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1. Algorithm

1.1 Building the hash table

Stampy uses a new open-addressing hashing algorithm to encode the genome
(section 1.2). The hash table contains at most 22° long-word (4 byte) entries,
each entry consisting of a genomic coordinate and an additional 2 bits of
auxiliary data to support fast searches at high load factors. The hash table
occupies 2 Gb, and to fit mammalian-size genomes of about 3x10° nt into the
table, only every fifth position is entered. This scheme ensures that to store the
position, 30 bits are sufficient, leaving room for 2 auxiliary bits required for the
fast search algorithm (see section 1.2 for details). At each eligible position, a
“hash” is constructed from the 15bp DNA word observed at that position in the
reference genome. This is done by first encoding the 15 nucleotides into a 30-bit
word, and then dividing out the reverse-complement symmetry by subjecting it
to a transformation that maps words related by reverse-complementing to the
same 29-bit word, and words that are not so related to distinct 29-bit words. To
reduce clustering within the hash table, this word is further pseudo-randomized
by multiplying modulo a large prime. As a side effect of this, the words 0x1fffffff
and 0x1ffffffe become unused as hashes; these words therefore are available for
use as flags (see below). For smaller genomes, a smaller hash table is used, and
the resulting hash is further reduced modulo a power of 2 to limit the hash
values to the size of the hash table. Note that for any size, different 15-mers
(unrelated by reverse complementation) may hash to the same value, although
this is extremely unlikely for the full-length hash table.

To avoid entering extremely long hash chains related to repetitive sequence, all
positions are first scanned and hashes occurring more than 200 times noted. As
candidate mapping positions from such chains are costly to consider, and are
unlikely to result in a unique mapping position, their presence is flagged in the
hash table by one of the unused words (0x1fffffff), and the actual locations are
not entered into the hash table.

To improve search times, hash chains are entered roughly in order of decreasing
length - this ensures that longer chains are less frequently interrupted by other
elements than shorter ones, reducing search times and optimizing cache use for
the longer chains that are relatively frequently accessed. We use a quadratic
probing sequence that achieves a good balance of reducing clustering and
making reasonably good use of caching!. In addition, for the longest chains we
use linear probing to further optimize cache usage; because long chains are
entered first, the issue of clustering is virtually absent, and cache usage for long
chains is particularly poor under a quadratic probing scheme. The presence of
the second unused word, 0x1fffftfe,in the primary position of the probe sequence
signals the use of linear probing; when the initial position is already occupied the
algorithm falls back to quadratic probing.



1.2 An improved hash table supporting fast searches

Because the scanning algorithm spends most of its time looking for 1-difference
matches (Section 1.3), many hash lookups performed by the mapper will be
unsuccessful. An unsuccessful search in a standard open addressing hash table is
slow because the probe sequence is traversed until an empty slot is found, and
the density of empty slots is low at high load factors. Stampy uses a hash table
that addresses this by adding flag bits indicating whether more entries exist in
the chain. A chain here is defined as the smallest prefix of a probe sequence that
contains all elements inserted in a hash bucket. As this flag bit will only be
present for chains that include at least one element, an additional sentinel bit is
used to ensure that the search algorithm does not enter empty chains.

The order in which hash slots are probed is given by the probe sequence h(k,i).
For standard hash tables this can be an arbitrary function of the object k and
probe index i, as long as h(k, . ): {0,...m} 2 {0,...,m} is a permutation. However,
the use of the sentinel bit now requires that the probe sequence be determined
by the hash h'(k):=h(k,0), rather than by the object k. Of the standard probe
sequences, linear and quadratic probing satisfy this requirement, but double
hashing does not. Another choice, which minimizes clustering but has bad cache
performance, is random hashing, which in its simplest form is h(k,i) = h'(k) +
h'"(i) mod n, where h''(i) is a permutation. To balance the opposing needs of low
clustering and good cache behaviour, Stampy uses mainly quadratic probing,
supplemented by linear probing for long chains, as explained in section 1.1.

The basic algorithms for inserting an object k, and searching for an objectk, in a
hash table T (assuming a single probe sequence, h, for simplicity) are:

Hash-insert(T,k):

j € h'(k),i € 0,last < -1

while T[j].obj # NIL:
if h’(T[jl.obj) = h’(k): last €< j
i < i+1;j € h(k,i)

T[j].obj € k

T[ h’(k) ].present € True

if last # -1: T[last].extend = True

Hash-search(T k):
if T[h’(k)].present = False: return NIL
i< 0;j < h(k)
while True:
if h’(T[j].obj) = h’(k):
if T[j].obj = k: return j
if T[j].extend = False: return NIL
i € i+1;j €< h(k,i)



1.3 Scanning the read

To find candidate locations for a single read, all overlapping 15mers in the read
are considered. In addition, every 1-base mismatch (“1-neighbour”) is
considered. For reads longer than 34 bp, 1-neighbours are considered for a
reduced fraction of initial 15-mers; half of them for reads up to 49 bp, to a third
for reads of 50bp and above. Simulation experiments showed that this resulted
in negligible loss of sensitivity, and a considerable reduction of computational
time (data not shown). In addition, for 15mers that contain a single N character,
all 4 possibilities for that position are considered, but no other 15mers are.
Those 15mers that contain more than a single N character are not considered.

1.4 Searching the hash table

If the initial hash table entry corresponding to the 15mer is flagged by the high-
count flag, this 15mer is not further considered. A repeat mask table with read
locations that are not scanned for this reason is kept for later use. (More
specifically, when the read 15mer is marked as repetitive, the corresponding
location is marked with a Phred score 0; for 1-neighbours, it is marked by the
Phred quality of the mutated base. When more than one 15mer, mutated or
otherwise, is repetitive, the minimum Phred score is used. These values are used
to calculate the mapping posterior, for details see section 1.8. A Phred score is a
representation of a probability p as an integer, using the formula -10logio p. For
non-repetitive 15mers, all positions in the genome that were entered in the hash
table and match the 15mer or its reverse complement, together with their
orientation, are retrieved.

1.5 Similarity filtering

To avoid excessive numbers of potential candidates, a neighbourhood similarity
filtering step is included at this stage. A “fingerprint” is computed from three 4-
nucleotide words close to but not overlapping the 15mer, and falling within the
read. The fingerprint comprises the counts of A, C and G nucleotides within
those 12 positions. The counts of the corresponding positions at the putative
genomic location (in the implied orientation) are obtained, and the sum of
absolute differences of A, C, G counts, and the implied absolute difference of T
counts, is computed. This similarity statistic has the property that it increases by
at most 2 with every single-nucleotide change, and every incremental 1bp
insertion or deletion. Longer insertions or deletions have the opportunity to
cause more drastic changes to this statistic, but this potential problem is
mitigated by the fact that most indels are copy number changes of short tandem
repeats or homopolymer runs, to which this statistic is relatively insensitive.
Only locations for which this fingerprint match value does not exceed a set
threshold are considered. This threshold is reduced by 2 for one-mismatch
15mers, so that similar approximate mismatch thresholds are used for the 15+12
nucleotide positions that are considered, independent of whether the original
read 15mer or one of its 1-neighbours generated the candidate location.



1.6 SIMD alignment

Locations that pass the similarity filter are then considered for full-length
alignment. At this stage the number of candidates often exceeds 1000, so that
the use of a highly efficient implementation of the alignment algorithm is
imperative. Stampy uses a Single instruction, multiple data (SIMD)
implementation of banded affine-gap alignment. The implementation traverses
the dynamic programming table diagonally, allowing an optimal exploitation of
the parallelism provided by the x86 SIMD instructions. The dynamic
programming table is held in registers rather than in memory, so that expensive
cache misses are avoided. Since, in the first instance, the complete read is
considered to derive from the reference, a Needleman-Wunsch global alignment
rather than a Smith-Waterman local alignment is computed. This requires
aligning the possibly low-quality end of the read containing relatively many
mismatches; to handle such cases appropriately the algorithm computes a
mapping quality score in Phred units that accounts for nucleotide quality scores,
as well as gap opening and extension. To the probability represented by the base
quality Phred scores, a term corresponding to the expected divergence to the
reference (by default equivalent to a probability of 10-3 per nucleotide) is added,
as for alignments no distinction ought to be made between read errors,
polymorphisms and substitutions. The algorithm uses a 30bp diameter band,
allowing insertions and deletions of up to 15bp to be fully considered at this
stage. The limited number of bits available in SIMD registers to accumulate the
score puts a limitation on the maximum read length that can be considered in a
single alignment; in our implementation, reads of up to 4500 bp can be
considered.

1.7 Single-end reads: realignment

Stampy reports the best-matching candidate mapping location, or in case of ties,
a deterministic pseudo-random choice. When the process of generating
candidate mapping locations described above does not result in any candidate,
or when the candidate is judged to be no more similar than a best match for
random sequence, no mapping location reported.

The best-matching candidate is re-aligned under the same model as used in the
SIMD alignment, but now with a larger band of 60 bp diameter by default,
enabling the correct identification of insertions or deletions (‘indels’) of up to 30
bp in length. When the most likely alignment comes within 10 bp of the edge of
the dynamic programming band, the read is again re-aligned with double the
bandwidth. In this way alignment in the presence of large indels is improved
without a large increase in computational time in the general case.

The alignment algorithm at this stage allows flushing of indels to the leftmost or
rightmost possible location; the desired behaviour can be selected by command-
line options. When desired alignment posteriors per alignment column can also
be computed, through the use of the Forward and Backward algorithms (REF

Durbin et al). In certain cases this additional information allows potential indels



at the edge of reads to be identified. The computation of this information is
relatively costly and is switched off by default.

1.8 Single-end reads: mapping posterior

Stampy computes the mapping posterior Phred score, or “mapping quality”, in
the standard Bayesian fashion by computing the posterior probability that the
reported location is incorrect, in the first instance through the formula

1-P(read | Lope) / Z P(read | Li ), (1)

where Loy is the maximum likelihood mapping location, and the sum runs over
all candidates considered. Because the alignment model considers read errors,
single-nucleotide polymorphisms and substitutions, and short indels, this
accurately estimates the probability that a read is mapped incorrectly when such
errors are caused by (near-)repetitiveness in the genome, in combination with
read errors and mutations. The result is approximate because not all possible
mapping locations are considered in the sum, and consequently the resulting
posterior does not include the possibility that the correct mapping locations was
not considered among the candidates L;. Broadly, this may happen for three
reasons: (i) the read contains highly repetitive sequence and its 15mers were not
entered into the genome hash table; (ii) the read is of low quality and/or is
divergent from the reference by single-nucleotide and short indel mutations, so
that every 15mer entered into the hash table has more than 1 nucleotide
difference with the read, or (iii) the sequence is not represented in the reference.

Stampy’s model accounts for all three possibilities. Sections 1.9 and 1.10 each
describe the model for (i) and (ii), for short and longer reads respectively.
Section 1.11 describes the model for (iii). Adding the probabilities for these three
events to the naive posterior (1) results in the final mapping quality, which is
reported as a Phred score capped at 99. In addition, when (iii) is deemed likely,
no mapping is reported for that read.

As an example of the situations handled by this model, consider a read from a
highly repetitive genomic region. A read error within this read may cause a
spurious hit elsewhere in the genome. However, because of the repetitiveness,
this location is not deemed to be reliable, since the cumulative likelihood of the
repetitive loci (which each require one read error) can overcome the single
higher likelihood of the spurious hit. A similar situation occurs when the
genome carries a mutation in an otherwise repetitive region; in this case, the
read will be mapped correctly, but for the same reason as before, the map will
not be deemed to be reliable.

1.9 Single-end reads: failing to find candidates - non-overlapping 15mers

As described above, two reasons for failing to identify the correct candidate
locations are that the read is highly repetitive and its 15mers have not been
entered into the hash; or that read errors or divergence cause all read 15mers to



be more than 1 mutation removed from the reference 15mer. This section
describes an algorithm to estimate the probability of either event occurring.

Because the way the read is scanned changes with the length of the read as
described in section 1.3, the model is dependent on the read length. For
simplicity only case (1) that 1-neighbours are considered for all 15mers within
the read, and case (2) that these are considered for only one-third of the 15mers,
are distinguished; the intermediate case in which 1-neighbours of half of the
15mers are considered is approximated by the model for case (1).

First, consider case (2), that 1-neighbours for a third of read 15mers are
considered. More precisely, the algorithm considers 1-neighbours for a
consecutive block of 5 overlapping 15mers from the read; for the subsequent 10
only the read 15mers are considered, then again for a consecutive block of five
15mers the 1-neighbours are considered, and so on. The contribution to
sensitivity of the 10 read 15mers are ignored in the model, as are the effects of
indel mutations on sensitivity.

Suppose that the correct mapping location for the whole read is L. Because only
15mers from genomic loci that are multiples of 5 are entered into the genome
hash table, only 15mers at read position k such that mod (L+k) = 0 have a
possibility of matching. From the algorithm described above, and under the
stated assumptions, it follows that this happens precisely once in a block of five
overlapping 15mers from the read; the next possibility occurs exactly 15 bp
further on. This means that the possible matches involve non-overlapping
adjacent 15mers. If the offset k were known, the required probability is just the
probability that all non-overlapping adjacent read 15mers at offset k have 2 or
more mutations, or that the corresponding 15mer in the reference is repetitive
and not included in the hash table. The final probability is computed by
computing this compound probability for each offset k and taking the Bayesian
average using a uniform prior of the possible offsets.

The compound probability is just the product of the probabilities defined above
for all 15mers at the offset k. To calculate the relevant probability for one

15mer, write g; for the error probability of base i in the 15mer (i = 1,...,15). The
probability that no mutation (read error or substitution) occurs in the 15mer is

z =iz (1-q1)
If we write

p1=ZLi-1" qi / (1-q))
then the probability of two or more mutations w.r.t. the reference is 1 - z(1+p1).

It remains to include the probability of missing a candidate because of
repetitiveness. If the read 15mer is marked as repetitive in the hash table, the
probability is taken to be 1 - this is an approximation, as the possibility of the
true reference 15mer not being repetitive, but having been mutated into a highly
repetitive one is ignored. If the read 15mer is not repetitive, but one of its 1-
neighbours is, then the probability of the true reference 15mer being repetitive
is estimated as the probability of the mutation having occurred. While this is not



correct in the strict Bayesian sense, as the prior of the read deriving from a
repetitive sequence is not weighed explicitly against the alternative, simulation
experiments show that this procedure is effective at reducing false positive rates
and estimating well-calibrated priors (see main text, and results below). The
data required for this procedure is collected at the scanning stage described in
section 1.3.



1.10 Single-end reads: failing to find candidates - overlapping 15mers

This model deals with the case of relatively short reads, in which case 1-
neighbours of each overlapping 15mer are considered. The analysis of this
situation is complicated because of the dependency structure introduced by the
overlapping 15mers, and the non-uniform distribution of read errors described
by the quality scores.

We approximate the situation by considering that in a contiguous subsection of
the read, the probability of 0, 1, 2, 3 or 4 mutations is known; that 5 mutations or
more do not occur; and that conditional on a certain number of mutations
occurring, these are distributed uniformly along the subsection. A simulation
was used to estimate the probability that, conditional on the length of the
subsection and the number of mutations occurring, every overlapping 15mer
fully within the read subsection and at the (unspecified) offset k overlaps with 2
mutations or more, as only in this case would the correct candidate not be
considered.

In particular, independently of k, for 3 mutations, at least one 15mer is
guaranteed to overlap at most 1 mutation in a read of length 34. This can be
seen by considering that in a length-34 read, two non-overlapping 15-mers fall
wholly within the read for any k; and for both these 15-mers to not yield the
correct candidate, at least 2 mutations are required in each. Considering the
algorithm in section 1.3 this means that Stampy is guaranteed to consider the
correct mapping location for any read with 3 or fewer mutations in the first 34
bp. For 4 mutations, this is true for reads of 52 bp and longer.

More generally, the probability of not identifying the correct candidate is
estimated as follows. First, the probability of precisely m mutations among L
positions, each independently having probability g; of mutating, is

L m
215i1<"'<fm<L(qi‘ ", X Hiﬁ{il ,...,i,,l}(l - CI,-)) B 1_[(1 -q;) E 1_[ - ()
i1

Isiy <o<ip <L k=1 l-g,

The last sum over m-fold products is inefficient to calculate as written,
particularly as m and L increase. However, this sum may be recognized as the
elementary m-th degree symmetric polynomial en in the variables qi/(1-q:),
i=1,...,L. These can be computed from the power sums,

SN

using Newton's identities:
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Since the p; can be calculated efficiently, so can z en in (2), which represents the
probability of precisely m mutations occurring among the L positions.

For longer reads, it often occurs that sections are of poor quality. This happens
predominantly at the far end of the sequence, but low-quality bases can occur
anywhere in the read because of localized issues such as air bubbles in the flow
cells, focusing or optical alignment problems. In order not to obtain an overly
pessimistic estimate of the probability of missing candidates, particularly for
long reads, Stampy considers every 15- to 52-bp subsection of the read,
calculates the probabilities of 0 to 5 mutations following the algorithm above,
and estimates the probability of missing the true candidate, conditional on
finding it in the subsection under consideration. Since the simulation assumes
that fewer than 5 mutations occur, no subsections are considered where the
probability of 5 or more mutations exceeds 0.1. This cutoff was found to provide
accurate estimates in practice (data not shown). The final reported probability is
the minimum of these probabilities over all subsections that are considered.

The effect of repetitive 15mers is modelled by adding to g; the repeat mask
probability obtained by the algorithm in section 1.3, similar to the procedure
described in section 1.8.

1.11 Single-end reads: random matches

The models for (i) and (ii) are Bayesian models, in the sense that a full
description of the process that generated the reads is attempted. However,
when a read is not represented in the reference, for instance because it derived
from a contaminant, an generative modeling approach fails. Algorithmically, a
unique best match may exist, but it will be biologically meaningless.

To identify such cases, a hypothesis-testing stage forms the last part of the
mapping quality model. This stage assesses the likelihood that the read is a
random sequence, and that any sequence similarity of the candidate mapping
results from finding the best match for this random sequence. This question is
complicated by the alignment procedure, which considerably increases the
chances of finding fairly good matches at random.

Suppose that the best alignment of a read of I nucleotides, n of which align to the
reference with m mismatches, includes i insertions and d deletions. The
quintuplet (,,n,m,i,d) forms a summary of the complexity of the alignment. To
estimate the size of the search space, we need to compute the number of
alignments of similar complexity.



Consider the quintuplet to be fixed, and denote the set of all alignments
characterized by the quintuplet, at a particular locus and strand x, by Ax. Any
alignment a € Ay implies a particular sequence s, of n nucleotides at the aligning
positions of the read. Denote the set of all (locus, strand) pairs for the reference
by G. Suppose that the setS={s,| a € Ax, x € G } may be considered to be drawn
uniformly from the set of all sequences of length n. Then, the likelihood of
randomly obtaining a match that is as good as the best alignment that was in fact
found, is

; ..l\l
1-|1- l,. | R K Y7 S

\ /!
since this alignment implies n matches, and |S| loci and alignments have
potentially been considered. The second approximation holds only if |[S|4" « 1.
If |S|4 is of order 1 or greater, the likelihood of finding a random match of
comparable quality is nearly 1, under the stated assumptions. As mentioned
above, in this case no mapping is reported.

The formula above assumes that every alignment is equally probable; more
specifically, that for a random read, mismatches; insertion starts and ends; and
deletions all occur uniformly along the read. We in addition assume that
deletions can have any size uniformly from 0 to a set maximum, here 30. To
calculate |S|, note that there are m mismatches to be distributed among n
aligning locations; 2i+d positions are to be chosen within the read of length / at
which to start or end an alignment, or place a deletion; and d deletion lengths to
be chosen; in addition the mismatching nucleotide at m position is to be chosen.
In approximation, the total number of possibilities thus becomes,

n l J
2g x 3" _ 30 << 4"
mM\2i+d

where g is the size of the reference, and the factor 2 accounts for the choice of
strand. This formula is approximate as it does not consider the fact that
deletions cannot occur between insertion starts and ends; in practice such
situations arise most often for incorrectly mapped reads, in which case an
overestimation is conservative.

Note that when insertions run off either end of the sequence, one less insertion
start or end position needs to be chosen, and 2i+d should be replaced by 2i+d-1
in the formula above. A similar consideration does not apply to deletions as they
cannot occur at the read boundaries.

Nucleotides are not uniformly chosen from the 4 possibilities, but rather often
are biased somewhat towards A/T or G/C. To account for this, in the formulas
above we use b (and b-1) instead of 4 (and 3), where b is somewhat less than 4 to
account for any G/C bias, using the formula b = exp(-flog %f - (1-f) log ¥2(1-f)),
where fis the G+C content. For instance, for f=0.35, a value b=3.8 is used.



1.12 Paired-end reads: paired-end candidates

The paired-end pathway follows the single-end one up and including the point of
calculating the single-end mapping quality, for each of the reads independently.

If no candidates were obtained for both reads, the paired-end read is reported as
unmapped.

When the best locations for the single reads are close together on the genome
(defined as an implied insert size within 4 standard deviations of the mean), the
resulting paired-end mapping positions are considered. If in addition both single
reads map sufficiently uniquely (each with a posterior probability of less than
1% of having been mapped incorrectly due to near-repetitiveness), and in
addition the estimated probability of not having found the correct candidate is
sufficiently low for both (again less than 1%), the paired-end mapping location is
reported.

When any of these conditions are not met, Stampy creates a shortlist of pairs of
mapping locations. From the candidate locations for each member of the read
pair, the locations that together constitute 99.9% of the single-read posterior
mapping probability are extracted, up to a maximum of 20 locations, and subject
to a minimum of 3. For each of these locations, the mate is aligned against the
reference around the location implied by the library insert size distribution, plus
or minus 4 standard deviations. The alignment model used is as for single-end
reads, but contains an additional term modeling the likelihood of the implied
insert size, which helps to disambiguate the mapping position of locally
repetitive reads. In addition to this list of novel pairs, the pairing of the top-
scoring single-end mapping locations is added. When these are not close
together, a score corresponding to the prior probability of the physical insert
overlapping the breakpoint of structural variation, which could give rise to such
configurations, is added. This prior probability is user-specified, and is 3x10-6
(Phred 55) by default. (Here, ‘close’ is defined as the distance at which the
likelihood of the insert size under the insert size model, approximated by a
Gaussian distribution, becomes less than the prior probability for a structural
variant.)

The posterior mapping quality is calculated as the product of the single-end
mapping qualities in case of the top-scoring single-end hits being selected as the
pair, or the single-end posterior of the anchoring read in other cases.



2. Performance on simulated data
2.1 Setup of the simulation experiment

To assess the performance of Stampy under different conditions, and to compare
this with the performance of other read mapper programmes, a simulation
pipeline was developed.

In short, reads were generated by taking sequence data from randomly chosen
positions in the human genome. Read errors were introduced according to the
empirical read error distribution, and additional changes were added to this to
simulate SNPs and indels.

The empirical read error distribution was obtained from two sets of paired-end
[llumina data from the 1000 Genomes Pilot project 1. To ensure that mapping in
the presence of read errors was sufficiently well assessed, these were chosen to
have error rates at the lower 25% quartile within their read length category
(accessions SRR003994, sample NA19239, 36 bp; and SRR005802, sample
NA18520, 72 bp).

The read error distribution was calculated by first mapping the actual reads to
the human reference using Stampy, and tabulating base match and mismatch
counts stratified by read, cycle (position within the read), reported quality score,
and the number of preceding mismatches. In this way, the reported quality
scores were recalibrated, taking account of position within the read and
dependencies between errors within a read. The use of Stampy at this stage does
not cause bias in favour of Stampy in the simulations. No known SNPs or indels
were removed from the actual reads prior to tabulating mismatches; in this way,
the estimated error rates will slightly exceed the true error rates, but this is not
expected to affect the conclusions of the study.

The recalibration tables were used to subsequently introduce errors in sequence
data taken from known paired positions, chosen uniformly on the genome and at
a distance of 250 * 25 bp apart to simulate a distribution of insert sizes.

Several sets of reads were generated, each with a different mutation profile in
addition to read errors. These categories comprise: -

(i) single-nucleotide changes drawn from a Poisson distribution with rate
10-3, to simulate human SNPs [“SNP0.001”; one category];

(ii) one, two or three single-nucleotide changes added to each read
[“snpl”, “snp2”, “snp3”; three categories]

(iii) single-nucleotide changes added drawn from a Poisson distribution
with rate 0, 1%,... up to 15%, simulating substitutions in a divergent
species [sixteen categories];

(iv) a single short insertion or deletion added in one read or read pair,
with length drawn uniformly from [1..30], and placed uniformly into the
read, and using random sequence in the case of insertions [“indel30”, one
category].



(v) a single large (20 kb) deletion affecting one read or read pair. The
location of the deletion was chosen uniformly in one of the reads. This
category simulates reads overlapping large deletions [“largedeletion”, one
category]

(vi) a single large insertion affecting one read or read pair. This was
implemented by choosing an insertion location uniformly in one of the
reads; the sequence to either the left or the right of this point was then
replaced by random sequence. This category is a simple simulation of
reads overlapping structural variation breakpoints [“largeinsertion”, one
category].

For each category, 4 data sets were created: either with 36 bp and 72 bp reads,
and either single reads or read pairs. Each data set contained 1 million reads or
read pairs.

The simulation code also generates a read label which encodes the true position
and orientation, the true insert size, and any indel mutation (position and size).
Read errors and single-nucleotide mutations were not recorded in the read label.

A pipeline was written for the process of simulating reads, mapping these with
each of Stampy (using BWA as pre-mapper), BWA, Magq, Eland and Novoalign;
converting the output to SAM format where required; adding back reads, if any,
that were not reported; and collecting statistics including sensitivity (recall rate)
for various thresholds of reported mapping quality values, mapping quality
calibration, and mapping and indel recall sensitivities conditional on indels of a
particular size being present in the read.

Reads (read pairs) were considered to be mapped correctly if their position
(both their positions) coincided with the true position, as encoded in the read
label. We consider the main aim of a mapper to infer the read’s correct genomic
locus, and consider the ability to correctly identify indels through inferring the
corresponding gap in the read alignment to be desirable but not essential. This
led us to consider reads to be mapped correctly if any of its nucleotides were
aligned to the correct reference nucleotide, as encoded in the true alignment
provided in the label. In practice this means that, when a read contains a single
indel, either the sequence to the left or to the right of the indel needs to overlap
the correct reference sequence in order for the read to be considered correctly
mapped.



2.2 Simulating read data

The code to simulate reads is part of the Stampy program. The following table
lists the command line options that were used to generate the reads. Read
lengths and base qualities were not generated, but taken from existing reads.

Category Options

snp0.001 --substitutionrate=0.001

snpl --simulate-numsubstitutions=1

snp2 --simulate-numsubstitutions=2

snp3 --simulate-numsubstitutions=3

divN, N=0..0.15 | —-substitutionrate=N

indel30 --simulate-minindellen=-30 --simulate-maxindellen=30
largedeletion --simulate-minindellen=-20000 --simulate-maxindellen=-20000
largeinsertion | —-simulate-minindellen=20000 --simulate-maxindellen=20000

In addition, the options --insertsize=250 --insertsd=25 were used
throughout to set the insert size distribution.

Prior to generating the simulated reads, the empirical error distribution of a set
of actual Illumina reads were obtained using the recalibration algorithm (option
-R), which generates .recaldata files. Reads were then simulated using the —s
option. This also generates labels that include the position and (where
appropriate) mutation information.

After mapping, the mapped reads in . SAM format were supplemented with input
reads that were filtered out by the mapper. Various statistics were then
collected by a script that is included in Stampy, accessible through the —p (parse)
option.

2.3 Assessing mapping quality calibration

Mapper programmes differ considerably in the spectrum of reported mapping Q
values. This makes it difficult to meaningfully plot the mapping quality
calibration, since a naive binning scheme may put very different numbers of data
points in any particular bin across the different mapping programmes, causing
large sampling errors in the estimated Q scores. Instead we followed a scheme
where total and incorrect mapping counts were sorted by decreasing reported
mapping Q score, and accumulated until the accumulated theoretical expected
incorrect mapping count exceeded 3.0. The ratio of this expected count over the
total mapping count, was then plotted against the ratio of the observed count
over the same total, both on a logarithmic (Phred) scale. After each point the
accumulated counts were reset and the process proceeded down the list. In this
way, every point plotted has roughly equal (maximum) sampling errors
associated to them, independently of the spectrum of reported Q scores.



2.4 Choice of read mappers for comparison

We used the following criteria to select read mappers for comparison to Stampy.
First, the mapper should be able to map Illumina reads of 36-72 bp, both single-
and paired-end. Second, it should produce SAM or BAM files, or output for which
conversion tools to either format were readily available. Third, it should
produce mapping quality information, which is essential for SNP and indel
callers. Fourth, the read mapper should be able to run on the hardware at our
disposal (a dual quad-core Linux cluster, with 16 and 32 Gb of memory per
node). Fifth, the mapper should be reasonably popular choice. Finally, we did
not strive for completeness, and used the first five criteria as necessary but not
sufficient conditions; rather we tried to cover at least the most popular, the
fastest, and the most sensitive algorithms.

Based on these criteria we chose Maq, BWA, Eland, and Novoalign.

The Bowtie program, is both fast and popular, however it does not produce
mapping quality scores. The BFAST program was considered, but we decided
not to include it because of its high memory usage. The Mosaik suite of programs
could have been included, but we felt that the mappers chosen already covered
the spectrum of sensitivity and speed sufficiently.

The following software versions were used:
Stampy v1.0
BWA 0.5.6 (r1303)
Maq v0.7.1
ELAND_standalone.pl v 1.3 2009/11/13 (part of CASAVA 1.6.0a11)
Novoalign V2.05.16



3. Performance on real data
3.1 Re-mapping 1000 Genomes Data

To assess the performance on real data we re-mapped human genomic data from
the 1000 Genomes Project, Pilot 1, using Stampy and BWA. To limit the use of
computational resources, we chose two individuals from the Pilot 1 (low
coverage) data. As this data has been generated while the sequencing platforms
have undergone considerable development, we made sure not to choose among
individuals with only short read length (36 bp) and/or only single-end reads.
From those that included reads of 50bp or over, comprised at least 50% paired-
end [llumina data, we chose the individual NA18510, which has a coverage
closest to median (4.62 X). For this individual 16 51bp paired-end lanes of
[llumina data were available. For the other sample we chose NA18520, which
was also used to generate the empirical error distribution for 72bp reads (see
Section 2). For this individual 7 lanes of 76 bp paired-end [llumina data were
available. Table S1 below lists the input data that was considered.

To assess performance, we mapped each read of a mate pair independently and
calculated the proportion of pairs that ended up in consistent locations. Mapping
locations were considered to be consistent if they were within 10kb of each
other; while this is generous for genomic DNA, it does capture a fraction of
transcriptome-derived read pairs that map across introns; the expected false
positive rate from using a generous window size of 10kb is negligible (a naive
estimate is 1.5e-6).

This performance indicator estimates the frequency at which single-end reads
are both, independently, mapped correctly. This does not test the part of the
algorithm that uses mate pair information to rescue reads that otherwise could
not have been mapped. It also does not give a direct estimate of the proportion
of single-end reads that can be mapped correctly, since both reads of a mate pair
are required to be correctly mapped.



File name

NA18510/sequence_read/SRR005804_1.filt.fastq

NA18510/sequence_read/SRR005804_2.filt.fastq

NA18510/sequence_read/SRR005805_2.filt.fastq

NA18510/sequence_read/SRR005806_1.filt.fastq

NA18510/sequence_read/SRR005806_2.filt.fastq

NA18510/sequence_read/SRR005807_1.filt.fastq

NA18510/sequence_read/SRR005807_2.filt.fastq

NA18510/sequence_read/SRR005808_1.filt.fastq

NA18510/sequence_read/SRR005808_2.filt.fastq

NA18510/sequence_read/SRR005809_1 filt.fastq

NA18510/sequence_read/SRR005809_2. filt.fastq

NA18510/sequence_read/SRR005810_1.filt.fastq

NA18510/sequence_read/SRR005810_2.filt.fastq

NA18510/sequence_read/SRR005810.filt.fastq

NA18510/sequence_read/SRR011049_1 filt.fastq

NA18510/sequence_read/SRR011049_2 filt.fastq

NA18510/sequence_read/SRR011050_1.filt.fastq

NA18510/sequence_read/SRR011050_2.filt.fastq

NA18510/sequence_read/SRR011051_1. filt.fastq

NA18510/sequence_read/SRR011051_2.filt.fastq

NA18510/sequence_read/SRR011052_1 filt.fastq

NA18510/sequence_read/SRR011052_2 filt.fastq

NA18510/sequence_read/SRR011060_1.filt.fastq

NA18510/sequence_read/SRR011060_2.filt.fastq

NA18510/sequence_read/SRR011062_1. filt.fastq

NA18510/sequence_read/SRR011062_2. filt.fastq

NA18510/sequence_read/SRR011063_1.filt.fastq

NA18510/sequence_read/SRR011063_2.filt.fastq

NA18510/sequence_read/SRR011064_1.filt.fastq

NA18510/sequence_read/SRR011064_2.filt.fastq

NA18520/sequence_read/SRR005797_1 filt.fastq

NA18520/sequence_read/SRR005797_2 filt.fastq

NA18520/sequence_read/SRR005798_1. filt.fastq

NA18520/sequence_read/SRR005798_2. filt.fastq

NA18520/sequence_read/SRR005799_1 filt.fastq

NA18520/sequence_read/SRR005799_2 filt.fastq

NA18520/sequence_read/SRR005800_1.filt.fastq

NA18520/sequence_read/SRR005800_2.filt.fastq

NA18520/sequence_read/SRR005801_1.filt.fastq

NA18520/sequence_read/SRR005801_2.filt.fastq

NA18520/sequence_read/SRR005802_1 filt.fastq

NA18520/sequence_read/SRR005802_2 filt.fastq

NA18520/sequence_read/SRR005803_1.filt.fastq

NA18520/sequence_read/SRR005803_2.filt.fastq

Table S1. Data files from 1000 Genomes Pilot 1, for the comparative mapping
experiment.

3.2 Mapping divergent mouse data

To assess the ability of the different aligners to map reads to a divergent
reference, we used Mus Spretus genomic reads that were kindly made available
to us by Dr. David Adams (Sanger Institute, Hinxton). The speciation time of this



subspecies is estimated at 1.1 Mya?, and the divergence to the C57BL/6J mouse
reference sequence is 2% 3.

3.3 Mapping reads from mRNA transcript data

We used a single lane of llumina paired-end reads from an mRNA-seq
experiment conducted by Dr loannis Ragoussis (Wellcome Trust Centre for
Human Genetics, Oxford). The mRNA data for this sample was obtained from
MCF-7 cancer cell lines, and prepared following the standard [llumina mRNA-seq
protocol. This data set is available upon request.

3.4 Allele biases

To assess the presence of allele biases due to systematic mapping problems at
polymorphic indel sites, we first identified high-confidence heterozygous sites
from indel calls made by the 1000 Genomes Project, on the father-mother-child
trio NA12891-NA12892-NA12878. Such sites were defined as those that were
homozygous for the reference and the alternative allele in the parents. Only sites
where the genotype quality of all three individuals were above Phred score 40
were considered; and the indel call quality itself was required to be above Phred
score 100. In total 10553 sites were considered.

We then used three BAM files of the child data (NA12878) that were produced
by the project (mapped by Maq and BWA respectively), and a BAM file produced
from the same data using Stampy.

To calculate the number of reads supporting either the reference or the indel
allele, we considered reads in which the called indel would fall within 10 bp from
either end. Reads that contained no indel within 10bp of the called position
were classed as reference reads; otherwise, the read was classed as supporting
the indel. We then calculated the ratio (reads supporting the alternative) / (all
reads) for all sites, and computed the cumulative distribution. This was done
separately for insertions and deletions.



4. Simulation results

4.1. Recall rates

Single-end  Paired-end  Single-end Paired-end
36bp 36bp 72bp 72bp
BWA 3.2 4.9 3.2 3.4
Stampy 13.7 26.8 10.7 14.6
Stampy (standalone) 30.3 50.8 22.6 31.2
Eland 40.2 41.6 20.7 194
MAQ 55.8 51.8 29.1 248
Novoalign 46.9 79.6 81.1 61.6

Table S2. Runtime in CPU hours per gigabase of sequence data, for the five
mappers considered, on the “snp0.001” dataset. “Stampy (standalone)” refers
to Stampy without BWA as a first stage.

Data set Programme 36bp,SE 36bp,PE 72bp,SE 72bp,PE
snp0.001 stampy 82.3 94.5 87 96.2
novoalign 86.5 96.5 90.7 97.4
bwa 69.9 82.8 74 87.1
eland 71.3 70.2 71.8 76.5
maq 85 92.7 83.9 91.9
snpl stampy 77.1 92.4 85.7 95.7
novoalign 80.5 95.7 89.3 97
bwa 53.3 67.4 69.7 84
eland 59.8 56.3 69.2 74.4
maq 78.8 87.4 80.3 89.8
snp2 stampy 68.4 88.3 84.1 95.1
novoalign 61.5 93.5 87.5 96.4
bwa 27.3 37.9 62.6 78.4
eland 38.5 34.5 67.3 71.8
maq 62.9 72.6 72.5 84.7
snp3 stampy 54.3 79.7 82.3 94.2
novoalign 18.5 83.7 85.4 95.5
bwa 0.9 0.9 50.2 67.8
eland 6 5.7 65 68.7
maq 16.2 22.6 49.2 65
largedeletion stampy 39.6 70.2 71.1 88
novoalign 15.6 68.1 35.6 69.1
bwa 8.1 35.7 16.6 45.4
eland 12.5 41.4 33 67.9
maq 16.3 39 14.6 335
largeinsertion stampy 19.7 59.9 39 72.7
novoalign 7.6 61.2 17.6 59
bwa 3.9 47.3 8.3 64.9
eland 6.1 36.4 16.4 55.4
maq 8 48.8 7.2 50.4

Table S3. Recall rates for various data sets (first column) and five aligners
(second column), separated by read length and single-end or paired. Rates are
given as the proportion of reads mapped to the correct position or positions, as a
percentage of all input reads.
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Figure S1. Recall rates for several data sets and five aligners, for 72 bp paired-

end reads (final column of Table S2).
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Figure S4. ROC curves for mapping reads at 5% divergence from the reference.



5. Mapping quality calibration
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Figure S5. Mapping quality calibration, for reads with 0.1% SNPs.
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4.3. Mapping sensitivity in the presence of indels

These graphs show the proportion of reads that get mapped to the correct
location, whether or not the correct indel is indentified. Reads are deemed to be
mapped correctly if the inferred read alignment shares an alignment column
with the true alignment.
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4.4. Indel indentification rate

These graphs show the proportion of reads that get mapped to the correct
location, and align with an indel of the correct length. To account for ambiguous

placement of indels, it is not required that the indel is located at the “true”
position
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Figure S10. Indel recall rates by deletion length, for reads with one deletion per
read or read pair.
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4.5. Recall rate as function of divergence
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Figure S12. Mapping recall rates by divergence to the reference.
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