Supplementary Materials

1 Sample preparation and validation

Pooled-DNA sample sequencing from single individuals
We performed pooled-DNA sequencing on 974 individuals enrolled in the Fam-
ily Heart Study (FHS) (Higgins M et al 1996) and 178 individuals enrolled in
the Silent Cerebral Infarction Transfusion Trial (SIT) (Vendt BA et al. 2008).
Each pool of human DNA was designed to contain 450 ng of DNA per individual.
Pooling was performed robotically using the Eppendorf epMotion 5075 pipetting
robot (Eppendorf, Hauppauge, NY, U.S.A) in order to minimize dilution errors.
Patients from the FHS study were divided into 8 pools ranging from 94 to 150
individuals, whereas the remaining 178 patients were pooled into a single ninth
pool. We computationally generated a list of 14 genomic loci selected on the
basis that they contained at least one single or double base pair insertion or dele-
tion reported in dbSNP129 at various frequency ranges. We defined a genomic
region of 400 bp centered on the targeted IN/DEL and we designed primers in
order to target the known variant in a final amplicon with length ranging from
150 to 200 bp. Primers were designed as described previously (Druley TE et
al. 2009). Each PCR reaction for each pool was repeated multiple times in
order to minimize the likelihood of PCR errors appearing as rare variants in the
sequencing output. Each PCR reaction was performed as described above with
the exception of undergoing 28 total cycles. Each PCR mix contained 2.5 1 of
10X PfuUltra Buffer, 10 M of forward and reverse primers, 1M Betaine (Sigma-
Aldrich/Fluka,St. Louis, MO, U.S.A.), 1.25 units PfuUltra DNA polymerase
and between 30 and 50 ng of template DNA, representing 50 genome copies per
individual (see Supplementary Table 4). For every analyzed pool a positive and
a negative control were generated. The positive control consisted of a synthetic
pool containing substitutions and IN/DELs at the lowest possible frequency for
each of the analyzed pools (i.e. 1 divided by the total number of alleles in the
pool). The positive control was prepared as described, with PCR reactions per-
formed for 28 cycles in order to match the sample preparation. The negative
control consisted of a DNA fragment for which the sequence is known in order
to generate a run-specific second order error model to be used in the data anal-
ysis. In order to generate a negative control, we performed PCR amplification
on the M13 plasmid (New England Biolabs, Ipswich, MA, U.S.A.) generating a
1934 bp product (see Supplementary Table 4). PCR reaction was performed as
described above and repeated multiple times. We then sequenced our samples
using a single lane per pool and mapped back all the sequencing reads.

Four candidate loci identified by a GWA study performed on the 974 FHS
patients were targeted in a total of 36 PCR reactions spanning 20,729 base pairs
per individual (data not shown). Sample preparation, sequencing and analysis
was performed as described. We identified a total of genomic variants that were
also represented by the Illumina 6.0 genotyping array performed on each indi-
vidual. Pearsons correlation coefficient between GWAS and SPLINTER variant
frequencies was calculated by using the frequency of the minor allele for each



variant (Figure 3e).

Independent Validation of Putative Variants
Independent validation of putative variants identified by SPLINTER was per-
formed by Sequenom (Sequenom, San Diego, CA, U.S.A.) according to the man-
ufacturers protocol (for probes see Supplementary Table 5). Sanger sequencing
validation was performed using the same primer pairs used for initial PCR am-
plification prior to pooled-DNA sequencing.

2 Sequencing reads mapping and error model calculation

Semi-local gapped sequence alignment
In order to efficiently map sequencing reads with gaps without compromising
mapping accuracy (i.e. deviating from the optimal mathematical solution of the
alignment), we developed a new Smith-Waterman-like alignment strategy (ref
1). This allowed us to have a pure and controlled implementation of dynamic
programming while being feasible in terms of speed. Quality scores are ignored
for the alignment. We first build a hash-map of the reference sequence with
hash key size equal to k, which is defined as
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where [ is the length of the sequencing read and c is the maximum edit
distance cutoff between the read sequence r and the reference sequence s. k
is guaranteed to be the largest possible stretch of perfect match nucleotides
achieved in the case of maximum entropy, i.e. when the edits are distributed
uniformly in the reads, minimizing the length of the shortest read fragment.
While [ is run-dependent, c is defined by the users at the time of the alignment,
leading to a consequent user-defined value of k.

When 7 is aligned to s, the first step is to hash-map all the substrings of
r of length k to s. Every mapped susbtring allows to define the boundaries of
a dynamic programming (DP) matrix for sequence alignment. The value of ¢
determines the dimensions of the DP matrix, which are equal to [ and [ + 2 * ¢,
assuming that the read will contain all the allowed edits.

Once the boundaries of the DP matrix are defined, we perform DP pro-
gramming in the following way: first the matrix is initialized by setting the
values of the first column to 0 (s dimension) as in Smith-Waterman (Smith TF,
Waterman MS 1981) whereas the first row is set to 0 at position 0 and at pro-
gressively adding a gap penalty for every increasing position (r dimension) as in
Needleman-Wunsch (Needleman SB, Wunsch CD. 1970). This strategy allows
every alignment to start at any position in the reference sequence but always
at the first position of the read, therefore being semi-local. Gaps are inserted
according to an affine-gap penalty model (Durbin R et al 1998), adopting a gap
insertion penalty of 2 and gap extension penalty of 1.

Traceback is peformed starting from the highest scoring position in the last
column (corresponding to the last position in 7) until the first position of r is
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reached. The final result is the optimal mathematical solution for the gapped
semi-local alignment of r with respect to s. r and its reverse complement are
both mapped to the positive strand of s. If r aligns to multiple loci of s with
the same minimum edit distance, its alignment to s is discarded in order to
minimize noise due to spurious mapping. Insertions and deletions present in-
side a nucleotide homopolymer (i.e. AAA,CCC,GGG ...) are aligned at the
beginning of the homopolymer on the positive strand by default, as their true
position in the sequence is arbitrarily established.

We previously reported that error rates change significantly for every se-
quencing run (ref 6) and therefore, for every run we calculated an independent
error model. Quality scores have been discarded as they have been previously
shown to be less informative than an empirically derived run-specific error model
(Druley TE et al. 2009). This finding is further supported by the lower per-
formance of every other approach that we compared to SPLINTER that also
integrated quality scores in the analysis (see Figure 3 and Supplementary Figure
3).

Since this approach does not take into account quality score information, in
order to save computing time while preserving the same amount of information,
we compressed the original SCARF file by keeping only unique reads sequence
in it and adding a weight to each read counting the number of times a read with
the same sequence appeared in the original file. This strategy generated files at
the best 10% of the original size of the SCARF output, linearly reducing the
alignment run-time of the same factor.

Error model calculation
A 2"%order error model was parameterized from a negative control sequence
included in every sample, i.e. a DNA fragment consisting of a PCR product
from the M13 vector. The negative control allows to estimate the likelihood of
a sequencing error defined as the rate of observed mutations in the sequencing
reads without variants being present in the analyzed DNA fragment. Briefly,
for every base n and its context defined as the two preceding bases m and [, we
calculate the likelihood of observing a substitution s, an insertion ¢ or a dele-
tion d where I,m,n,s e {A,C,G,T,N}, i ¢ {Insertionacacr}, and d € {D}.
For substitutions, we calculate Pr(s|n,m,l,j,r) for each read base j and run
r as the ratio between the number of observed read bases with base equal to
s and the total number of observed read bases. Deletion error rates are calcu-
lated the same way as substitutions, where j in this case is assumed to be the
read base number preceeding the deletion. Insertions are analyzed by select-
ing only reads that overlap consecutive loci n and o. Pr(ilo ~ n,m,l,j,r) is
therefore computed as the ratio between the reads that contain one or more in-
serted bases between n and o and the total number of reads overlapping n and o.

3 Structure of the SPLINTER algorithm

SPLINTER: IN/DEL and substitution detection using Large De-
viation Theory



Since previously designed algorithms are unable to precisely call and quantify
short IN/DELs in large pools, we designed and implemented SPLINTER (Short
IN/DEL Prediction by Large deviation Inference and Non-linear True frequency
Estimation by Recursion), a new algorithm based on Sanov’s theorem, which is
part of the information theoretic treatement of Large Deviation Theory (Cover
T. and Thomas J.A 1991).

SPLINTER takes in input aligned sequencing reads. For every position 4
of the reference sequence, SPLINTER stores the counts of each observed base
character b = {A,C,G,T, N, D} as well as the counts for each inserted base
stretch g between i and its consecutive position i + 1 of length ¢ (maximum
number of accepted edits).

SPLINTER assumes that sequencing reads are generated independently from
one another and that read bases within the same read are incorporated indepe-
dently from one another.

Substitution variants can be detected at a particular position ¢ by estimating
the distance of the empirical distribution P of observed nucleotides A,C,G,T,N
from the expected distribution @ representing the expected frequency of nu-
cleotides assuming that ¢ does not harbor any variant present in the pool. @ is
computed as a linear product between the error model matrix A for each read
base j and sequencing run r and the true frequency vector 7; n,; under the null
hypothesis that only the reference base is present as

Qj,r,s = Ai,j,r * T null
The distance between P and @ is computed independently for each read
base j, sequencing run r and strand s as

Q"J‘ms (E) = 9= "1,r,s D(Pjr s 1Qj,r,s)
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where D(Pj a5 || Qj,4,s) is the Kullback-Leibler distance between P and Q.
Q;]T’"SS (E) is a p-value calculated by testing the hypothesis that P was sampled
from Q. Since j and r are independent, according to the initial assumptions, a

cumulative p-value for each strand s is computed as

Q:'s (E) — 2_ Zr Zj njyr,sD(Pjyr,SHQjm,S)

Deletions are detected by estimating the distance of the fraction of observed
deletions Pp from the fraction of expected deletions Qp. Pp and Qp are defined
for each read base j, run r and strand s as

Pp _ (djms 1_ djr,s )
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QDj,r,s = (ADi,j,r,s7 1- ADi,j,r,s)

where dj, . and Cj, , represent the number of observed deletions and the
total observed coverage and Ap, . . corresponds to the expected likelihood of
observing a deletion at i for j, r and s given the error model matrix A.



The distance between Pp, . and Qp,, , is again computed independently
as

np

@p

and the cumulative p-value for s is computed as
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Insertions are analyzed as stretches of nucleotides (g) of maximum length
c located between the adjacent and consecutive positions ¢ and 7 + 1 and are
detected by comparing the observed insertion distribution Py and the ex-

invitl
pected insertion distribution Qg ,.,, defined as
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where Ay, ., ., . corresponds to the expected likelihood of observing a in-
sertion at ¢ ~ ¢+ 1 for j, r and s given the error model matrix A. Calculation
of the p-value for each strand s is performed as described for deletions.

Presence or absence of any given variant at position ¢ is assessed by asking
the p-values for both strands to be equal or less than a user-defined empirical
cutoff a (where @ <= 0.05). We find that requiring both strands to pass «
greatly increases the accuracy of our method, as previously observed (ref 4)

Frequency estimation of identified pool variants
For every identified pool variant, SPLINTER performs estimation of the true
variant frequency vector 7; at position ¢ and/or the true insertion frequency
vector T;~i+1 between ¢ and ¢ + 1. 7 is fit by maximum likelihood

T = argmax2~ 25 20 25 M D(Piiris | Qiironr) Pr(r)

where we implicitly assume that Pr(7), the prior distribution for 7, is uniform,

leading to
T~ arg meZZ > 1w sD(Pjrs | Qirs.ir)
s T 7

SPLINTER is significantly different from our previous pooled DNA SNP
caller algorithm, SNPseeker (Druley TE et al. 2009) at various levels. First, it
is able to detect indels in large pools by using new models and new integrated
data structures, whereas SNPseeker can only detect substitutions. Secondly,
SPLINTER is more sensitive and specific than SNPseeker as it integrates infor-
mation of a positive control to define the optimal cutoff for the values of Q7= (E),



Q%D *(B), 71” (E) (p-value cutoff) at every position i. Thirdly, SNPseeker im-
plemented a non-linear least-square fit for estimating the true frequency vector
7 (Druley TE et al. 2009), whereas SPLINTER uses a maximum likelihood
method. We found that this leads to more accurate frequency estimates (data

not shown) but it also allows incorporation of prior information.
4 Data analysis

Evaluation of sensitivity and specificity of variant calling and ac-
curacy of frequency estimation
In order to determine the discriminatory power of our method, we calculated
sensitivity and specificity in a p-value cutoff-independent way by iterating over
a range of p-value cutoff values from 0 to -3000 with increments of -0.001 at
each round. The optimal cutoff was determined as the value that minimized the
Euclidean distance between the corresponding specificity and sensitivity (rang-
ing from 0 to 1) to perfect specificity and sensitivity (1,1). This strategy was
repeated by analyzing the data incorporating 12, 18, 21, 24 bases per read (cy-
cles) and comparing sensitivity and specificity of the analysis, resulting in the
definition of the optimal cutoff and incorporated read bases. This was done
because we have previously demonstrated that the likelihood of sequencing er-
rors increases for later cycles (Druley TE et al. 2009), and different error rates
will affect the accuracy of discrimination between signal and noise. The op-
timal combination between cycles and cutoff was then used for data analysis.
Accuracy of the frequency estimation was measured by calculating Pearson’s
correlation coefficient between the observedand estimated frequencies.

Monte Carlo sampling and calculation of Receiver Operating Char-
acteristics Curves
In order to determine the relationship between p-value and coverage per base
per strand for any given variant, we performed Monte Carlo sampling on aligned
reads for a selected synthetic pool. We randomly sampled fractions equivalent to
0.005, 0.010, 0.015, 0.020, 0.025, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.75, 0.90
of the total number of aligned reads 100 times each and performed an analysis
with SPLINTER on every sample. This allowed us to generate a distribution
of p-values for each coverage point. For each set of 100 samples we calculated a
Receiver Operating Characteristics (R.O.C.) curve. ROC curves plot a methods
sensitivity (here, the fraction of mutant positions correctly identified) versus the
false positive rate (the fraction of the bases without mutation that were incor-
rectly reported) for different p-value cutoffs. For each ROC curve we computed
the corresponding Area Under the Curve (A.U.C.), and we used it as a metric
for assessing the lowest value of coverage per base at which 100% specificity and
100% sensitivity (AUC equal to 1) are reached.

Comparison between different variant callers
In order to compare the performance of SPLINTER with that of other ap-
proaches, we applied SNPseeker (Druley TE et al. 2009), MAQ v0.7.1 (Li H et



al 2008), SAMtools (Li H et al. 2009) and VarScan (Koboldt DC et al. 2009) to
the synthetic pool datasets. We separately compared the performance of each
approach for detection of substitutions and indels given the fact that indels are
not supported by SNPseeker and MAQ. Performance was evaluated by deter-
mining sensitivity (fraction of true positives identified by the method over total
true positives in the set) and positive predicted value (fraction of true positives
identified by the method over total positions identified by the method) and val-
ues were plotted and compared for each approach. For substitutions, Pools 4
and 5 were used in their entirety (renamed sub 1 and sub 2 in Figure 3) whereas
only substitutions were considered for the pools simulating 100, 250 and 500
samples. For indels, Pools 1, 2 and 3 were used in their entirety (renamed indel
1, indel 2 and indel 3) whereas only indels were considered for the pools sim-
ulating 100,250 and 500 samples. SNPseeker was run as previously described
and performance was computed after determining the optimal p-value cutoff
and that maximized its performance. MAQ was run as described in (Li H et
al 2008) with snp filtering after its execution in order to reduce the number of
false positives. For SAMtools and VarScan, files were previously aligned using
Novoalign at its default settings (www.novocraft.com), and SAM files were then
converted into BAM and then pileup files. For SAMtools, variants were called
from the pileup file, variants are unfiltered because when filtering was applied
no hits were returned in output for any of the tested libraries. VarScan was run
on the SAMtools pileup files and results were filtered by finding the optimal
p-value cutoff that maximized its performance. We compared also the perfor-
mance of CRISP (Bansal V 2010) by running the approach applied to all the
pools using the default settings. We additionally compared the performance of
the Genome Analysis Toolkit (GATK) framework on our set (McKenna A et al.
2010) using the suggested default parameters but we could not detect any of
the true positives in any of the synthetic sets, so we decided not to include this
analysis in the comparison. We believe that this result was due to the Unified
Genotyper being optimized for single individual genotyping rather than large
pools sequencing. Additionally, GATK is not able to detect indels in its current
iteration (v1.0.3864).
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