
Stampy: A Statistical Algorithm for Sensitive and Fast Mapping of Illumina

Sequence Reads

Supplementary information 

 

Content 

 

1. Algorithm 
1.1 Building the hash table 
1.2 An improved hash search algorithm 
1.3 Scanning the read 
1.4 Searching the hash table 
1.5 Similarity filtering 
1.6 SIMD alignment 
1.7 Single‐end reads: realignment 
1.8 Single‐end reads: mapping posterior 
1.9 Single‐end reads: failing to find candidates – non‐overlapping 15mers 
1.10 Single‐end reads: failing to find candidates – overlapping 15mers 
1.11 Single‐end reads: random matches 
1.12 Paired‐end reads: paired‐end candidates 
 
2. Performance on simulated data 
2.1 Setup of the simulation experiment 
2.2 Simulating read data 
2.3 Assessing mapping quality calibration 
2.4Choice of read mappers for comparison 
 
3. Performance on real data 
3.1 Re‐mapping 1000 Genomes data 
3.2 Mapping divergent mouse data 
3.3 Mapping reads from mRNA transcript data 
3.4 Allele biases 
 
4. Simulation results 
4.1 Recall rates 
4.2 ROC curves 
4.3 Mapping quality calibration 
4.4 Mapping sensitivity in the presence of indels 
4.5 Indel identification rate 
4.6 Recall rate as a function of divergence 

1. Algorithm 

 

1.1 Building the hash table 

Stampy uses a new open‐addressing hashing algorithm to encode the genome 
(section 1.2). The hash table contains at most 229 long‐word (4 byte) entries, 
each entry consisting of a genomic coordinate and an additional 2 bits of 
auxiliary data to support fast searches at high load factors.  The hash table 
occupies 2 Gb, and to fit mammalian‐size genomes of about 3x109 nt into the 
table, only every fifth position is entered.   This scheme ensures that to store the 
position, 30 bits are sufficient, leaving room for 2 auxiliary bits required for the 
fast search algorithm (see section 1.2 for details).  At each eligible position, a 
“hash” is constructed from the 15bp DNA word observed at that position in the 
reference genome.  This is done by first encoding the 15 nucleotides into a 30‐bit 
word, and then dividing out the reverse‐complement symmetry by subjecting it 
to a transformation that maps words related by reverse‐complementing to the 
same 29‐bit word, and words that are not so related to distinct 29‐bit words.  To 
reduce clustering within the hash table, this word is further pseudo‐randomized 
by multiplying modulo a large prime.  As a side effect of this, the words 0x1fffffff 
and 0x1ffffffe become unused as hashes; these words therefore are available for 
use as flags (see below).  For smaller genomes, a smaller hash table is used, and 
the resulting hash is further reduced modulo a power of 2 to limit the hash 
values to the size of the hash table.  Note that for any size, different 15‐mers 
(unrelated by reverse complementation) may hash to the same value, although 
this is extremely unlikely for the full‐length hash table. 

To avoid entering extremely long hash chains related to repetitive sequence, all 
positions are first scanned and hashes occurring more than 200 times noted.  As 
candidate mapping positions from such chains are costly to consider, and are 
unlikely to result in a unique mapping position, their presence is flagged in the 
hash table by one of the unused words (0x1fffffff), and the actual locations are 
not entered into the hash table. 

To improve search times, hash chains are entered roughly in order of decreasing 
length – this ensures that longer chains are less frequently interrupted by other 
elements than shorter ones, reducing search times and optimizing cache use for 
the longer chains that are relatively frequently accessed.  We use a quadratic 
probing sequence that achieves a good balance of reducing clustering and 
making reasonably good use of caching1. In addition, for the longest chains we 
use linear probing to further optimize cache usage; because long chains are 
entered first, the issue of clustering is virtually absent, and cache usage for long 
chains is particularly poor under a quadratic probing scheme.  The presence of 
the second unused word, 0x1ffffffe,in the primary position of the probe sequence 
signals the use of linear probing; when the initial position is already occupied the 
algorithm falls back to quadratic probing.   

1.2 An improved hash table supporting fast searches 

Because the scanning algorithm spends most of its time looking for 1‐difference 
matches (Section 1.3), many hash lookups performed by the mapper will be 
unsuccessful.  An unsuccessful search in a standard open addressing hash table is 
slow because the probe sequence is traversed until an empty slot is found, and 
the density of empty slots is low at high load factors.  Stampy uses a hash table 
that addresses this by adding flag bits indicating whether more entries exist in 
the chain.  A chain here is defined as the smallest prefix of a probe sequence that 
contains all elements inserted in a hash bucket.  As this flag bit will only be 
present for chains that include at least one element, an additional sentinel bit is 
used to ensure that the search algorithm does not enter empty chains.  

The order in which hash slots are probed is given by the probe sequence h(k,i). 
For standard hash tables this can be an arbitrary function of the object k and 
probe index i, as long as h(k, . ): {0,…,m}  {0,…,m} is a permutation.  However, 
the use of the sentinel bit now requires that the probe sequence be determined 
by the hash h'(k):=h(k,0), rather than by the object k.  Of the standard probe 
sequences, linear and quadratic probing satisfy this requirement, but double 
hashing does not.  Another choice, which minimizes clustering but has bad cache 
performance, is random hashing, which in its simplest form is h(k,i) = h'(k) + 
h''(i) mod n, where h''(i) is a permutation. To balance the opposing needs of low 
clustering and good cache behaviour, Stampy uses mainly quadratic probing, 
supplemented by linear probing for long chains, as explained in section 1.1. 

The basic algorithms for inserting an object k, and searching for an object k, in a 
hash table T (assuming a single probe sequence, h, for simplicity) are: 

Hash-insert(T,k):
 j  h’(k), i  0, last  -1
 while T[j].obj ≠ NIL:
 if h’(T[j].obj) = h’(k): last  j
 i  i+1; j  h(k,i)
 T[j].obj  k
 T[h’(k)].present  True
 if last ≠ -1: T[last].extend = True

Hash-search(T,k):
 if T[h’(k)].present = False: return NIL
 i  0; j  h’(k)
 while True:
 if h’(T[j].obj) = h’(k):
 if T[j].obj = k: return j
 if T[j].extend = False: return NIL
 i  i+1; j  h(k,i)

1.3 Scanning the read 

To find candidate locations for a single read, all overlapping 15mers in the read 
are considered.  In addition, every 1‐base mismatch (“1‐neighbour”) is 
considered.  For reads longer than 34 bp, 1‐neighbours are considered for a 
reduced fraction of initial 15‐mers; half of them for reads up to 49 bp, to a third 
for reads of 50bp and above.  Simulation experiments showed that this resulted 
in negligible loss of sensitivity, and a considerable reduction of computational 
time (data not shown). In addition, for 15mers that contain a single N character, 
all 4 possibilities for that position are considered, but no other 15mers are.   
Those 15mers that contain more than a single N character are not considered. 

 

1.4 Searching the hash table 

If the initial hash table entry corresponding to the 15mer is flagged by the high‐
count flag, this 15mer is not further considered.  A repeat mask table with read 
locations that are not scanned for this reason is kept for later use.  (More 
specifically, when the read 15mer is marked as repetitive, the corresponding 
location is marked with a Phred score 0; for 1‐neighbours, it is marked by the 
Phred quality of the mutated base.  When more than one 15mer, mutated or 
otherwise, is repetitive, the minimum Phred score is used.  These values are used 
to calculate the mapping posterior, for details see section 1.8.  A Phred score is a 
representation of a probability p as an integer, using the formula ‐10log10 p.  For 
non‐repetitive 15mers, all positions in the genome that were entered in the hash 
table and match the 15mer or its reverse complement, together with their 
orientation, are retrieved. 

 

1.5 Similarity filtering 

To avoid excessive numbers of potential candidates, a neighbourhood similarity 
filtering step is included at this stage.  A “fingerprint” is computed from three 4‐
nucleotide words close to but not overlapping the 15mer, and falling within the 
read.  The fingerprint comprises the counts of A, C and G nucleotides within 
those 12 positions.  The counts of the corresponding positions at the putative 
genomic location (in the implied orientation) are obtained, and the sum of 
absolute differences of A, C, G counts, and the implied absolute difference of T 
counts, is computed.  This similarity statistic has the property that it increases by 
at most 2 with every single‐nucleotide change, and every incremental 1bp 
insertion or deletion.  Longer insertions or deletions have the opportunity to 
cause more drastic changes to this statistic, but this potential problem is 
mitigated by the fact that most indels are copy number changes of short tandem 
repeats or homopolymer runs, to which this statistic is relatively insensitive.  
Only locations for which this fingerprint match value does not exceed a set 
threshold are considered.  This threshold is reduced by 2 for one‐mismatch 
15mers, so that similar approximate mismatch thresholds are used for the 15+12 
nucleotide positions that are considered, independent of whether the original 
read 15mer or one of its 1‐neighbours generated the candidate location. 

 1.6 SIMD alignment 

Locations that pass the similarity filter are then considered for full‐length 
alignment.  At this stage the number of candidates often exceeds 1000, so that 
the use of a highly efficient implementation of the alignment algorithm is 
imperative.  Stampy uses a Single instruction, multiple data (SIMD) 
implementation of banded affine‐gap alignment.  The implementation traverses 
the dynamic programming table diagonally, allowing an optimal exploitation of 
the parallelism provided by the x86 SIMD instructions.  The dynamic 
programming table is held in registers rather than in memory, so that expensive 
cache misses are avoided.  Since, in the first instance, the complete read is 
considered to derive from the reference, a Needleman‐Wunsch global alignment 
rather than a Smith‐Waterman local alignment is computed.  This requires 
aligning the possibly low‐quality end of the read containing relatively many 
mismatches; to handle such cases appropriately the algorithm computes a 
mapping quality score in Phred units that accounts for nucleotide quality scores, 
as well as gap opening and extension.  To the probability represented by the base 
quality Phred scores, a term corresponding to the expected divergence to the 
reference (by default equivalent to a probability of 10‐3 per nucleotide) is added, 
as for alignments no distinction ought to be made between read errors, 
polymorphisms and substitutions. The algorithm uses a 30bp diameter band, 
allowing insertions and deletions of up to 15bp to be fully considered at this 
stage.  The limited number of bits available in SIMD registers to accumulate the 
score puts a limitation on the maximum read length that can be considered in a 
single alignment; in our implementation, reads of up to 4500 bp can be 
considered. 

 

1.7 Single­end reads: realignment 

Stampy reports the best‐matching candidate mapping location, or in case of ties, 
a deterministic pseudo‐random choice.  When the process of generating 
candidate mapping locations described above does not result in any candidate, 
or when the candidate is judged to be no more similar than a best match for 
random sequence, no mapping location reported. 

The best‐matching candidate is re‐aligned under the same model as used in the 
SIMD alignment, but now with a larger band of 60 bp diameter by default, 
enabling the correct identification of insertions or deletions (‘indels’) of up to 30 
bp in length.  When the most likely alignment comes within 10 bp of the edge of 
the dynamic programming band, the read is again re‐aligned with double the 
bandwidth.  In this way alignment in the presence of large indels is improved 
without a large increase in computational time in the general case. 

The alignment algorithm at this stage allows flushing of indels to the leftmost or 
rightmost possible location; the desired behaviour can be selected by command‐
line options.  When desired alignment posteriors per alignment column can also 
be computed, through the use of the Forward and Backward algorithms (REF 
Durbin et al).  In certain cases this additional information allows potential indels 

at the edge of reads to be identified.  The computation of this information is 
relatively costly and is switched off by default. 

 

1.8 Single­end reads: mapping posterior 

Stampy computes the mapping posterior Phred score, or “mapping quality”, in 
the standard Bayesian fashion by computing the posterior probability that the 
reported location is incorrect, in the first instance through the formula 

  1 ‐ P(read | Lopt ) / Σ P(read | Li ),        (1) 

where Lopt is the maximum likelihood mapping location, and the sum runs over 
all candidates considered.  Because the alignment model considers read errors, 
single‐nucleotide polymorphisms and substitutions, and short indels, this 
accurately estimates the probability that a read is mapped incorrectly when such 
errors are caused by (near‐)repetitiveness in the genome, in combination with 
read errors and mutations.  The result is approximate because not all possible 
mapping locations are considered in the sum, and consequently the resulting 
posterior does not include the possibility that the correct mapping locations was 
not considered among the candidates Li.  Broadly, this may happen for three 
reasons: (i) the read contains highly repetitive sequence and its 15mers were not 
entered into the genome hash table; (ii) the read is of low quality and/or is 
divergent from the reference by single‐nucleotide and short indel mutations, so 
that every 15mer entered into the hash table has more than 1 nucleotide 
difference with the read, or (iii) the sequence is not represented in the reference. 

Stampy’s model accounts for all three possibilities.  Sections 1.9 and 1.10 each 
describe the model for (i) and (ii), for short and longer reads respectively.  
Section 1.11 describes the model for (iii). Adding the probabilities for these three 
events to the naïve posterior (1) results in the final mapping quality, which is 
reported as a Phred score capped at 99.  In addition, when (iii) is deemed likely, 
no mapping is reported for that read. 

As an example of the situations handled by this model, consider a read from a 
highly repetitive genomic region.  A read error within this read may cause a 
spurious hit elsewhere in the genome.  However, because of the repetitiveness, 
this location is not deemed to be reliable, since the cumulative likelihood of the 
repetitive loci (which each require one read error) can overcome the single 
higher likelihood of the spurious hit.  A similar situation occurs when the 
genome carries a mutation in an otherwise repetitive region; in this case, the 
read will be mapped correctly, but for the same reason as before, the map will 
not be deemed to be reliable. 

 

1.9 Single­end reads: failing to find candidates – non­overlapping 15mers 

As described above, two reasons for failing to identify the correct candidate 
locations are that the read is highly repetitive and its 15mers have not been 
entered into the hash; or that read errors or divergence cause all read 15mers to 

be more than 1 mutation removed from the reference 15mer.  This section 
describes an algorithm to estimate the probability of either event occurring. 

Because the way the read is scanned changes with the length of the read as 
described in section 1.3, the model is dependent on the read length.  For 
simplicity only case (1) that 1‐neighbours are considered for all 15mers within 
the read, and case (2) that these are considered for only one‐third of the 15mers, 
are distinguished; the intermediate case in which 1‐neighbours of half of the 
15mers are considered is approximated by the model for case (1). 

First, consider case (2), that 1‐neighbours for a third of read 15mers are 
considered.  More precisely, the algorithm considers 1‐neighbours for a 
consecutive block of 5 overlapping 15mers from the read; for the subsequent 10 
only the read 15mers are considered, then again for a consecutive block of five 
15mers the 1‐neighbours are considered, and so on.  The contribution to 
sensitivity of the 10 read 15mers are ignored in the model, as are the effects of 
indel mutations on sensitivity.   

Suppose that the correct mapping location for the whole read is L.  Because only 
15mers from genomic loci that are multiples of 5 are entered into the genome 
hash table, only 15mers at read position k such that mod (L+k) = 0 have a 
possibility of matching.  From the algorithm described above, and under the 
stated assumptions, it follows that this happens precisely once in a block of five 
overlapping 15mers from the read; the next possibility occurs exactly 15 bp 
further on.  This means that the possible matches involve non‐overlapping 
adjacent 15mers.  If the offset k were known, the required probability is just the 
probability that all non‐overlapping adjacent read 15mers at offset k have 2 or 
more mutations, or that the corresponding 15mer in the reference is repetitive 
and not included in the hash table.  The final probability is computed by 
computing this compound probability for each offset k and taking the Bayesian 
average using a uniform prior of the possible offsets. 

The compound probability is just the product of the probabilities defined above 
for all 15mers at the offset k.  To calculate the relevant probability for one 
15mer, write qi for the error probability of base i in the 15mer (i = 1,…,15).  The 
probability that no mutation (read error or substitution) occurs in the 15mer is 

  z = Πi=115 (1‐qi) 

If we write 

  p1 = Σi=115  qi / (1­qi) 

then the probability of two or more mutations w.r.t. the reference is 1 – z(1+p1).   

It remains to include the probability of missing a candidate because of 
repetitiveness.  If the read 15mer is marked as repetitive in the hash table, the 
probability is taken to be 1 – this is an approximation, as the possibility of the 
true reference 15mer not being repetitive, but having been mutated into a highly 
repetitive one is ignored.  If the read 15mer is not repetitive, but one of its 1‐
neighbours is, then the probability of the true reference 15mer being repetitive 
is estimated as the probability of the mutation having occurred.  While this is not 

correct in the strict Bayesian sense, as the prior of the read deriving from a 
repetitive sequence is not weighed explicitly against the alternative, simulation 
experiments show that this procedure is effective at reducing false positive rates 
and estimating well‐calibrated priors (see main text, and results below).  The 
data required for this procedure is collected at the scanning stage described in 
section 1.3. 

1.10 Single­end reads: failing to find candidates – overlapping 15mers 

This model deals with the case of relatively short reads, in which case 1‐
neighbours of each overlapping 15mer are considered.  The analysis of this 
situation is complicated because of the dependency structure introduced by the 
overlapping 15mers, and the non‐uniform distribution of read errors described 
by the quality scores. 

We approximate the situation by considering that in a contiguous subsection of 
the read, the probability of 0, 1, 2, 3 or 4 mutations is known; that 5 mutations or 
more do not occur; and that conditional on a certain number of mutations 
occurring, these are distributed uniformly along the subsection.  A simulation 
was used to estimate the probability that, conditional on the length of the 
subsection and the number of mutations occurring, every overlapping 15mer 
fully within the read subsection and at the (unspecified) offset k overlaps with 2 
mutations or more, as only in this case would the correct candidate not be 
considered.   

In particular, independently of k, for 3 mutations, at least one 15mer is 
guaranteed to overlap at most 1 mutation in a read of length 34.  This can be 
seen by considering that in a length‐34 read, two non‐overlapping 15‐mers fall 
wholly within the read for any k; and for both these 15‐mers to not yield the 
correct candidate, at least 2 mutations are required in each.  Considering the 
algorithm in section 1.3 this means that Stampy is guaranteed to consider the 
correct mapping location for any read with 3 or fewer mutations in the first 34 
bp.  For 4 mutations, this is true for reads of 52 bp and longer. 

More generally, the probability of not identifying the correct candidate is 
estimated as follows.  First, the probability of precisely m mutations among L 
positions, each independently having probability qi of mutating, is 

€

qi1qim × (1− qi)i∉{ i1 ,…,im}
∏


 




1≤ i1<< im<L∑ = (1− qi)
qik
1− qikk=1

m

∏
1≤ i1<< im<L
∑

i=1

L

∏ (2)  

The last sum over m‐fold products is inefficient to calculate as written, 
particularly as m and L increase.  However, this sum may be recognized as the 
elementary m‐th degree symmetric polynomial em in the variables qi/(1‐qi), 
i=1,…,L.  These can be computed from the power sums, 

 

using Newton’s identities: 

 

Since the pi can be calculated efficiently, so can z em in (2), which represents the 
probability of precisely m mutations occurring among the L positions.   

For longer reads, it often occurs that sections are of poor quality.  This happens 
predominantly at the far end of the sequence, but low‐quality bases can occur 
anywhere in the read because of localized issues such as air bubbles in the flow 
cells, focusing or optical alignment problems.  In order not to obtain an overly 
pessimistic estimate of the probability of missing candidates, particularly for 
long reads, Stampy considers every 15‐ to 52‐bp subsection of the read, 
calculates the probabilities of 0 to 5 mutations following the algorithm above, 
and estimates the probability of missing the true candidate, conditional on 
finding it in the subsection under consideration.  Since the simulation assumes 
that fewer than 5 mutations occur, no subsections are considered where the 
probability of 5 or more mutations exceeds 0.1.  This cutoff was found to provide 
accurate estimates in practice (data not shown).  The final reported probability is 
the minimum of these probabilities over all subsections that are considered. 

The effect of repetitive 15mers is modelled by adding to qi the repeat mask 
probability obtained by the algorithm in section 1.3, similar to the procedure 
described in section 1.8. 

1.11 Single­end reads: random matches 

The models for (i) and (ii) are Bayesian models, in the sense that a full 
description of the process that generated the reads is attempted.  However, 
when a read is not represented in the reference, for instance because it derived 
from a contaminant, an generative modeling approach fails.  Algorithmically, a 
unique best match may exist, but it will be biologically meaningless. 

To identify such cases, a hypothesis‐testing stage forms the last part of the 
mapping quality model.  This stage assesses the likelihood that the read is a 
random sequence, and that any sequence similarity of the candidate mapping 
results from finding the best match for this random sequence.  This question is 
complicated by the alignment procedure, which considerably increases the 
chances of finding fairly good matches at random. 

Suppose that the best alignment of a read of l nucleotides, n of which align to the 
reference with m mismatches, includes i insertions and d deletions.  The 
quintuplet (l,n,m,i,d) forms a summary of the complexity of the alignment.  To 
estimate the size of the search space, we need to compute the number of 
alignments of similar complexity. 

Consider the quintuplet to be fixed, and denote the set of all alignments 
characterized by the quintuplet, at a particular locus and strand x, by Ax.  Any 
alignment a ∈ Ax implies a particular sequence sa of n nucleotides at the aligning 
positions of the read.  Denote the set of all (locus, strand) pairs for the reference 
by G.  Suppose that the set S = { sa | a ∈ Ax , x ∈ G } may be considered to be drawn 
uniformly from the set of all sequences of length n.  Then, the likelihood of 
randomly obtaining a match that is as good as the best alignment that was in fact 
found, is 

, 

since this alignment implies n matches, and |S| loci and alignments have 
potentially been considered. The second approximation holds only if |S|4‐n ≪ 1.  
If |S|4‐n is of order 1 or greater, the likelihood of finding a random match of 
comparable quality is nearly 1, under the stated assumptions.  As mentioned 
above, in this case no mapping is reported. 

The formula above assumes that every alignment is equally probable; more 
specifically, that for a random read, mismatches; insertion starts and ends; and 
deletions all occur uniformly along the read.  We in addition assume that 
deletions can have any size uniformly from 0 to a set maximum, here 30.  To 
calculate |S|, note that there are m mismatches to be distributed among n 
aligning locations; 2i+d positions are to be chosen within the read of length l at 
which to start or end an alignment, or place a deletion; and d deletion lengths to 
be chosen; in addition the mismatching nucleotide at m position is to be chosen.  
In approximation, the total number of possibilities thus becomes, 

€

2g × 3m
n
m









l
2i + d








 30d << 4n  

where g is the size of the reference, and the factor 2 accounts for the choice of 
strand.  This formula is approximate as it does not consider the fact that 
deletions cannot occur between insertion starts and ends; in practice such 
situations arise most often for incorrectly mapped reads, in which case an 
overestimation is conservative. 

Note that when insertions run off either end of the sequence, one less insertion 
start or end position needs to be chosen, and 2i+d should be replaced by 2i+d­1 
in the formula above.  A similar consideration does not apply to deletions as they 
cannot occur at the read boundaries. 

Nucleotides are not uniformly chosen from the 4 possibilities, but rather often 
are biased somewhat towards A/T or G/C.  To account for this, in the formulas 
above we use b (and b‐1) instead of 4 (and 3), where b is somewhat less than 4 to 
account for any G/C bias, using the formula b = exp(‐f log ½f ‐ (1‐f) log ½(1‐f)), 
where f is the G+C content.  For instance, for f=0.35, a value b=3.8 is used. 

1.12 Paired­end reads: paired­end candidates 

The paired‐end pathway follows the single‐end one up and including the point of 
calculating the single‐end mapping quality, for each of the reads independently. 

If no candidates were obtained for both reads, the paired‐end read is reported as 
unmapped.  

When the best locations for the single reads are close together on the genome  
(defined as an implied insert size within 4 standard deviations of the mean), the 
resulting paired‐end mapping positions are considered.  If in addition both single 
reads map sufficiently uniquely (each with a posterior probability of less than 
1% of having been mapped incorrectly due to near‐repetitiveness), and in 
addition the estimated probability of not having found the correct candidate is 
sufficiently low for both (again less than 1%), the paired‐end mapping location is 
reported. 

When any of these conditions are not met, Stampy creates a shortlist of pairs of 
mapping locations.  From the candidate locations for each member of the read 
pair, the locations that together constitute 99.9% of the single‐read posterior 
mapping probability are extracted, up to a maximum of 20 locations, and subject 
to a minimum of 3.  For each of these locations, the mate is aligned against the 
reference around the location implied by the library insert size distribution, plus 
or minus 4 standard deviations.  The alignment model used is as for single‐end 
reads, but contains an additional term modeling the likelihood of the implied 
insert size, which helps to disambiguate the mapping position of locally 
repetitive reads.  In addition to this list of novel pairs, the pairing of the top‐
scoring single‐end mapping locations is added.  When these are not close 
together, a score corresponding to the prior probability of the physical insert 
overlapping the breakpoint of structural variation, which could give rise to such 
configurations, is added.  This prior probability is user‐specified, and is 3x10‐6 
(Phred 55) by default. (Here, ‘close’ is defined as the distance at which the 
likelihood of the insert size under the insert size model, approximated by a 
Gaussian distribution, becomes less than the prior probability for a structural 
variant.)  

The posterior mapping quality is calculated as the product of the single‐end 
mapping qualities in case of the top‐scoring single‐end hits being selected as the 
pair, or the single‐end posterior of the anchoring read in other cases. 

 

2. Performance on simulated data 

2.1  Setup of the simulation experiment 

To assess the performance of Stampy under different conditions, and to compare 
this with the performance of other read mapper programmes, a simulation 
pipeline was developed. 

In short, reads were generated by taking sequence data from randomly chosen 
positions in the human genome.  Read errors were introduced according to the 
empirical read error distribution, and additional changes were added to this to 
simulate SNPs and indels. 

The empirical read error distribution was obtained from two sets of paired‐end 
Illumina data from the 1000 Genomes Pilot project 1. To ensure that mapping in 
the presence of read errors was sufficiently well assessed, these were chosen to 
have error rates at the lower 25% quartile within their read length category 
(accessions SRR003994, sample NA19239, 36 bp; and SRR005802, sample 
NA18520, 72 bp).   

The read error distribution was calculated by first mapping the actual reads to 
the human reference using Stampy, and tabulating base match and mismatch 
counts stratified by read, cycle (position within the read), reported quality score, 
and the number of preceding mismatches.  In this way, the reported quality 
scores were recalibrated, taking account of position within the read and 
dependencies between errors within a read. The use of Stampy at this stage does 
not cause bias in favour of Stampy in the simulations.  No known SNPs or indels 
were removed from the actual reads prior to tabulating mismatches; in this way, 
the estimated error rates will slightly exceed the true error rates, but this is not 
expected to affect the conclusions of the study.   

The recalibration tables were used to subsequently introduce errors in sequence 
data taken from known paired positions, chosen uniformly on the genome and at 
a distance of 250 ± 25 bp apart to simulate a distribution of insert sizes.   

Several sets of reads were generated, each with a different mutation profile in 
addition to read errors. These categories comprise: ‐ 

 (i) single‐nucleotide changes drawn from a Poisson distribution with rate 
10‐3, to simulate human SNPs [“SNP0.001”; one category];  

(ii) one, two or three single‐nucleotide changes added to each read 
[“snp1”, “snp2”, “snp3”; three categories] 

(iii) single‐nucleotide changes added drawn from a Poisson distribution 
with rate 0, 1%,… up to 15%, simulating substitutions in a divergent 
species [sixteen categories];  

(iv) a single short insertion or deletion added in one read or read pair, 
with length drawn uniformly from [1..30], and placed uniformly into the 
read, and using random sequence in the case of insertions [“indel30”, one 
category]. 

(v) a single large (20 kb) deletion affecting one read or read pair.  The 
location of the deletion was chosen uniformly in one of the reads.  This 
category simulates reads overlapping large deletions [“largedeletion”, one 
category] 

(vi) a single large insertion affecting one read or read pair.  This was 
implemented by choosing an insertion location uniformly in one of the 
reads; the sequence to either the left or the right of this point was then 
replaced by random sequence.  This category is a simple simulation of 
reads overlapping structural variation breakpoints [“largeinsertion”, one 
category].   

For each category, 4 data sets were created: either with 36 bp and 72 bp reads, 
and either single reads or read pairs.  Each data set contained 1 million reads or 
read pairs. 

The simulation code also generates a read label which encodes the true position 
and orientation, the true insert size, and any indel mutation (position and size).  
Read errors and single‐nucleotide mutations were not recorded in the read label. 

A pipeline was written for the process of simulating reads, mapping these with 
each of Stampy (using BWA as pre‐mapper), BWA, Maq, Eland and Novoalign; 
converting the output to SAM format where required; adding back reads, if any, 
that were not reported; and collecting statistics including sensitivity (recall rate) 
for various thresholds of reported mapping quality values, mapping quality 
calibration, and mapping and indel recall sensitivities conditional on indels of a 
particular size being present in the read. 

Reads (read pairs) were considered to be mapped correctly if their position 
(both their positions) coincided with the true position, as encoded in the read 
label.  We consider the main aim of a mapper to infer the read’s correct genomic 
locus, and consider the ability to correctly identify indels through inferring the 
corresponding gap in the read alignment to be desirable but not essential.  This 
led us to consider reads to be mapped correctly if any of its nucleotides were 
aligned to the correct reference nucleotide, as encoded in the true alignment 
provided in the label.  In practice this means that, when a read contains a single 
indel, either the sequence to the left or to the right of the indel needs to overlap 
the correct reference sequence in order for the read to be considered correctly 
mapped.   

2.2 Simulating read data 

The code to simulate reads is part of the Stampy program.  The following table 
lists the command line options that were used to generate the reads.  Read 
lengths and base qualities were not generated, but taken from existing reads. 

Category  Options 
snp0.001 --substitutionrate=0.001

snp1 --simulate-numsubstitutions=1

snp2 --simulate-numsubstitutions=2

snp3 --simulate-numsubstitutions=3

divN, N=0…0.15 --substitutionrate=N

indel30 --simulate-minindellen=-30 --simulate-maxindellen=30

largedeletion --simulate-minindellen=-20000 --simulate-maxindellen=-20000

largeinsertion --simulate-minindellen=20000 --simulate-maxindellen=20000

 

In addition, the options --insertsize=250 --insertsd=25 were used 
throughout to set the insert size distribution. 

Prior to generating the simulated reads, the empirical error distribution of a set 
of actual Illumina reads were obtained using the recalibration algorithm (option 
-R), which generates .recaldata files.  Reads were then simulated using the –S 
option.  This also generates labels that include the position and (where 
appropriate) mutation information. 

After mapping, the mapped reads in .SAM format were supplemented with input 
reads that were filtered out by the mapper.  Various statistics were then 
collected by a script that is included in Stampy, accessible through the –P (parse) 
option. 

 

2.3 Assessing mapping quality calibration 

Mapper programmes differ considerably in the spectrum of reported mapping Q 
values.  This makes it difficult to meaningfully plot the mapping quality 
calibration, since a naïve binning scheme may put very different numbers of data 
points in any particular bin across the different mapping programmes, causing 
large sampling errors in the estimated Q scores.  Instead we followed a scheme 
where total and incorrect mapping counts were sorted by decreasing reported 
mapping Q score, and accumulated until the accumulated theoretical expected 
incorrect mapping count exceeded 3.0.  The ratio of this expected count over the 
total mapping count, was then plotted against the ratio of the observed count 
over the same total, both on a logarithmic (Phred) scale.  After each point the 
accumulated counts were reset and the process proceeded down the list.  In this 
way, every point plotted has roughly equal (maximum) sampling errors 
associated to them, independently of the spectrum of reported Q scores. 

2.4 Choice of read mappers for comparison 

We used the following criteria to select read mappers for comparison to Stampy.  
First, the mapper should be able to map Illumina reads of 36‐72 bp, both single‐ 
and paired‐end.  Second, it should produce SAM or BAM files, or output for which 
conversion tools to either format were readily available.  Third, it should 
produce mapping quality information, which is essential for SNP and indel 
callers.  Fourth, the read mapper should be able to run on the hardware at our 
disposal (a dual quad‐core Linux cluster, with 16 and 32 Gb of memory per 
node).  Fifth, the mapper should be reasonably popular choice.  Finally, we did 
not strive for completeness, and used the first five criteria as necessary but not 
sufficient conditions; rather we tried to cover at least the most popular, the 
fastest, and the most sensitive algorithms.  

Based on these criteria we chose Maq, BWA, Eland, and Novoalign.   

The Bowtie program, is both fast and popular, however it does not produce 
mapping quality scores.  The BFAST program was considered, but we decided 
not to include it because of its high memory usage.  The Mosaik suite of programs 
could have been included, but we felt that the mappers chosen already covered 
the spectrum of sensitivity and speed sufficiently. 

 

The following software versions were used: 

Stampy v1.0 

BWA 0.5.6 (r1303) 

Maq v0.7.1 

ELAND_standalone.pl v 1.3 2009/11/13 (part of CASAVA 1.6.0a11) 

Novoalign V2.05.16 

3. Performance on real data 

3.1 Re­mapping 1000 Genomes Data 

To assess the performance on real data we re‐mapped human genomic data from 
the 1000 Genomes Project, Pilot 1, using Stampy and BWA.  To limit the use of 
computational resources, we chose two individuals from the Pilot 1 (low 
coverage) data.  As this data has been generated while the sequencing platforms 
have undergone considerable development, we made sure not to choose among 
individuals with only short read length (36 bp) and/or only single‐end reads.  
From those that included reads of 50bp or over, comprised at least 50% paired‐
end Illumina data, we chose the individual NA18510, which has a coverage 
closest to median (4.62 X).  For this individual 16 51bp paired‐end lanes of 
Illumina data were available.   For the other sample we chose NA18520, which 
was also used to generate the empirical error distribution for 72bp reads (see 
Section 2). For this individual 7 lanes of 76 bp paired‐end Illumina data were 
available.  Table S1 below lists the input data that was considered. 

To assess performance, we mapped each read of a mate pair independently and 
calculated the proportion of pairs that ended up in consistent locations.  Mapping 
locations were considered to be consistent if they were within 10kb of each 
other; while this is generous for genomic DNA, it does capture a fraction of 
transcriptome‐derived read pairs that map across introns; the expected false 
positive rate from using a generous window size of 10kb is negligible (a naïve 
estimate is 1.5e‐6).  

This performance indicator estimates the frequency at which single‐end reads 
are both, independently, mapped correctly.  This does not test the part of the 
algorithm that uses mate pair information to rescue reads that otherwise could 
not have been mapped.  It also does not give a direct estimate of the proportion 
of single‐end reads that can be mapped correctly, since both reads of a mate pair 
are required to be correctly mapped.  

 

File name 
NA18510/sequence_read/SRR005804_1.filt.fastq 
NA18510/sequence_read/SRR005804_2.filt.fastq 
NA18510/sequence_read/SRR005805_2.filt.fastq 
NA18510/sequence_read/SRR005806_1.filt.fastq 
NA18510/sequence_read/SRR005806_2.filt.fastq 
NA18510/sequence_read/SRR005807_1.filt.fastq 
NA18510/sequence_read/SRR005807_2.filt.fastq 
NA18510/sequence_read/SRR005808_1.filt.fastq 
NA18510/sequence_read/SRR005808_2.filt.fastq 
NA18510/sequence_read/SRR005809_1.filt.fastq 
NA18510/sequence_read/SRR005809_2.filt.fastq 
NA18510/sequence_read/SRR005810_1.filt.fastq 
NA18510/sequence_read/SRR005810_2.filt.fastq 
NA18510/sequence_read/SRR005810.filt.fastq 
NA18510/sequence_read/SRR011049_1.filt.fastq 
NA18510/sequence_read/SRR011049_2.filt.fastq 
NA18510/sequence_read/SRR011050_1.filt.fastq 
NA18510/sequence_read/SRR011050_2.filt.fastq 
NA18510/sequence_read/SRR011051_1.filt.fastq 
NA18510/sequence_read/SRR011051_2.filt.fastq 
NA18510/sequence_read/SRR011052_1.filt.fastq 
NA18510/sequence_read/SRR011052_2.filt.fastq 
NA18510/sequence_read/SRR011060_1.filt.fastq 
NA18510/sequence_read/SRR011060_2.filt.fastq 
NA18510/sequence_read/SRR011062_1.filt.fastq 
NA18510/sequence_read/SRR011062_2.filt.fastq 
NA18510/sequence_read/SRR011063_1.filt.fastq 
NA18510/sequence_read/SRR011063_2.filt.fastq 
NA18510/sequence_read/SRR011064_1.filt.fastq 
NA18510/sequence_read/SRR011064_2.filt.fastq 
NA18520/sequence_read/SRR005797_1.filt.fastq 
NA18520/sequence_read/SRR005797_2.filt.fastq 
NA18520/sequence_read/SRR005798_1.filt.fastq 
NA18520/sequence_read/SRR005798_2.filt.fastq 
NA18520/sequence_read/SRR005799_1.filt.fastq 
NA18520/sequence_read/SRR005799_2.filt.fastq 
NA18520/sequence_read/SRR005800_1.filt.fastq 
NA18520/sequence_read/SRR005800_2.filt.fastq 
NA18520/sequence_read/SRR005801_1.filt.fastq 
NA18520/sequence_read/SRR005801_2.filt.fastq 
NA18520/sequence_read/SRR005802_1.filt.fastq 
NA18520/sequence_read/SRR005802_2.filt.fastq 
NA18520/sequence_read/SRR005803_1.filt.fastq 
NA18520/sequence_read/SRR005803_2.filt.fastq 
 

Table S1.  Data files from 1000 Genomes Pilot 1, for the comparative mapping 
experiment. 

 

3.2 Mapping divergent mouse data 

To assess the ability of the different aligners to map reads to a divergent 
reference, we used Mus Spretus genomic reads that were kindly made available 
to us by Dr. David Adams (Sanger Institute, Hinxton).   The speciation time of this 

subspecies is estimated at 1.1 Mya2, and the divergence to the C57BL/6J mouse 
reference sequence is 2% 3.   

3.3 Mapping reads from mRNA transcript data 

We used a single lane of Illumina paired‐end reads from an mRNA‐seq 
experiment conducted by Dr Ioannis Ragoussis (Wellcome Trust Centre for 
Human Genetics, Oxford).  The mRNA data for this sample was obtained from 
MCF‐7 cancer cell lines, and prepared following the standard Illumina mRNA‐seq 
protocol.  This data set is available upon request. 

3.4 Allele biases 

To assess the presence of allele biases due to systematic mapping problems at 
polymorphic indel sites, we first identified high‐confidence heterozygous sites 
from indel calls made by the 1000 Genomes Project, on the father‐mother‐child 
trio NA12891‐NA12892‐NA12878.   Such sites were defined as those that were 
homozygous for the reference and the alternative allele in the parents.  Only sites 
where the genotype quality of all three individuals were above Phred score 40 
were considered; and the indel call quality itself was required to be above Phred 
score 100. In total 10553 sites were considered. 

We then used three BAM files of the child data (NA12878) that were produced 
by the project (mapped by Maq and BWA respectively), and a BAM file produced 
from the same data using Stampy. 

To calculate the number of reads supporting either the reference or the indel 
allele, we considered reads in which the called indel would fall within 10 bp from 
either end.  Reads that contained no indel within 10bp of the called position 
were classed as reference reads; otherwise, the read was classed as supporting 
the indel.  We then calculated the ratio (reads supporting the alternative) / (all 
reads) for all sites, and computed the cumulative distribution.  This was done 
separately for insertions and deletions. 

4. Simulation results 

4.1. Recall rates 

 Single-end

36bp

Paired-end

36bp

Single-end

72bp

Paired-end

72bp

BWA 3.2 4.9 3.2 3.4

Stampy 13.7 26.8 10.7 14.6

Stampy (standalone) 30.3 50.8 22.6 31.2

Eland 40.2 41.6 20.7 19.4

MAQ 55.8 51.8 29.1 24.8

Novoalign 46.9 79.6 81.1 61.6

Table S2. Runtime in CPU hours per gigabase of sequence data, for the five
mappers considered, on the “snp0.001” dataset. “Stampy (standalone)” refers
to Stampy without BWA as a first stage.

 

Data set  Programme  36bp,SE  36bp,PE  72bp,SE  72bp,PE 
snp0.001  stampy  82.3  94.5  87  96.2 
  novoalign  86.5  96.5  90.7  97.4 
  bwa  69.9  82.8  74  87.1 
  eland  71.3  70.2  71.8  76.5 
  maq  85  92.7  83.9  91.9 
snp1  stampy  77.1  92.4  85.7  95.7 
  novoalign  80.5  95.7  89.3  97 
  bwa  53.3  67.4  69.7  84 
  eland  59.8  56.3  69.2  74.4 
  maq  78.8  87.4  80.3  89.8 
snp2  stampy  68.4  88.3  84.1  95.1 
  novoalign  61.5  93.5  87.5  96.4 
  bwa  27.3  37.9  62.6  78.4 
  eland  38.5  34.5  67.3  71.8 
  maq  62.9  72.6  72.5  84.7 
snp3  stampy  54.3  79.7  82.3  94.2 
  novoalign  18.5  83.7  85.4  95.5 
  bwa  0.9  0.9  50.2  67.8 
  eland  6  5.7  65  68.7 
  maq  16.2  22.6  49.2  65 
largedeletion  stampy  39.6  70.2  71.1  88 
  novoalign  15.6  68.1  35.6  69.1 
  bwa  8.1  35.7  16.6  45.4 
  eland  12.5  41.4  33  67.9 
  maq  16.3  39  14.6  33.5 
largeinsertion  stampy  19.7  59.9  39  72.7 
  novoalign  7.6  61.2  17.6  59 
  bwa  3.9  47.3  8.3  64.9 
  eland  6.1  36.4  16.4  55.4 
  maq  8  48.8  7.2  50.4 

Table S3.  Recall rates for various data sets (first column) and five aligners 
(second column), separated by read length and single‐end or paired.  Rates are 
given as the proportion of reads mapped to the correct position or positions, as a 
percentage of all input reads.  

 

 

 

Figure S1.  Recall rates for several data sets and five aligners, for 72 bp paired‐
end reads (final column of Table S2). 

30 
40 
50 
60 
70 
80 
90 
100 

st
am

py
 

no
vo
al
ig
n 

bw
a 

el
an
d 

m
aq
 

st
am

py
 

no
vo
al
ig
n 

bw
a 

el
an
d 

m
aq
 

st
am

py
 

no
vo
al
ig
n 

bw
a 

el
an
d 

m
aq
 

st
am

py
 

no
vo
al
ig
n 

bw
a 

el
an
d 

m
aq
 

st
am

py
 

no
vo
al
ig
n 

bw
a 

el
an
d 

m
aq
 

st
am

py
 

no
vo
al
ig
n 

bw
a 

el
an
d 

m
aq
 

snp0.001  snp1  snp2  snp3  largedeletion  largeinsertion 

 

4.2  ROC curves 

 

 

 

Figure S2. ROC curves for mapping reads with 0.1% SNPs, and no indels. 

 

Figure S3.  ROC curves for mapping reads with a single indel per read or read 
pair. 

 

Figure S4.  ROC curves for mapping reads at 5% divergence from the reference. 

 

5. Mapping quality calibration 

 

Figure S5.  Mapping quality calibration, for reads with 0.1% SNPs. 

 

 

Figure S6.   Mapping quality calibration, for reads with one indel per read or 
read pair. 

 

 

 

 

 

 

Figure S7.  Mapping quality calibration, for reads at 5% divergence from the 
reference. 

 

4.3. Mapping sensitivity in the presence of indels 

These graphs show the proportion of reads that get mapped to the correct 
location, whether or not the correct indel is indentified.  Reads are deemed to be 
mapped correctly if the inferred read alignment shares an alignment column 
with the true alignment. 

 

 

Figure S8.  Mapping recall rates by deletion length, for reads with one deletion 
per read or read pair. 

 

 

 

Figure S9.  Mapping recall rates by insertion length, for reads with one insertion 
per read or read pair. 

 

4.4. Indel indentification rate 

These graphs show the proportion of reads that get mapped to the correct 
location, and align with an indel of the correct length.  To account for ambiguous 
placement of indels, it is not required that the indel is located at the “true” 
position 

 

Figure S10.  Indel recall rates by deletion length, for reads with one deletion per 
read or read pair. 

 

 

Figure S11.  Indel recall rates by insertion length, for reads with one insertion 
per read or read pair. 

 

 

4.5. Recall rate as function of divergence 

 

 

Figure S12.  Mapping recall rates by divergence to the reference. 

 

References 

1  Cormen, T. H., Leiserson, C.E., Rivest, R.L. and Stein, C. Introduction to 
Algorithms.  (MIT Press, 2001). 

2  She, J. X., Bonhomme, F., Boursot, P., Thaler, L. & Catzeflis, F. Molecular 
Phylogenies in the Genus Mus ‐ Comparative‐Analysis of Electrophoretic, 
Scndna Hybridization, and Mtdna Rflp Data. Biol J Linn Soc 41, 83‐103 
(1990). 

3  Zhang, J. et al. SNPdetector: a software tool for sensitive and accurate SNP 
detection. PLoS Comput Biol 1, e53, doi:10.1371/journal.pcbi.0010053 
(2005). 

 

