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1 Generation of candidate haplotypes

Figure 2 outlines the procedure used to the generate candidate haplotypes. We use a
heuristic approach to define the haplotype blocks. We use the reference haplotype se-
quence to define the first haplotype block, and then proceed by adding the reads sequen-
tially in the order in which they were mapped to the reference sequence. Given a current
set of haplotype blocks, the procedure for adding a read R is as follows: given the mapped
position of the read R, the first block b; overlapping with the read R and the part of the
read Ry, overlapping with block b; is determined. If the substring R;, is not present as one
of the subhaplotypes in the block, it is added as a subhaplotype to the haplotype block
with frequency 1. If it is present, the frequency of the subhaplotype is increased by one.
This procedure is repeated with the remaining part of the read, R-p,, until the whole of
the read has been added to the haplotype block model. We let the start of a read always
create a new haplotype block, or split an existing haplotype block. The frequencies the
two haplotype blocks resulting from a split are obtained by marginalisation. Thus, for
high coverage data the resulting haplotype block model is generally highly similar to the
pileup as generated by SAMtools. However, for low coverage data the resulting halpotype
block model will contain fewer blocks with longer subhaplotypes.

2 Probabilistic realignment model

In this section we describe the realignment model we use to compute the likelihood of
observing a read given a haplotype sequence. We first introduce our notation. Capital
symbols refer to random variables, lower case ones refer to observed values of the corre-
sponding random variable. R? refers to base b in read i, and 7? refers to the corresponding
observed value: R? € {A,C,G,T}. H}; refers to base b in candidate haplotype p, and [, is
the number of bases in haplotype p. Hg is a hidden variable that is not directly observed.
The set of candidate haplotypes is denoted by H = {H,}. X! € {L,1,...,l,, R} is the
position of base b in read 7 in the haplotype HZIJ’ the read is to be aligned to. L is a special
state indicating that base b is aligned to the left of the candidate haplotype, ie left of the
haplotype window. R is a special state indicating that base b is aligned to the right of
the candidate haplotype, ie right of the haplotype window. I? = {0,1} is an indicator
variable that specifies whether base b in the read is part of an inserted sequence (I = 1)
with respect to the haplotype. ¢’ is the a priori probability that base b in read i was
correctly called; we infer it from the base quality reported in the alignment file for that
read. g; is the probability that read i was correctly mapped. ¢; and ¢ are assumed to be
given by the read mapper that aligned the reads to the reference sequence.

We use the Bayesian network framework to define the realignment model. Figure
S2 illustrates it with an example haplotype and read sequence. The model has two
components. The first component models how every base in the read is aligned with
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respect to the haplotype. Here there are two possibilities: either a read base is aligned to
a base on the haplotype, the read base is part of an insertion with respect to the haplotype,
or the read base is aligned to the left or the right of the haplotype. The variables X? and
I? together fully specify the alignment of base b in read i. The second component models
for a given alignment of the read base what the probability is of observing the observed
base R? = rb.

We will now specify the conditional probability tables for the alignment component
of the model. Based on the initial alignment of the read to the reference sequence (as
produced by the read mapper), we choose a base by in the read that serves as an anchor
point. by is chosen as the base that is in the middle of the segment of the read that overlaps
with the candidate haplotype according to the initial alignment of the read mapper (and
which may be refined by the realignment procedure), subject to the constraint that it is
at least 10 bp away from the boundaries of the candidate haplotype. This constraint can
always be satisfied as we only realign reads that have an overlap of at least 20 bases with
the haplotype according to the initial alignment of the read mapper. For unmapped reads
(for which the mate is mapped) by is chosen to be the middle base in the read. We use the
mapping quality of read 7 for this: we assume that the probability that base by is aligned
within the window defined by the coordinate of the leftmost base in the haplotype and
the rightmost base in the haplotype is given by the mapping quality, which encodes the
probability that the read was mapped correctly. Choosing the prior this way is formally
incorrect since the base qualities may have been incorporated in the mapping quality,
and we will use the base qualities again in the observation model component. However,
in practice we find that this heuristic gives good results as it does account for haplotype
sequences that are not unique in the genome. For single-ended reads the prior distribution
is given by

P(1 < X7 <llg) = ¢

For paired-end reads of which the mate is mapped to the same chromosome, we use the
aligned position of the mate and the library insert size distribution to parametrize the
insert size distribution:

mate

P(1 < X < 1|g™, comate) = in P(IS(XY, cinase)|insert size distribution),

)

where IS(X™, ¢pate) is the insert size given the position X of the read and the position

of its mapped mate ¢y ate, and ¢ is the mapping quality of the mate. The normalization

7
constant Z is given by

lp
Z = Z P(IS(X" cmase)|insert size distribution).

b
X, 0=1

The insert size distribution of the library is estimated empirically from all reads mapped
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in pairs. Here we assume that the mate is mapped to the correct position ¢y and does
not require substantial realignment.

Indels in the reads with respect to the haplotype, i.e. sequencing errors, are modeled
by specifying the transition probabilities between X? and I? for neighbouring bases in
the read. Consider two adjacent bases in the read b and &’. We will consider the cases
b,/ > by and b, b’ < by separately. We will first treat the first case. The table that models
the insertions and deletions is given by P(XY|X?, I, I?). The next position X depends

on both I Z-b/ and I? in order to model insertions with respect to the haplotype. We have

PXYIY, X0 100 > b > by) =
X" =0,1"=0 = Pd)§X" X+d),de{0,1,...,A}

Xt =11"=0 = S(XY, X?) 1)
Xtrr=11r=1 = S(XY, XY
Xt =0I1"=1 = S(XY, X +1)

Here ¢ is the Kronecker delta function. The top transition represents the cases where
there is no insertion, but where there could be a deletion (d > 1). A —1 is the maximum
length of read-deletion (ie, a sequencing error). d = 0 corresponds to a base-extension
error during sequencing. We assume the following distribution for sequencing deletion
erTors:

P(d) o exp(|d — 1),

and choose the proportionality constant such that P(d = 1) corresponds to the probability
of not having a deletion due to a sequencing error. The second line represents a transition
from a base that is generated by a base on the haplotype to an inserted sequence, indicated
by I" = 1. Aslong as I’ = I” = 1, we have X” = X" (third transition), so that the
model ‘remembers’ the position in the haplotype of the last base that was aligned to the
haplotype. The last line represents the transition from a read base that is part of an
inserted sequence to a next base that is again generated by a base on the haplotype. The
case b’ < b < by is analogous except that X = X’ —§, where § € {0,1,...,A} and
corresponding changes to the other transitions in order to maintain the consistency in
terms of the remembered position for insertions. An advantage of choosing the base by
to be the root of the Bayesian network is that the transition probability for cases where
the next base b’ is not aligned to the haplotype but b is aligned to the haplotype becomes
easier to quantify. In Fig. S2 we see for example that read base b = 24 is aligned to
haplotype base 19. We thus have P(X?=?® = R|X?=2* =[,,---) = 1.0. Similarly we have
P(X=3 =L|X=1,---)=1.0.

We assume a first-order Markov property for insertions in the read with respect to the
reference to maintain computational tractability. Thus, we have

lp bg—1
POLIO) = PURIXEY) TT PO 0(x7) T PO 00x0+)
b=bo+1 b=0



The two parameters are the transition probabilities 6y (X?) = P(I¥ = 1|1’ = 0, hplen(X?|H,))
and 0; = P(I" =1/I> =1); here ¥ = b+ 1 for b > by and b’ = b — 1 for b < by. 6, which
is analogous to the ‘gap open’ penalty in pairwise alignment HMMs, is chosen according
to table S1 and is dependent on the homopolymer run length of the haplotype sequence,
through the function hplen(X?|H,). The effect is that in a long homopolymer tract an in-
del in the read with respect to the haplotype will be more likely than in complex sequence.
6, is analogous to the ‘gap-extension’ penalty, which we have chosen as ¢, = exp(—1).

The probability of observing a base R = r? given its base quality and the alignment of
that base with respect to the haplotype. Here we mean by alignment specifically that X?
and I? are given for every base in the read. We parametrize the probability of observing
R? as follows:

I'=0, XP@{L,R} : qo(rdhp')+(1—@)Unif(r})
P(R} = ]| X}, hy, I7, ¢}) = Xt e {L,R} : ¢
I'=1 : q°
(2)
Thus, if the base-quality ¢° is low the read base is primarily drawn from a uniform distri-
bution over the different nucleotides. If a read-base is part of an inserted sequence with
respect to the haplotype (i.e., a sequencing error) or of it does not map to the haplotype
(X? € {left, right}) we assume it was observed without error.
We use the Viterbi algorithm to infer the maximum-likelihood alignment {X?, I¢}:

(RN 20 I

Pmax<Ri|Hp) = maXP(R,- =Ty, Xi,Ii|Hp, 9) (3)

b 1b
X1t

Although it would be more appropriate to do a summation rather than a maximization
over the hidden variables, we do the latter for the following reasons. First, maximiza-
tion is more computationally efficient than summation, and second, having a particular
alignment will allow us to count how many reads are covering a particular sequence vari-
ant in each haplotype. In homopolymers we explicitly correct for the fact that we do
maximimzation rather than summation: we compute the probability of seeing an indel in
the full homopolymer run according to the error model and then associate this increased
probability only with the first nucleotide in the homopolymer run.

3 Bayesian EM algorithm

For the analysis of pooled samples the number of different haplotypes segregating in the
underlying set of samples is unknown, and therefore we applied a Bayesian EM algorithm
that does not overfit the number of segregating haplotypes. The Bayesian EM algorithm
is the variational EM algorithm as described by Bishop (2007). As described in the main
text, we partition the set of candidate into (potentially overlapping) subsets of candidate
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haplotypes H, with £ = 1,..., K ranging over the K different subsets. Each subset
corresponds to a hypothesis that a specific subset of the candidate sequence variants
segregate in the pool of samples. The subset H;, consists of all candidate haplotypes that
can be constructed from combinations of these sequence variants (including the reference
allele for each variant). We define n; as the number of candidate haplotypes in subset k,
so that Hy = {H L ... ,Hﬁf"’“}. Here each H refers to candidate haplotype sequence
[ in subset k. The reference candidate haplotype (the reference sequence without any
sequence variants) is included in every subset k as the first haplotype, which implies

Hllczl = H11g=2 == Hllc:K'
We apply the Bayesian EM algorithm independently to each subset k to infer the hap-
lotype frequencies f, = {f},..., fi’*}. Since it is applied to each subset independently,

we will now consider one such subset, and drop the subscript k. We denote the vector of
haplotype frequencies for that subset by the vector w. The idea is that each candidate
haplotype represents a cluster, and that each read can be thought of as having been gen-
erated by one of the clusters. The clustering model assumes a prior Dirichlet distribution
for the haplotype frequencies

ng
Dir(7|ayg) o H A
=1

with ag controlling the sparsity of the clustering. The default value used in Dindel is
ap = 0.001. We define the responsibilities r;;, with ¢ indexing reads and [ haplotypes, as

Pil

ri = ~<nr -
Zj:l Pij

Here p;; is defined through the relation
log pi = E[log m] + 10g Prax (Rs[H'), (4)

which follows from the variational approximation of the clustering model. The approxi-
mate posterior ¢*(7) = Dir(w|a) is also Dirichlet, with components

R
o = ag + Z il (5)
i1

Following the formulation of (Bishop, 2007), an iteration of the algorithm consists of the
following operations:

E-step The E-step consists of computing the responsibilities p; using Eq. 4, and sub-
sequently the Dirichlet parameters aj using Eq. 5, given the current estimates
E[log m].
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M-step The M-step consists of updating the haplotype frequencies :

Ellogm] «— ¢(ar) — (),
where 9(-) is the digamma function and & =), oy.

After convergence of the algorithm, we approximate the probability of the read data by
il

Running the Bayesian EM algorithm for each subset H; provides the probability of the
data Zj through Eq. 6 and the haplotype frequencies f; for each subset k. Since a
candidate haplotype may be included in multiple subsets Hj, the posterior haplotype
frequency is obtained by computing the weighted average over the subsets with weighing
factor Zy. Similarly, the posterior probability of an indel segregating in the sample can
be estimated by summing the Zj of all subsets Hj; where the variant was defined to be
segregating, and normalizing by >, Zj.

4 Indel errors in Illumina reads

Basal error rate: Illumina reads from the 1000 Genomes Pilot 1 (low coverage across
179 individuals) were mapped using Stampy (Lunter and Goodson, 2010), a read mapper
designed to be sensitive in the presence of indel mutations. Only reads with a mapping
quality exceeding 10 were kept. The resulting data set had modal coverage of 530. We
excluded all regions with coverage exceeding twice the mode (1060). Indels identified by
the read mapper were collected, and filtered to include only indels that were called at
least 8 bp from either end of the read. This data set underlies all analyses related to
indel error rates. To estimate the basal indel rate, we first removed all indels that were
supported by reads from more than one library, under the assumption that these were
likely to represent true variation. This resulted in 48,283,494 calls in 2.836Gb, or 0.017
indels per site. Dividing by the (modal) coverage gives the estimate indel error rate per
nucleotide per read, 3.2x1075.

Expected rate of singletons: Under the assumption of a neutrally evolving population
under the standard coalescent without population structure, the number of segregating
sites is proportional to the product of half the heterozygosity, 8, and the total expected
coalescent tree, length, 2(1 4+ 1/2+ ...+ 1/n — 1) where n is the sample size. From the
neutral form of the site frequency spectrum, it is seen that the fraction of segregating sites
that occur at frequency 1 in the sample is 1/(1+1/24...4+1/n—1). It follows that the
fraction of singletons (per site) in a population is constant and equal to the heterozygosity.
For indels, Oi,qe1 = Bsnp/8 approximately (Lunter, 2007), giving the estimate 1.25x107%.
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Allele frequency spectrum in homopolymer context: We called indels that were
observed (at identical sites, and with identical lengths and sequence) in at least 3 indi-
viduals. This effectively filters out false calls assuming the background indel error rate of
0.017 per site (estimated average false discovery rate 0.0173/1.25x10™* = 0.04). When
more than one indel is observed at a single locus, which is a frequent occurrence in long
homopolymer runs, we selected the indel supported by the largest number of reads. As
estimate of the allele frequency we used the number of individuals in which a particular
indel (with given position, length and sequence) was observed. While this procedure leads
to under-estimates of frequencies in the presence of homozygous genotypes, our interest
is in the low end of the frequency spectrum, and so does not affect the current analysis.

Allele frequency spectra not explained by recurrent mutations: While indel
errors would explain the observed allele frequency spectra, it remains a priori possible
that recurrent mutations on a polymorphic background would change the allele frequency
spectrum in a similar way. Indeed, a high mutation rate would be expected to lower the
relative proportion of singletons in a population, which is consistent with observations.
Fig. S3 shows the allele frequency spectrum in a neutrally evolving Wright-Fisher popula-
tion (N, = 1000), with mutation rate # = 2N.u = 1 and 10. Only for the higher mutation
rate # = 3 does the allele frequency spectrum start to resemble the observed distribution.
However, § = 3 is 5 orders of magnitude above the basal mutation rate (§ = 1.25-10—4),
and close to that of microsatellites (Weber and Wong, 1993), contrary to expectation for
the comparatively short homopolymers; moreover, virtually all sites with # = 1 would be
expected to be polymorphic, which is not what we observe (1000 Genomes Consortium,
personal communication).

An Illumina indel read error model: Table S1 lists error rate estimates using the
three methods described in the main text. We used this data to arrive at a mixed inter-
polated and extrapolated indel error model. Because only approximate bounds are at our
disposal, the resulting model involves a regrettable but unavoidable degree of arbitrari-
ness.

For complex sequence, singleton indels are clearly in majority errors, and their fre-
quency does not increase up to homopolymers of length 4. The upper bound estimate also
does not vary in this regime, and varies between 0.038 and 0.048. It appears conservative
to use the singleton-based rates in this regime.

The upper bound estimate for homopolymers of length 10 is expected to be an over-
estimate, but nevertheless, it is only twice higher than the estimate based on the allele
frequency spectrum, which is expected to be an under-estimate. We therefore use the
upper bound estimate in our model.

To close the gap between length 4 and length 10 homopolymers, we chose error rates to
exceed the singleton-based rates, first by a modest amount, while for longer homopolymers



in such a way to progressively approach the upper bound estimate. We have no data to
support these choices, but they seem to represent conservative estimates, assuming that
indel error rates vary smoothly as a function of homopolymer run length, which all our
data appears to support.

Beyond 12 base-pair homopolymers, the supposedly upper bound rate estimate start
to decrease, for reasons indicated in the main text. In fact, up to 10 bp the curve traced
by the upper bound indel rate estimate is concave, while beyond 10 bp it is convex. The
slope is steepest at 0.36, going from 9 to 10 bp homopolymers. Since extreme value
statistics are sensitive to noise and upwardly biased, we used the interval 8-10 instead,
and chose 0.30 as the slope for the error model beyond 8 nt homopolymers. The figure
between brackets is the final error rate model, converted to per-base-pair and per-read
values.
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Figure S1. Comparison of the Stampy read mapper with BWA 0.5.7 on the simulated
data set of Fig. 4B. Dindel applied to the alignments and candidate indels produced by
the Stampy read mapper results in higher sensitivity while maintaining low false discovery
rates compared to Dindel applied to BWA.
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Figure S2. Probabilistic alignment model. Top horizontal bar represents a haplotype.
The numbers inside the boxes represent the position of each base in the haplotype; above
the horizontal bar an example haplotype sequence is shown. Below that is a horizontal
bar that represents a read, with in each box a number that represents the position of
each base in the read. The read sequence is shown in the bottom of the figure, as an
instantiation of the observed variables R? in the model which represent the observed read
bases. In between is shown the Bayesian network, where the circles represent random
hidden variables, the gray squares represent the observed variables, and the arrows rep-
resent conditional dependencies between the variables. The hidden variables are X?, the
position of each read base in the haplotype, and I?, which indicates whether base b in
read 7 is part of an insertion with respect to the haplotype. by (marked in yellow) is the
base in the read for which a prior probability of Xf’o # {L, R}, ie the probability that
the read is aligned to the window specified by the haplotype, and If’ * = (, the probability
that this base is part of an insertion, will be specified. For the hidden variables here the
most likely value given the haplotype sequence and the read sequence, as inferred using
the Viterbi algorithm is shown respectively above and below the corresponding variables
in the Bayesian network. The colors in the read and the haplotype illustrate the different
alignments possible. The green bases are an example of the case where consecutive bases
in the read (here 6 and 7) are aligned to consecutive bases in the haplotype (3 and 4)
without gap. The red bases are an example of the case where consecutive bases in the read
(13 and 14) are aligned to non-consecutive bases 10 and 13 in the haplotype, signifying a
deletion with respect to the haplotype. Blue shows the case where the read contains an
inserted sequence with respect to the haplotype. For the inserted bases Iib =18,19.2021 _ 4
and for those bases X? is not incremented until the first base (read base 22) that is not
part of the insertion and aligned to the haplotype.
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Figure S3. Allele frequency spectra under a Wright-Fisher model (N, = 1000) and recur-
rent mutations, for different mutation rates 6. Although low-frequency alleles become less
dominant in a regime of high mutation rates, the outline of the 1/f distribution remains
visible, and does not appear to converge to the binomial-shaped distribution observed in
the indel calls from Illumina data, even at extremely high mutation rates.



Context  Singletons Allele frequency spectrum All indel calls Error model

Complex 0.017 - 0.048 (>) 0.017 (3.2 -107%)
2 0.017 - 0.042 (>) 0.017 (3.2 -107°)
3 0.016 - 0.038 (>) 0.017 (3.2 -107°)
4 0.018 - 0.043 (>) 0.02 (3.8 -107?)
5 0.023 - 0.057 (>) 0.03 (5.7 -107?)
6 0.031 - 0.11 (>) 0.08 (2.0 -107%)
7 0.041 - 0.20 (>) 0.17 (3.8 -107%)
8 0.068 - 0.42 (>) 0.40 (7.5 -107%)
9 0.093 - 0.70 (>) 0.70 (1.3 -1073)
10 0.099 (<) 0.5 (<) 1.06 (>) 1.00 (1.9 -1073)
11 0.101 (<) 0.55 (<) 1.34 (>) 1.30 (2.4 -1073)
12 0.110 (<) 0.58 (<) 1.46 (>) 1.60 (3.0 -107%)
13 0.106 (<) 0.69 (<) 1.36 1.90 (3.6 -107%)
14 0.110 (<) 0.64 (<) 1.29 2.20 (4.2 -1073)
15 - 0.73 (<) 1.28 2.50 (4.7 -107%)
16 - 0.69 (<) 1.19 2.80 (5.3 -1073)
17 - 1.17 3.10 (5.8 -1073)
18 - 1.0 3.40 (6.4 -1073)

Table S1. Estimates of indel error rates per site, in [llumina short-read sequences across
180 individuals with a modal total coverage of 530, and stratified by sequence context
(complex sequence, or occurring in homopolymer runs of lengths 2 to 18). Three methods
were used to estimate error rates (column 2,3 and 4). The last column describes the error
model used in the realignment HMM, with the figure in parentheses representing the per-
base and per-read error rate. Error rate estimates are marked (<) or (>) if the estimates
are expected to be under- or over-estimates respectively. Estimates in bold were used to
guide the error model.
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