hg18) using BWA [8] (using the default settings). Then we filtered out the reads with quality score < 10
or that mapped to more than one location in the genome. For reads obtained using the DNase-seq protocol, since
their length is limited to 20bp, we further removed all reads that contained an insertion/deletion or that had more
than one mismatch with respect to hg18. The aligned reads of multiple experimental replicates on the same cell-
line type were combined into a single file. The total numbers of reads that were successfully mapped for each data

type are reported in Tables S2 and S3.

2.4 Models for experimental data.

Based on preliminary analysis, we settled on the following models for the experimental data. For the DNase data,
we observed that around bound locations there is typically both an overall increase in the number of reads, as well
as a distinctive profile of cut-site locations (that often differs by strand) [9, 10, 11] (see Figure S8 for examples).
We model the total number of DNase reads in a 200bp window around the motif site as coming from a negative
binomial distribution (this distribution is like a Poisson with variability in the underlying rate). Then, conditional
on the total number of reads in the region, the number of reads at each site is modeled as multinomial. In the
model, we estimate different parameters for the negative binomial for the bound and unbound classes. Based on
preliminary experiments we fix the parameters for the multinomial distribution to be uniform in the unbound case,
and we estimate a distinct parameter for every position in the bound case. (The full model is quite parameter-rich,
but since the data sets are quite large, we observed no performance cost.)

For the histone modification data, we found that the data were most informative if we counted the total numbers
of reads corresponding to each modification in a 400 bp window around each candidate motif site. There is

potentially some additional spatial information (i.e., the distributions of reads is not quite uniform around the



binding sites) but including the spatial information has little effect on model performance so we dropped this
from the final model. Initially we included separate parameters for each histone modification, but this proved
to be confusing to the mixture model since there are strong correlations among some of the modifications. So
for the analyses presented, we merged the modifications into two groups: marks that are associated with active
(H3K4mel, H3K4me2, H3K4me3, H3K9ac and H3K27ac), and inactive (H3K27mel and H4K20me1l) chromatin,
respectively [12]. The numbers of reads in each class were modeled as being negative binomially distributed, with

distinct parameters for the bound and unbound cases.

3 The CENTIPEDE model
3.1 The model.

CENTIPEDE uses a probabilistic framework known as a hierarchical mixture model
P (D)) =P (Z =1|G)P(Di|Z; = 1) + P(Z, = 0|G1) P (D| Z, = 0) 3)

where, for each motif match ‘I’, D; and G| represent the observed experimental data and the prior information
around the motif match. The data D; can come from two underlying distributions that form the mixture model.
One distribution corresponds to the bound state of transcription factors (Z; = 1) while the other distribution
corresponds to the unbound state (Z; = 0).

The model is hierarchical because we model the prior probabilities of observing a bound motif given prior
information Gy, such as conservation, distance to the TSS, score of the PWM. For each potential binding location
‘I’ we calculate a prior probability m;, = P (Z; = 1| G;) that the site is used. This prior probability depends on

various genomic information that can describe site ‘I’ and is modeled using a logistic model

log <1ilm> = Bo + B1 x PWM Score; + 32 x Cons. Score; + B3 x TSS Proximity; + . .. @)

As experimental data “D;”, CENTIPEDE can combine many different types of experiments (e.g. read counts
from DNase-seq, histone modification ChIP-seq). For a single experimental data-type (e.g., DNase-seq), the col-
lection of reads in a given region (200bp) around the motif matches ‘I’ can be represented by an L x S matrix
X = {Xis}. Bachrow X;. = (X, 1,..., X, g) corresponds to a single location in the genome with a motif match
‘I’ and the column index ‘s’ indexes each position relative to the center of this motif match. Thus, the cells of this
matrix will represent discrete counts of DNase-seq reads that map to a given distance from the motif center.

For example, for DNase-seq (window size 200bp) and a motif of length 19, S = (200 + 19)2 = 438, the
first quarter of X . contains the reads collected to the left of the motif mid-point on the forward strand, the second
quarter the reads collected to the right of the motif mid-point on the forward strand, and the second half correspond
to the reads collected on the reverse strand. This matrix can be visualized as an image (see Figure 1A - DNasel

cuts/site - where both strands have been combined X 1.5/2 + X (5/241):5)-



For a single data type, we can write the problem for a particular motif instance (I) as

P(le.) = mP (Xl’.|Zl = ].) + ®))
(]. — 7Tl) P(le.‘Zl S 0)
where here, we have simply re-written the prior probabilities of coming from the bound and unbound distributions
asm = P(Z,=1|G;) and P (Z; = 0| G;) = 1 — m, respectively. If we have multiple experimental data-types
this is modeled as
P(xxP xP) = mp (xV, X2 xP12=1) + (©)
(1 - 7Tl) P (Xl(,l_),Xl(f),Xl(f”Zl = 0)
where X1, X2) and X®) represent three different discrete-count data-types (X(*) in general, for the k-th

data type). Our model makes the simplifying assumption that, conditional on the state of the element (i.e.

bound/unbound), the data types are independent: i.e.,
P(xV. X2 xP1z) = p(x12) P(x212) P (X1 2) ™

Violations of this assumption may reduce the performance of the method, which is why we merged the seven
histone marks into two groups for the analysis.

Now we will describe how these conditional distributions are modeled. Each data-type will have the same
distributional form but an independent set of parameters, so we will focus on a single data-type P (X;.|Z;) (for
additional data-types we would add the appropriate super-indices in all the notation that follows). We need to
define the two key distributions P (X;.|Z; = 1) and P (X;,.|Z; = 0) that distinguish bound instances from those

not bound. First we define the following useful variable

S
Ri=> X, ®)
s=1

to denote the total number of reads in the region surrounding the [-th site. We can then write

P(Xi.|Z1)) = P(Xi.,R|Z)=
= P(Xi.|Ri,Z1) P (Ri|Z)) 9)

Now we model the first and second term of eq. 9 for the bound case Z; = 1 and unbound case Z; = 0. The

total number of reads is modeled with a negative binomial distribution,

P(Ri|Z; =1) = NegativeBinomial (Rj|ay, 1) =
T (Oq + Rl) L R
RI'F (0[1) Tl ( Tl) ( )
P(Ri|Z, =0) = NegativeBinomial (R|ag, ) =
T (Ozo + Rl) 0 R
= —— % (] — l 11
Rl (ag) ) (b

8



which depend on a4, 7 for the bound class, and ag, 79 for the unbound class. With these two distributions we

can capture open versus closed chromatin in DNasel hypersensitivity assays, or enrichment of certain histone

modifications associated with enhancers or repressors measured by ChIP-seq assays. If the positional distribution

P (X, .|Ry, Z;) is not important (or not very informative) we are able leave it un-specified (i.e, any configuration
is equally likely)

P(X..|R.2) = C (12)

P(Xi.12)) o P(Ri|Z) (13)

This is the option we chose for the histone modification ChIP-seq assays. In contrast, we found that for DNasel

the positional information can be very informative as DNasel leaves a distinctive cleavage pattern when Z; = 1.

The spatial distribution of reads surrounding the binding site is modeled with a multinomial distribution

P(X;.1Z,=1,R;) = Multinomial (X;.|R;,{\1,...,As})
5
PR
| S
Rl.S];[l ( o ) (14)

where the \; gives the probability that a read is obtained from position index ‘s’ and R;\s is the expected value

of X; s given R;. For Z; = 0, the TF is not bound, so no specific footprint is expected. In this case we found it

worked well to simply set the cut-site distribution as uniform (As = 1/.5):

P(le.|Zl:0,Rl) = Multinomial(Xl_,.|Rl,{1/S,...,1/S})

s 9—Xi,s
Rl!H( % ) (15)

s=1

The parameters of the CENTIPEDE model (81, B2, - . . 500, To, O, T1,AL, - - -, A0, T, @4, 71, .. .) are esti-
mated by maximizing the likelihood function using an expectation maximization (EM) algorithm. To implement

this, instead of maximizing the likelihood function

L(Parameters) = H P (D;| Parameters) (16)
1

directly, we formulate a “complete” likelihood function:

L
L¢(Param.) = HP(Dl,Zl|Parameters) =
=1
L F(Oél—l-Rl) - R, Afsl Z
- H INCH (1-mn) 11(%,1')
(1-2)
[ (ao+ Ri) g, , 518y
( (Fo(ozo) : 0 (- 1;[1 (( {173,)1' >>

ﬁ (=fr (1 =m)' =) a7
l



and we iteratively maximize ) (Param.) =F [L (Param.) | D]. This maximization involves cycling through two
phases. In the first phase (E-step), we estimate the expectations of each individual Z; keeping all other parameters
fixed. In the second phase (M-step), we treat the expectations of Z; as fixed, and we find the maximum likelihood
estimates of all other parameters.

For a given cycle of the EM algorithm, on the E-step, we calculate E (Z;) (also equal to the posterior probability

p; of binding for that site given the data and the current estimates of the model parameters):

p = P(Z;=1|R,,X,.,Param.) = (18)
- P(Rl,Xl,.|Z[ = 1) U’y _
P(R17X17,|Zl = 1) ™+ P(Rl,le.|Zl = 0) (1 — 7Tl)
1 j—
P(R,,X,,.|Z,=0)(1-m)
1+ P(lRllel,-ilel)ﬂ'l l

1

- (km)Rlr”°F<Rl+ao)/F(ao>) g (1/5)“”
1 + ( = l) ((177.1)1—”T%lr(Rl*‘ral)/F(al) <51:II As

19)
The form of this posterior probablity p; can be more easily interpreted in terms of the posterior odds:
1— )BT (R r 5
n_ ( ™ ) (( n) " (R o) ) (an) (H (SAS)%,Z> 0
1_pl 1-m (1—7’0) 'TOUF(Rl-FCko)/F(Cko) s—1

illustrating that the posterior odds are equal to the product of the prior odds (given by the logistic model) and the
likelihood ratios (LRs) for the models corresponding to each type of data (multinomial negative binomial for the

DNase-seq). This easily extends to multiple independent types of experimental data:

Posterior Odds: b =
1—pm
Prior Odds: :( il )
1-— Uy
OYE e () L () 0 s
(1_71 ) (7)™ F(Rz to )/F(a1 ) e
LR DNase-seq: X =D H (SAg)"et
D\ 1)\ o™ 1 1 1 =
(1=7") " @ T (R +af) /1 (af) L
OV @ya® (@) L @ @)
. (1=7)" =) (RP +af?) 1 (o)
LR Act. Histones: X @
2)\ f 20 @ 2 2 2
(1= )™ (@ r (R + o) /1 (of?)
GV @a® (@) L @) ®)
(1—71 ) (r7)™ F(Rl +ay )/F(ozl )
LR Rep. Histones: X @
() G (RO + o) (o)

In the maximization step we update each of the parameters according to the estimators that maximize the EM @

function; in this case equivalent to the complete likelihood function with the Z; replaced by their expected values

10



p;. For each of the multinomial parameters, \s— , the estimators are:

L
)\s _ Zl pll‘s,l (21)

S L
D=1 221 PiTs
The estimates of the negative binomial parameters 79 and 7y are:
L
@ (L =y pz)
- L L
> R+ ag (L -2 pz) — > Ripy

aq ZlL b
aq ZZL Pt ZlL Rip’

respectively. Finally, in the case of the 3’s in the logistic model and in the case of the negative binomial parameters

(22)

70

T =

(23)

g, and «, there are no analytic solutions that maximize (), but the derivatives are known so we can maximize

them with a Newton-Raphson (BFGS) step using the R function “optim”.

3.2 Implementation details.

This section describes several issues that have been considered in the implementation of the CENTIPEDE algo-

rithm: i) mappability, ii) model robustness, iii) estimator shrinkage, and iv) EM initialization and convergence.

Mappability. Filtering the reads that map to multiple locations means that some repeat-rich regions of the
genome contain gaps in the experimental data. In order to avoid problems with mappability that could bias our
results, we filtered out motif instances that had more than 20% un-mappable bases in the 200bp window centered
on the motif (mappability determined with simulation scripts modified from [13]). Briefly, we simulated reads for
every 20 base pair segment of the genome, and determined whether our mapping scheme would reliably map a
read originating from that location. These motif instances were discarded for all the analyses that are presented
throughout this report. We also determined if the remaining instances with a few un-mappable bases could pose
a problem to the CENTIPEDE model. In general, the model behaved well even if those missing locations were
treated as having zero reads. We also explored an extended version of the model that can handle missing data by
imputation, but it only showed a mild improvement at a much higher computational cost (results not shown). In
fact, we saw a greater improvement in performance by “shrinking” the estimates for the multinomial profile (see

below).

Model robustness. Several filters were used to discard sequencing reads that had low quality or that mapped
to multiple locations along the genome (see Section 2.3). In general we find that the mixture of two negative
binomials is very flexible in discriminating between two classes of sites, and provides a very good fit to the
empirical distribution for the number of reads observed across all 200bp windows in the genome (Figure S7).
However, we find that a few locations have extremely large numbers of reads at a single base location. For this
reason, we decided to clip the reads that map to a single base in the genome to 30 reads at maximum. This happens

very rarely, less than 10 times per 100,000 motif matches. Additionally, all the multiplications, factorials, Gamma

11



functions, and parameters involving large numbers were computed as log-transformed which avoided potential

numerical underflows/overflows.

Estimator shrinkage. In the statistics field, shrinkage estimators are often used to improve the acuracy of param-
eter estimators and avoid overfitting. We tried an implicit shrinkage by replacing the multinomial distribution by a
multivariate Pélya distribution (also known as Dirichlet compound multinomial distribution) but explicit shrinkage
of the A parameters

: 1
As = 0.54 + 0.5 24

achieved similar or better results at a much smaller fraction of the computational cost. When we compared the
model predictions to ChIP-seq, shrinkage of the A parameters helped to improve the overall performance. However,
the improvement was mostly in terms of sensitivity while specificity usually decreased. For this reason, estimator
shrinkage was not used in producing the main regulatory map where a low false positive rate (specificity) was

preferered over a low false negative rate (sensitivity).

EM initialization and convergence. In general we found that the EM algorithm used in CENTIPEDE was very
robust with respect to the starting point for the parameter estimates. Nevertheless, faster convergence was achieved
if we used an informed starting point. In the implementation used here, we started the model by initializing the

parameters as follows:

1. Fit the 3’s in the logistic model by replacing the p;’s (still not known) by a binary variable indicating the
motif instances that are above the 90th%-tile on the DNase-seq distribution (for the histone-only model the

90th%-tile on the activating histone distribution was used instead).
2. Calculate the expected p; using only the prior model using the (3’s calculated in the previous step.

3. Maximize all the parameters as in a regular EM algorithm iteration. All the parameters are updated using

this initial estimate for p;.
4. Regular EM algorithm until convergence.

Using this strategy the EM algorithm typically converges in less that 30 cycles. The criteria for convergence are:
i) the likelihood of the model changes by less than 0.02, and ii) all the parameters change by less than 0.001 with

respect to the previous EM iteration.

4 Validation of the CENTIPEDE predicted TF-bound sites
4.1 Validation with ChIP-seq.

We downloaded publicly available ChIP-seq data from the ENCODE project corresponding to six transcription
factors (Table S3), including the raw reads and also the ChIP-seq peaks that ENCODE identified. In summary, the

prediction performance of the methods developed here was assessed using: i) a correlation based approach, and ii)

12



Receiver Operation Curves (ROCs). The correlation approach considers that a method has a higher accuracy if the
correlation between the predicted values and the ChIP-seq signal is large and the correlation with the background
noise “control” is small. The ROC approach assumes that a “gold standard” exists with which we can confidently
tell if the binary outcome of our prediction (TF bound versus not-bound) is true for a subset of the candidate motif

sites.

Table S3: Summary of ChIP-seq validation data used in the main paper.

Antibody Cell-line Source Lab Embargo end date  # mapped reads
NRSF (REST) GM12878  EncodeDCC  Myers 2009-08-25 22.7M
GABPA GM12878  EncodeDCC  Myers 2009-08-20 22.0M
SRF GM12878  EncodeDCC  Myers 2009-08-20 245M
MAX GM12878  EncodeDCC  Snyder 2009-10-09 11.2M
JUND GM12878  EncodeDCC  Snyder 2009-11-27 7.6 M
CTCF GM12878  EncodeDCC  Bernstein ~ 2009-10-05 154M

Definition of ChIP-seq peaks, and motif instances as ChIP-seq positives. For NRSF (also known as REST),
SRF, and GABPA we used the ChIP-seq peaks as reported by ENCODE at the UCSC genome browser portal. If
multiple replicates were available we combined them into a single file. For three other factors (CTCF, JUND and
MAX) ChIP-seq peaks were re-extracted using MACS [14]. This was necessary because peaks reported by the
Myers lab ENCODE group were shorter peaks (100bp) compared to those extracted by other ENCODE groups and
we wanted to have the same peak calling criteria across all TF. We combined all ChIP-seq and control replicates
into two separate files respectively, and we used MACS version 1.3.7.1 with the default settings to detect peaks.
We selected all the peaks with the lowest p-value resulting in a FDR of 0.02% for CTCF, 20% for JUND, and 0.1%
for MAX. These differences in FDR are necessary due to the different amounts of coverage that are obtained in
each ChIP-seq experiment. We also shortened the peaks we called with MACS to a 100bp window centered on
the peak summit in order to obtain the same peak length distribution as for NRSF, SRF, and GABPA reported by
ENCODE. Then, for each transcription factor all motif instances that overlapped these peaks were considered as

ChIP-seq positives.

Definition of motif instances as ChIP-seq negatives. MACS does not report the peaks below a p-value cut-off
so we need a procedure to extract motif instances with strong evidence that they are not bound by the factor. We
defined the set of ChIP-seq negatives as all motif instances that did not overlap a ChIP-seq peak (i.e., did not have
a p-value< 0.001) and had a fraction of total mapped reads on the control > than that for the ChIP-seq treatment
(see below for how these reads were extracted). This enrichment for control reads in the ChIP-seq negative set

ensures that the evaluated prediction methods are not particularly biased towards the ChIP-seq control.
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ROC analysis. After determining motif instances that are ChIP-seq positives / negatives, we calculated the per-

formance of CENTIPEDE in predicting them. For a given cut-off of the posterior probability we define:
e True positives (TP) as the ChIP-seq positive instances that have been predicted correctly as bound.
e False positives (FP) as the ChIP-seq negative instances that have been predicted incorrectly as bound.
e False negatives (FN) as the ChIP-seq positive instances that have been predicted incorrectly as not bound.
o True negatives (TN) as the ChIP-seq negative instances that have been predicted correctly as not bound.

The sensitivity is defined as the fraction of ChIP-seq positive motifs that have been predicted correctly as bound
(Sens.= TP / (TP+FN)). The false positive rate (FPR) is defined as the fraction of ChIP-seq negative motifs that
have been predicted incorrectly as bound (FPR = FP / (FP+TN)). The FPR should not to be confused with the false
discovery rate (FDR) defined as the fraction of motif instances that have been predicted incorrectly (FDR = FP /
(TP+FP)). The receiver operator characteristic (ROC) is the curve that describes the trade-off between sensitivity
and FPR that can be achieved by changing the threshold cut-off on the posterior probability. The larger the area
under the curve (AUC), the better is the prediction accuracy. In Table S4 we also report the precision defined as
fraction of all predicted sites that are also in ChIP-seq peaks (Prec.= TP/(TP+FP)).

Correlation analysis. In contrast to ROC analysis that requires a binary partition into bound/not-bound using
ChIP-seq as a “gold standard”, a correlation analysis does not require us to discard motif-cases that cannot be
reliable determined (with a low FDR) by ChIP-seq. Furthermore, it is also becoming increasingly evident that
TF binding is not perfectly dichotomous (bound/not-bound), but in many cases there would be partial binding
corresponding to the fraction of cells that have TF binding at a particular site at any given time. We used Pearson
correlation to measure the trend between the square root of the total number of ChIPseq-reads around a motif site
and the posterior log-odds reported by CENTIPEDE.

The ChIPseq reads and “Control” reads around motif sites were extracted using the following procedure. We
first mapped all the reads corresponding to all replicate samples for each TF and its respective “Control” exper-
iment. BWA[8] mapping software was used and we filtered all the reads that did not map uniquely or had low

quality scores. Then, for each motif instance along the genome:
1. Extract reads that fall within a 400bp window centered on the motif instance.
2. Calculate a ChIP-seq peak profile based on the motif instances with the top 20% number of reads (Figure S1).
3. Obtain the window that covers 75% of the peak mass using reverse-waterfilling (shaded area on Figure S1).

4. Calculate for each instance the total number of ChIP-seq reads and “Control” reads that fall inside of the

window around the motif we calculated on the previous step (shaded area on Figure S1).
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Figure S1: Extraction of the ChIP-seq and Control signals. This figure illustrates the procedure used for extracting ChIP-seq reads and
“Control” reads around motif instances using NRSF (also known as REST) as an example. Left panel, corresponds to the ChIP-seq peak
profile based on the motif instances with the top 20% number of reads, and the shaded gray area corresponds to the window that covers the 75%
of the peak mass. Right panel, corresponds to the histogram of the number of reads falling inside the ChIP-seq profile for both ChIP-treatment
(upper plot) and “Control” (bottom plot).

Table S4: Summary of ChIP-seq calls and validation.

ChIP-seq CENTIPEDE with DNasel footprint CENTIPEDE w/ footprint & Histones
# Motif #Calls Correlation w/ At 1% FPR Correlation w/ At 1% FPR
TF Motif instances Negative, Positive ChIP-seq, Control AUC % # Pred., %Sens., %Prec. ChIP-seq, Control AUC % # Pred., %Sens., %Prec.
In LCLs:
NRSF (REST) M00256 4966 1642 1193 0.78 0.32 95.17 569 46.27 97.01 0.5 0.49 88.47 267 16.51 73.78
SRF MAO0083 20841 11146 133 0.72 0.26 98.97 235 92.48 52.34 0.57 0.29 98.67 245 84.96 46.12
MAX MO00118 28296 13611 72 0.56 0.37 99.53 202 88.89 31.68 0.63 0.42 99.46 202 88.89 31.68
GABPA MO00108 36726 19150 924 0.72 0.56 99.52 1070 95.02 82.06 0.69 0.61 98.12 1579 98.16 57.44
CTCF M01200 63748 23201 17093 0.79 0.1 97.53 15200 87.56 98.47 0.73 0.1 96.37 9541 52.62 94.27
JUND M00199 107939 72172 14 0.34 0.34 97.91 733 78.57 L5 0.34 0.38 98.06 2560 92.86 0.51
In K562:

CTCF M01200 63748 14664 10426 0.75 0.19 98.81 7093 66.62 97.93 0.57 0.19 97.62 3882 35.16 94.44
GABPA MO00108 36726 16559 1170 0.76 0.68 98.75 1246 92.31 86.68 0.69 0.66 98.33 1304 89.83 80.6
FOS (C-fos) MO00038 50416 19729 1417 0.6 0.2 97.04 1300 71.77 84.77 0.56 0.2 98.92 1383 83.63 85.68
JUN (C-jun) M00036 7134 2938 265 0.68 0.34 93.91 219 71.32 86.3 0.7 0.34 98.01 234 76.98 87.18
NFE2 M00037 82927 47180 563 0.52 0.16 99.14 952 85.26 50.42 0.44 0.14 98.83 860 68.92 45.12
E2F4 M00739 12594 5150 418 0.77 0.28 99.94 464 98.56 88.79 0.68 031 99.8 467 99.28 88.87
SRF MA0083 20841 11113 166 0.71 0.36 96.01 243 78.92 5391 043 0.33 97.25 224 67.47 50
NRSF (REST) M00256 4966 1811 1193 0.82 0.51 94.96 656 53.39 97.1 0.48 0.56 88.03 212 13.24 74.53
GATA2 MO00128 12984 5551 75 0.57 0.12 99.11 124 90.67 54.84 0.48 0.13 99.55 125 92 552
GATA1 M00348 67847 31192 402 0.57 0.09 98.84 683 92.29 54.32 0.53 0.12 99.77 704 97.51 55.68
MAX M00118 28296 3475 246 0.58 0.17 99.4 269 95.12 86.99 0.59 0.17 99.84 275 97.56 87.27
YYI M00069 65357 22562 840 0.66 0.18 98.6 998 91.9 77.35 0.63 0.17 99.04 999 92.02 77.38

This table summarizes the ChIP-seq validation results for the 6 LCL transcription factors used in the main paper (Table S3) and 12 additional

TFs with ChIP-seq data on K562 cell-lines available from the ENCODE Project. The columns report the total number of instances (after

mappability filter) considered, the number of ChIP-seq positive/negative instances, and the prediction accuracies for the CENTIPEDE model

using the DNasel footprint, with and without including histone modifications. The prediction accuracy is measured in terms of: i) correlation
with ChIP-seq (higher is better) and the Control (lower is better), ii) area under the ROC curve (% AUC) iii) and at 1% FPR, the total number
of instances predicted to be bound, the % sensitivity and the % precision.
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Table S5: Summary of average performance.

Average in LCLs Average in K562
At 1% FPR Correlation w/ At 1% FPR Correlation w/
Method %Sens., %Prec. % AUC Chip., Control %Sens., %Prec. % AUC Chip., Control
CENTIPEDE w/ DNasel footprint 81.47 60.51 98.11 0.65 0.32 82.84 76.6 97.88 0.67 0.27
CENTIPEDE w/ Footpr. w/o Shrinking 83.26 60.43 95.3 0.6 0.26 80.75 75.5 93.9 0.6 0.22
CENTIPEDE w/ Footprint w/o Prior 80.72 60.61 97.35 0.64 0.32 80.95 76.3 96.08 0.64 0.25
CENTIPEDE w/ DNasel w/o Footprint 64.67 58.11 97.02 0.63 0.35 75.57 75.7 97.48 0.66 0.28
Number of DNasel cuts 66.61 58.06 96.23 0.62 0.37 76.6 74.6 97.31 0.65 0.29
CENTIPEDE w/ Footprint + Histones 72.33 50.63 96.52 0.58 0.38 76.13 73.5 97.92 0.56 0.28
CENTIPEDE w/ Histones only 44.27 3591 85 0.31 0.31 63.68 65.9 92.79 0.41 0.22
PWM 21.28 35.14 73.01 0.25 0.05 26.26 31.6 66.7 0.18 0.05
Conservation 9.73 30.71 774 0.26 0.13 7.75 26.7 73.58 0.22 0.1

This table summarizes the average performance at predicting ChIP-seq data for several methods across 6 LCL transcription factors and 12
additional TFs with ChIP-seq data on K562 cell-lines available from the ENCODE Project. The columns report: i) the average % sensitivity
and % precision at 1% FPR, ii) the area under the ROC curve (% AUC), and iii) the correlation with ChIP-seq (higher is better) and the Control
(lower is better).
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Figure S2: ChIP-seq validation of CENTIPEDE predictions in the K562 cell-line. This figure is the equivalent of Figure 3for the K562

cell-lines, where more ChIP-seq experiments are available. For K562 we see again that Centipede with DNasel is the model with best average
performance across all TFs, and that for some TFs, histone modification data can offer some improvement.
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Figure S3: Detailed ChIP-seq validation of CENTIPEDE predictions in LCLs
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4.2 Relationship to other methods

Several recent studies have also attempted to make in silico predictions of actively bound targets of individual TFs.
A thorough comparison of all these methods is not possible as each method is generally tested on a different set
of data, uses a different gold-standard for evaluation, is intended to solve a different problem, or is not readily
extensible to apply directly to the data we use in this study. Nevertheless, despite these limitations, we discuss the
main differences among these approaches here.

Ernst et al. 2010 [15] developed a computational method based on a logistic regression for combining multiple
genome annotations to predict active TF binding. These annotations include both sequence-derived features (such
as GC content, gene annotation and conservation) and experiment-derived data (such as histone modifications,
and DNasel hypersensitivity). The experimental data was tissue specific but they aimed at extrapolating potential
TF binding to any tissue or cell condition, so data is combined together across tissues. In contrast, CENTIPEDE
aims to use the experimental data to predict TF binding under specific experiment conditions. Another difference
is that their approach is non-motif specific, and can be used to score individual bases for TF binding potential
without using a motif. Unlike CENTIPEDE, however, their method requires a training step (i.e., it needs example
regions that are confirmed to be TF binding sites). Xie et al. (2009) [16] used a comparative genomics approach,
MotifMap, based on phylogenetic footprinting to predict the locations of functional regulatory sites, but did not
integrate cell-specific experimental data.

Wang et al. (2009) [17] used an approach designed to integrate genomic data such as sequence conservation,
CpG island richness, and DNase sensitivity in a model to predict active binding of USF1. Similar to our method,
they started with a PWM scoring method to identify all candidate binding sites. Unlike the CENTIPEDE approach
however, this approach required ChIP data to train their model parameters.

Won et al. (2010) [18] developed a computational method, Chromia, for integrating histone modification
profiles to predict active TF binding in mouse embryonic stem cells. Like CENTIPEDE, Chromia also aims to
identify binding sites which are active on the underlying experiment conditions and is motif-based (in contrast to
Ernst et al. 2010 [15] approach discussed earlier). However, CENTIPEDE is more flexible in specifying the model
for the experimental and sequence data in that: i) there is a hierarchical separation between the experimental-
data model and the prior specified with a logistic regression for the sequence score and conservation; ii) the
spatial distribution of the different data-types surrounding a binding site can be specified up to a single base-pair
resolution. This may explain why we do not obtain a degradation in performace when we include conservation in
the model as is the case for Chromia. Chromia uses an HMM to exploit the spatial distribution of data-types but at
a much more limited resolution level (100bp windows and 3 states for the transitions form left, central to right flank
of a motif). This may be sufficient for histone modification data, but is probably not enough to capture the DNasel
cleavage pattern. The Gaussian mixture model used by Chromia may be more flexible than CENTIPEDE to model
dependency between histone modification experiments or multi-modal patterns, but requires supervised learning
and the availability of suitable training data. Both Won et al. (2010) [18] and Ernst et al. 2010 [15] find histone
modifications useful in predicting binding sites, which are also found useful with CENTIPEDE. However, Won et

al. did not attempt to use DNasel data at all, and Ernst et al. only used DNasel hypersensitive sites as a binary
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feature (a very early low coverage DNasel experimental track [9]). To the best of our knoweledge CENTIPEDE is
the only computational approach available that is capable of learning TF specific DNasel cleavage patterns[11] for

predicting binding sites.

4.3 Conservation as validation of the CENTIPEDE predictions.

When ChIP-seq data are not available to validate the accuracy of the CENTIPEDE predictions we use conservation
to assess whether the model is working properly. In this case we exclude conservation from the model, and we
measure whether motif instances with high posterior have significantly higher conservation of the underlying DNA

sequences across different species. Step by step:
1. Extract the PhastCons conservation scores for the placental mammals in the 44-way alignment (UCSC).
2. Calculate for each motif instance, the average PhastCons conservation score Cj.
3. Compute the CENTIPEDE posterior probabilities p; excluding conservation from the model.

4. Fit a logistic model:
log(pi/(1 = p1)) = Bo + B1Ch (25)

5. Calculate the z-score for conservation corresponding to (3; using the Hessian matrix calculated at the max-
imum likelihood estimate. This gives exactly the same p-value as a generalized linear model (GLM) in
R.

Finally, we applied a correction to these Z-scores that normalized across motifs with respect to the average distance

to the nearest TSS by regressing out this effect.

S Motif analysis
5.1 De novo motif discovery.

The approach that we use to build the CENTIPEDE model requires a set of candidate binding sites. Section 2.1
shows how we can recover the candidate binding sites using databases that contain known TF motifs. However,
there is potentially a significant number of active regulatory elements for which a PWM has not yet been described.
Since we know from this work (and previous work [9]) that DNasel hypersensitive sites are enriched for matches
to the PWMs of active regulatory elements, we reasoned that a comprehensive analysis of enriched k-mers on
hypersensitive sites would be useful for discovering novel motifs (as well as recovering known PWMs). With the
aim of verifying this hypothesis and discovering novel motifs we developed the approach presented in this section.

First, we counted the number of times every possible 10-mer occurred within the DNA sequences in the most
DNasel sensitive regions of the genome. These regions were defined using a 200bp sliding window centered on
every single base pair and selecting the positions with more than 200 DNase-seq reads. In total, 6.4 Mb (0.21%

of the human genome) met this criterion, and on average each 10-mer occurred 12.2 times within this region
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(where a k-mer and its reverse compliment are combined). We defined an “enriched” set of 10-mers as being those
words that occurred more than 50 times in these DNasel sensitive regions (corresponding to the top 3 percentile
of the distribution). In addition, we constructed a “control” set of 20,000 10-mers that occurred 6 or fewer times
(corresponding to the bottom 50 percentile) in these regions.

For each word in the enriched set, we ran the CENTIPEDE model on all the matches of the word along the
genome. For the control words, we used all the matches up to 1 base away from the original word and used a
rejection sampling strategy to match the distribution of DNasel HS to that for the enriched words. This sampling
procedure was used to control for the correlation of DNasel regions with functional elements.

After applying the CENTIPEDE model to both the enriched words and the control words, we used the con-
servation Z-score procedure described in Section 4.3 to validate the predictions. We estimated that 735 of the
enriched 10-mers showed significantly higher conservation, on average, for the sites predicted to be bound than for
those sites predicted to be unbound (with a 10% FDR estimated using the control words). Using the CENTIPEDE
models from each of these 735 significantly enriched 10-mers, we expanded the word-space covered by calculat-
ing the posterior probabilities for all locations in the genome that were at most one base-pair mismatch away from
the original 10-mer seed word. Using the posteriors calculated, we estimated a PWM for each of these words by
estimating the frequencies of each base in the high confidence predicted binding locations (Posterior Probability
> 0.99). For the estimation of the PWMs, we first considered all bases within 50 bp of the 10-mer as potentially
being informative, and then trimmed the resulting PWM of uninformative bases up to the first and last base that had
an information content of > 0.25 bits. (The estimated PWMs and their predicted binding sites for all words can be
found at http://centipede.uchicago.edu.) In the following section, the overlap between the predicted
binding sites for every pair of motifs will show that the procedure described in this section can indeed recover a
large proportion of the known PWMs motifs, as well as discover 49 novel words (corresponding to approximately

24 non-overlapping sets).

5.2 Identification of groups of overlapping motifs.

There is redundancy in the set of motifs we analyzed. Some PWMs obtained from databases (Section 2.1) are
derived from the same TF (or different TFs that recognize the same DNA sequence motif). Additionally, the
motifs derived from words (Section 5.1) may overlap if they are a single nucleotide distance from one another. In
this section we systematically explore the overlap between the predicted binding sites for all pairs of motifs (PWM

or word derived). For each pair of motifs ¢ and b:

1. Calculate the sets A and B of binding sites with a high posterior from the CENTIPEDE model > 0.99.
2. Calculate the intersection set A N B with the instances form A and B that overlap on at least one single bp.
3. Measure the size of the sets (|[A N B, |A], and |B|).

4. Finally, the amount of overlap between motifs a and b is:

|AN B

. 26
win (JA],1B]) (20

Overlap (a,b) =
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From the analysis of all known PWMs (Section 2.1) and the word derived motifs (Section 5.1) we can retrieve
826,896 unique locations of being a TF-bound site with high probability. Of these locations, 431,724 were detected
using PWMs, and 574,567 using words (179,395 recovered from both analyses). This indicates that a large pro-
portion of the words can retrieve the original known PWM motif and expand a very restrictive PWM description.
However, since our aim was to discover novel motifs with the 10-mer analysis, we removed all 10-mer derived
words with at least 10% overlap to a known PWM. After this filtering step, we were left with 49 novel 10-mer
motifs.

For the rest of the analyses we continued with the set of 239 known PWMs and 49 novel motifs. We estimated
the groups of independent motifs from this set of 288 motifs by agglomerative clustering of the predicted binding
sites. We recursively joined the pair of motifs with the largest overlap measure (eq. 26). Once a pair of motifs was
joined, we used the average measure of overlap between all the leaves to merge two nodes (i.e., average linkage).
Using a maximum pairwise distance cutoff of 10% between nodes (distance defined as 1-overlap), we estimate that
there are 95 clusters of elements with little overlap. As expected, we find that different PWMs representing the
same TF are grouped together and groups of related TFs (e.g. TFs with very similar PWMs) are almost invariably
joined as members of the same cluster. Throughout the main text of this paper, we highlighted only a single
member of each of these clusters (e.g. in the motifs listed in Figure 6). A complete list of motifs and their cluster

membership can be found at http://centipede.uchicago.edu.

5.3 Novel words that have a match in existing protein binding microarray data

Protein binding microarrays (PBMs) are very useful for determining the set of sequences that a transcription factor
binds [19, 20, 21, 22, 23]. Microarray probes that include, exhaustively, all possible short sequences (e.g. 8-mers)
are tested for binding affinity to a protein of interest. Using the publicly available data deposited in the UniProbe
database (http://the_brain.bwh.harvard.edu/uniprobe/), we checked if any of our novel words
have a know binding partner. For 23 out of 49 words, we identified a protein that has a strong affinity for that
sequence. In Table S6, we report the proteins with the highest enrichement score (ES) for these 23 words (although
some of these words were significantly enriched for multiple proteins). However, when we conducted the same
analysis for control words we found that roughly 50% also provided a ES above 0.45 (the default threshold). Thus,
this analysis seems only suggestive of a potential binding partner and a more thorough analysis would be necessary

to reach any definitive conclusion.

5.4 GO analysis of putative gene-targets of each TF.

Next, we asked whether the putative target genes for each TF were enriched for functional categories that one
might expect to be coordinately regulated. For each motif, we took as putative targets the set of genes that had a
high posterior binding site within 5 kb of an annotated TSS for that gene. We used the R package ‘GOstats’ to
perform a hypergeometric test for overrepresentation conditional on the parent-child structure of the GO categories
represented in the target gene set ([24, 25]). We took all Entrez genes with an assigned GO category as the gene

universe against which we would test for significant overrepresentation in sets of target genes for a specific motif.
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Table S6: Matching discovered novel words to TFs using PBM.
Novel 10-mer Protein ~ PBM k-mer E.S. Reference
AGAACTACAA  Gat3 AGAACTAC  0.49477  “Zhuetal., GR 2009 [22]
AGGAAGGGGC Plagll GAAGGGGC 0.469166 “Badis et al., Science 2009 [21]
AGGAAGGGGG Zfp281 GAAGGGGG 0.48417  “Badis et al., Science 2009” [21]
AGGCAGGAAG Ehf GCAGGAAG 0.465621 “Badis et al., Science 2009 [21]
AGGGAGGAAG  Sfpil GGAGGAAG 0.467427 “Badis et al., Science 2009 [21]
CAAAATGGCG E2F2 AAATGGCG 0.452616 “Badis et al., Science 2009 [21]
CACTGCGCAG  Zbtb3 CACTGCGC  0.452079 “Badis et al., Science 2009” [21]
CAGCCCCGGG  Tcfap2c GCCCCGGG 0.48458  “Badis et al., Science 2009 [21]
CCCACCCTCC  Zfp740 CCCACCCT  0.458455 “Badis et al., Science 2009” [21]
CCCCCCTTCC  Zfp740 CCCCCCTT  0.495301 “Badis et al., Science 2009” [21]
CCCCTTTAAG  Yer130c CCCCTTTA 0474102 “Zhuetal., GR 2009” [22]
CCCGGAAGCA  Gabpa CCGGAAGC  0.494322 “Badis et al., Science 2009 [21]
CCCTTCCTCC Stpil CTTCCTCC  0.467427 “Badis et al., Science 2009 [21]
CCCTTTAAGG  Nsy-7 CTTTAAGG  0.454334 “Leschet al., GD 2009” [23]
CCTTCCTCCC Stpil CTTCCTCC  0.467427 “Badis et al., Science 2009 [21]
CCTTTAAGAG  Bapxl TTTAAGAG  0.45061  “Berger et al., Cell 2008 [20]
CGGGGAGGAA Sp4 GGGGAGGA 0.462762 “Badis et al., Science 2009 [21]
GCCCCTTTAA  Plagll GCCCCTTT  0.47783  “Badis et al., Science 2009 [21]
GGAACTACAA  Gat3 GGAACTAC  0.493443 “Zhuetal., GR 2009” [22]
GGCCACACCC  Met32 GCCACACC  0.493529 “Zhuetal., GR 2009” [22]
GGCCCCTTTA  Plagll GGCCCCTT  0.494069 “Badis et al., Science 2009 [21]
GGGAAACTGA Irf3 GGAAACTG 0.473723 “Badis et al., Science 2009 [21]
TGCGCGCGCA  Zfpl6l GCGCGCGC 0.498641 “Badis et al., Science 2009” [21]

The significance of overrepresentation was assessed with a Bonferroni corrected P-value where the total number
of tests was the total number of GO categories in the set of target genes of the motif being tested. Figure 4 in the
main text, and Figure S14 report the highest enriched functional category for the set of genes that are the target of
each TF.

5.5 Co-occurrence analysis of binding locations for each TF.

For each motif, we explored whether there was significant co-localization with other motifs that might indicate
the presence of regulatory modules. For each pairwise comparison of motif-types ¢ and j, we estimated the
expected number of bound sites of j in the non-overlapping 200 bp region immediately outside of the ¢ motifs. This
expectation was controlled for the specific overrepresentation of most motifs at TSSs, and we used a two-sample
Poisson test to test for significant overrepresentation compared to this expectation. The TSS-controlled expectation

for each pair of ¢ and j was calculated as:

Bljei] = wi_lj“’ () @
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where F[jei] is the expected number of bound sites of ¢ in the non-overlapping 200 bp region immediately outside
of the 5 motifs. w indexes non-overlapping windows of distance to the TSS that each high-posterior binding site
was assigned to. Thus, j,, refers to the number of high posterior binding sites of motif-type j that fall within the
distance to the nearest TSS defined by w. {Jye€i, } refers to the total number of all motif types within a TSS
window that fall into the regions surrounding ¢ and .J,, refers to the total number of all motif-types that fall into
the window defined by w. The choices for non-overlapping windows were the regions between the following
breakpoints: 0 bp, 250 bp, 500 bp, 750 bp, 1 kb, 2kb, 3kb, 4kb, Skb, 6kb, 7kb, 8kb, 9kb, 10kb, and >10kb from
TSS. Motif j was considered significantly over-represented in the windows surrounding ¢ if the actual count of

these co-occurrences was significantly greater than the expectation, using an FDR threshold of 5% [26].

5.6 Linear modeling of steady state mRNA levels.

Gene regulation is governed through combinatorial action of many transcription factors and it is expected to be
a non-linear highly complex function of the regulatory elements nearby the TSS. However, we hypothesized that
simple linear model could explain a significant portion of the of the gene expression levels using the TF binding
sites as explanatory variables. In order to test this hypothesis, absolute measures of steady state mRNA in lym-
phoblasts, averaged across 69 Yuruban individuals, were obtained for each of 33,502 Ensembl genes from [27].
We defined 288 indicator variables, one for each motif. For each gene (¢), an indicator variable, I,,0tif ,took on
a value of 1 if there was a high posterior site within 5 kb of any of the annotated TSSs for that gene and took on
a value of 0 otherwise. We then modeled log2-transformed gene expression (measured as average RNA-seq reads

per base per individual) as a linear combination of these variables. That is, we fit the linear model:

Y = Bo + Bidmotifi,i + Brlmotif2,i-- + Basgdmotifoss,i + € (28)

where ¢ indexes each gene. We used stepwise addition (implemented in the R package ‘lars’) coupled with
Bayesian Information Criterion (BIC) to perform variable selection. Ultimately, we found that the top 96 indi-
cator variables gave the minimum BIC. With this relatively simple model, the linear model explains 38% of the
total variance in gene expression (Figure S7). Interestingly, the binding sites corresponding to a small number of
TF could explain a large portion of the total variance in expression across genes. For example, the SP1 TRANS-
FAC motif M00196 explains 15% of the variance in gene expression, and the top 20 variables explain 32% of the
total variance.

Since many of our predictions are correlated with DNasel sensitivity, we asked whether these predictions had
explanatory power beyond the general level of DNasel sensitivity in the 5 kb window considered. For this analysis,
we fit three measures of DNase sensitivity (sensitivity within 500 bp, sensitivity between 500 and 1000 bp, and
sensitivity between 1000 and 5000 bp) together with the original 288 indicator variables described above. i.e.,

Yvi = 50 + 5DNaseA,i + 6DNaseB,i + 5DNaseC,i + 51]motif1,i + (29)

Bilmotif2,i---BossImotifss,i + €
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When fitting this model, we find that the three DNasel measures explain 37% of the total variance in gene expres-
sion while the remaining 62 significant factors explain an additional 8%. Thus, we find that there is additional
information in the TF binding site predictions that is lost when treating DNasel only as a general measure of active
regulatory elements. For example, while NRSF and CTCEF sites both fall into DNasel hypersensitive sites, each
has a repressive effect on nearby genes even though a typical hypersensitivity site is associated with an increase in
gene expression. For the remaining activating motifs, it is unclear whether TF binding or chromatin changes are
the root cause of expression differences in nearby genes.

The effect sizes of the multiple regressions, presented before, are difficult to interpret given that many of the
288 factors partially overlap each other (i.e., multicolinearity). To alleviate this problem we estimated the effect
size individually for each factor in a smaller linear model that only adds the DNasel sensitivity of the promoter
region:

Y = ﬂO + 5DNaseA,i + 5DNaseB,i + 5DNaseC,i + 6jImotifj,i + € (30)

We report the marginal effect sizes for this final model in Figure 6 of the main text and in Figure S14.

5.7 Analysis of multi-tissue expression for TF target genes.

We extracted gene expression values for 16,077 Ensembl genes from the tissue gene expression atlas (http:
//biogps.gnf.org/downloads/) corresponding to 86 tissues / cell-lines. The gene expression for each
tissue was normalized using RMA [28], and then log-2 transformed. Using the same definition of target genes
as in the previous section, we calculated for each tissue the average gene expression across all the genes that a
particular TF targets. The resulting average gene expression per TF and tissue can be visualized as an image, see
Figure S13. TFs that also affect the gene expression for tissues other than LCLs, appear as long stretches of red,
implying that core promoter elements like Sp1/GC affect in a similar manner a large number of genes. On the other
hand, TFs that are important in B-cell development such as Pax5, PU.1 only appear on LCLs and other closely
related cell-lines. For the Figure 6 of the main part of the paper we selected a subset of TFs and tissues that best

represent this in a compact way.

5.8 Estimating enrichment/depletion of histone modifications at TF binding locations.

We estimated the enrichment/depletion of histone modification at TF binding locations as in Section 4.3. For
each histone modification Hy, separately, we extracted the number of reads within a 400bp window of each motif

instance [. Then, for each histone modification k, we fit the following logistic model:

log(pi/(1 — 1)) = Bo + BeHik (31)

where p; is the CENTIPEDE posterior probability for motif instance /. For each ) we can calculate a z-score
using the second derivative of the maximum likelihood estimate (i.e. the Hessian). This is equivalent to the way

statistical significance is calculated for a generalized linear model (GLM) in R.
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6 Resource availability

The regulatory map for LCLs and the source code for CENTIPEDE will be released at http://centipede.

uchicago.edu.
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Figure S5: Examples of motifs from Figure 6 of the main text with evidence of significant co-localization. For each motif included in
Figure 6 of the main text, we plot the fold enrichment of other motifs (also limited to those in Figure 6) in the 200 bp non-overlapping window
surrounding the motif. Only those motifs pairs with significant enrichment are colored, and the color scale gives the mean fold enrichment for
pairs of motifs with the corresponding color. The full table giving all significant pairwise overlaps is provided at http://centipede.uchicago.edu.
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corresponds to the model with/without the DNasel sensitivity variables in addition to the indicator variables. The bottom panel shows the value
of the Bayesian Information Criterion (BIC). The dashed lines mark the location of the minimum BIC for the models.
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Figure S7: Negative Binomial modeling of DNase-seq reads. Genome-wide distribution of the total number of DNase-seq reads for every
200bp window in the genome. The black dots are the empirical probabilities calculated as the fraction of times a window with that number of
reads is seen in the genome. The blue line corresponds to the probabilites of a mixture of two negative binomail distributions that are represeted
with a green and a red line. The two components, green and red, can be attributed to the DNase-seq reads coming from accessible (open)
chromatin and inaccessible (closed) chromatin, respectively.
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Figure S8: Examples of estimated footprints for motifs that pass our conservation z-score threshold (top panel), and for which
we discard the motif from further analysis (bottom panel). In the CENTIPEDE model, we have fit different multinomial parameters for
positions on the forward (black solid lines) and reverse DNA-strands (red dashed lines). Due to the particular chemistry of the DNase-seq
protocol, the positions of reads mapping to each strand is not necessarily expected to be symmetric (e.g., CTCF; [9]). For motifs that pass the
conservation z-score threshold, we find considerable variation in the shape of the distribution of cutsite locations, and this difference in shapes
can add to the TF-specificity of our model. There are unifying aspects to the conserved class of motifs that give us confidence they represent
actual protein binding and can be distinguished from cases where the CENTIPEDE model might pick out differences in sequence-dependent
DNasel sensitivity. First, for motifs with high conservation z-scores, there is usually evidence of a protected site directly over the informative
bases of the PWM, indicating that DNA-TF interactions produce steric hindrance to the DNasel enzyme. In contrast, this central protected
region is not usually observed for motifs with low conservation z-scores. Furthermore, for motifs with high conservation z-scores there are
frequently spikes of sensitivity, on opposite DNA strands, on either side of the central protected region. These spikes are consistent with
DNA conformational changes induced by TF-binding that sensitize particular positions to cleavage (e.g., widening of the minor groove). The
opposing spikes on either strand are caused when two single stranded nicks on opposite sides of the bound protein lead to a double strand break
with a single strand overhang. All footprints can be found at http://centipede.uchicago.edu.
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Figure S10: Histone modification ChIP-seq profile for several TFs. NRSF (REST) shows a small enrichment of repressing histone marks
and no enrichment in activating histone marks. GABPA, on the other hand shows a strong enrichment of activating histone marks and a small
depletion of repressing histone marks. For CTCEF, the difference on the histone mark changes between bound and unbound states is smaller
than in GABPA. For the three motifs, the spatial distribution of the histone marks ChIP-seq reads do not seem very informative for classifying
the binding state.

34



Motifs ranked by Centipede posterior

Prior information

Experimental observations

S SR
¢ & & 0, & &®
© O L S P
gc)Q 0600@ NES Q*.e’é@ DNase-| cuts/site
N PR QO

|

e

-100 -50 0 50
Dist. to motif (bp)

100

1.00

0.99
0.90

0.50

0.01

0.00

Model prediction & validation

Centipede
posterior

ChlP-seq tags

Figure S11: Equivalent to Figure 1 for the CTCF motif
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Figure S12: CTCF motifs in DNasel hypersensitive sites that are not bound according to ChIP-seq. In contrast to Figure 1 and S11,
here for each row we randomly selected CTCF motif instances that are in DNasel hypersensitive sites (> 50 reads in a 200bp window) but are
ChIP-seq negatives (TF not bound). This Figure illustrates that CENTIPEDE, in most cases, can effectively use the footprint information to
report the motif site as not bound.
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Figure S15: Correlation of the CENTIPEDE posterior log-odds with ChIP-seq. Continues...
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