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1. MEDIPS package overview 

The MEDIPS software was developed for analyzing data derived from methylated DNA 

immunoprecipitation (MeDIP) experiments (Weber et al. 2005) followed by sequencing (MeDIP-

seq). Nevertheless, functionalities like the saturation analysis may be applied to other types of 

sequencing data (e.g. ChIP-Seq). MEDIPS addresses several aspects in the context of MeDIP-seq 

data analysis. These are:  

 estimating the reproducibility for obtaining full genome methylation profiles with respect 

to the total number of given short reads and to the size of the reference genome,  

 analyzing the coverage of genome wide DNA sequence patterns (e.g. CpGs) with the 

given set of sequence reads, 

 calculating a CpG enrichment factor as a quality control for the immunoprecipitation and 

for a rough impression of the overall amount of enriched methylated CpGs, 

 calculating genome wide MeDIP-seq signal densities at a user specified resolution, 

 calculating genome wide sequence pattern densities (e.g. CpGs) at a user specified 

resolution, 

 plotting of calibration plots as a data quality check and for a visual inspection of the 

dependency between local sequence pattern (e.g. CpG) densities and MeDIP-seq signals, 

 normalization of MeDIP-seq data with respect to local sequence pattern (e.g. CpG) 

densities, 

 summarized methylation values for genome wide windows of a specified length or for 

user supplied regions of interest (ROIs), 

 identification of differentially methylated regions on raw or normalized data comparing 

two sets of MeDIP-seq data and with respect to background data derived from input 

experiments, 

 exporting raw and normalized data for visualization in common genome browsers (e.g. 

the UCSC genome browser (Kuhn et al. 2009)).  
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The input to MEDIPS is the result of the sequence mapping. MEDIPS can be applied to any 

genome of interest. The only limitation to its use, are the available genomes within 

Bioconductors (Gentleman et al. 2004) BSgenome (Pages) package. For a detailed description of 

the MEDIPS package, please see the tutorial as provided together with the package.  

 

2. Modelling of MeDIP-seq data 

2.1 Genome vector 

In order to calculate the genome-wide short read coverage, a targeted data resolution has to be 

determined. In principle, a short read coverage can be calculated for each base position. Because 

the resolution of MeDIP-seq data is restricted by the size of the sonicated DNA fragments after 

amplification and size selection (typically between 0.2-1kb), a bin size of 50bp is considered as a 

reasonable compromise on data resolution and computational costs. Moreover, short reads 

generated by modern-day sequencers do not represent the full DNA fragments but are of shorter 

length (e.g. 36bp). Therefore, the data is smoothed by extending each read to a length according 

to the estimated average length of sequenced DNA fragments (here 400 bp), either along the + or 

along the - direction, as specified by the short read dependent strand information. MEDIPS 

divides each chromosome into bins of size 50 bp and subsequently calculates the short read 

coverage on this resolution. In the following, the bin representation of the genome is called the 

genome vector.  

 

2.2 Reads per million (rpm) 

For each pre-defined genomic bin, the genome vector stores the number of provided overlapping 

extended short reads (these are the raw MeDIP-seq signals). Based on the total number of 

provided short reads (n), the raw MeDIP-seq signals can be transformed into a reads per million 

(rpm) format in order to assure that coverage profiles derived from different biological samples 

are comparable, although generated from differing amounts of short reads. Let  be the raw 

MeDIP-seq signal of the genomic bin i, where 

ibinx

mi ,...,1  and m is the total number of genomic 

bins, then the rpm value of the genomic bin is simply defined as: 

n

x
rpm i

i

bin

bin

610
  
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MEDIPS allows for exporting WIG files containing genome wide rpm values at a user-specified 

resolution (here 50 bp). By utilizing these WIG files, the rpm profiles of the processed biological 

sample can be immediately visualised using a suitable genome browser. 

    

2.3 Quality controls 

2.3.1 Saturation analysis 

MeDIP-seq aims to reconstruct methylation profiles on the basis of local short read coverages. It 

is supposed that an insufficient number of short reads will not represent the true methylation 

profile. Only when a sufficient number of short reads is generated, the resulting genome vector 

will represent a saturated methylation profile. Therefore, the saturation analysis addresses the 

question, whether the number of available short reads is sufficient to generate a saturated and 

reproducible methylation profile of the reference genome.  

The basic assumption of the saturation analysis is that only a sufficient number of short reads will 

result in a genome wide methylation profile which will be reproducible by another independent 

set of a similar number of short reads. The correlation of two independently generated genome 

vectors will increase when the total number of short-reads considered for the construction of each 

of the two genome vectors increases. It is supposed that the increase of correlation between two 

independently generated genome vectors will saturate as soon as the total number of considered 

short reads is increased to a level that is able to represent the analysed methylome in a saturated 

way. Obviously, the number of short reads that have to be generated for a sufficient sequencing 

depth depends on the size of the reference genome.  

For the saturation analysis, the total set of available regions (n) is divided into two distinct 

random sets A and B of equal size. Both sets A and B are again divided into k random subsets of 

equal size: 

kaaA ,...,1  

kbbB ,...,1  

The saturation analysis runs in k iterations. For each set A and B independently, the saturation 

analysis iteratively selects an increasing number of subsets and creates according genome vectors 

by using an arbitrary bin size (here 50bp) and by previously extending the short reads to a 

suitable length (here 400bp). In each iteration step, the resulting genome vectors for the subsets 

of A and B are compared using Pearson correlation. As the number of considered short reads 

increases during each iteration step, it is supposed that the resulting genome vectors become more 
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similar, a dependency that is expressed by an increased correlation. By storing the resulting 

correlation coefficients after each iteration step, the change of correlation during the k iteration 

steps can be visualized by plotting the number of considered reads against the resulting 

correlation coefficients. Such a plot allows for gaining an impression of the reproducibility of 

constructing a methylome with respect to the number of considered short reads and with respect 

to the size of the reference genome.  

However, such a saturation analysis can be performed on two independent sets of short reads, 

only. Therefore, a true saturation analysis can only be calculated for half of the available short 

reads. Obviously, it is of interest to examine the reproducibility of the MeDIP-seq experiment for 

the total amount of available short reads. Therefore, the saturation analysis is followed by an 

estimated saturation analysis. For the estimated saturation analysis, the full set of given regions 

(n) is artificially doubled by considering each region twice. Afterwards, the described saturation 

analysis is performed on the artificially doubled set of regions. Because the artificially doubled 

set of short reads does not represent a true outcome of a MeDIP-seq experiment, the calculated 

correlations will overestimate the true reproducibility. It is assumed that the true correlation for 

the full set of available short reads will be between the results of the true and of the estimated 

saturation analysis. Methods that randomly select data entries can be processed several times in 

order to obtain more stable results. Therefore, the random partitioning of the short reads into the 

several subsets of A and B was repeated ten times and the results were averaged.  

 

2.3.2 Coverage analysis 

The coverage analysis addresses the question about the genome wide depth of sequence pattern 

(here CpG) coverage by an increasing number of integrated sequencing derived short reads. For 

this, all genomic coordinates of the sequence pattern of interest have to be identified. The 

MEDIPS package provides a function for identifying the genomic positions of arbitrary sequence 

patterns. In the following, it is expected that all genomic pattern positions are stored on a vector 

 where m is the number of sequence patterns present in the reference genome. 

For the coverage analysis, the total set of available short reads (A) is divided into k random 

subsets of equal size: 

mi pppP ,...,,...,1

kaaA ,...,1  

The coverage analysis runs in k iterations. The coverage analysis iteratively selects an increasing 

number of subsets and tests how many pattern positions from P are covered by the available 
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regions. In addition, the coverage analysis counts how many ’s are covered at least Q times, 

where  represents an arbitrary number of coverage depths to be tested. For example, 

the according function of the MEDIPS package tests by default how many CpGs are covered at 

least 1x, 2x, 3x, 4x, 5x, and 10x times (this is equivalent to the notation Q = 1, 2, 3, 4, 5, 10). The 

k-th iteration step of the coverage analysis shows the depth of sequence pattern coverages 

obtained with the full set of available short reads.  

ip

lqqQ ,...,1

The advantage of the iterative approach is that the behaviour of pattern coverage can be examined 

with respect to an increasing number of considered short reads. For this, coverage curves can be 

generated by plotting the number of covered sequence patterns after each iteration step and for 

each level of Q against the number of considered short reads. The progressions of the resulting 

coverage curves indicate the state of saturation of the overall sequence pattern coverages. 

Because methods that randomly select data entries can be processed several times in order to 

obtain more stable results, the random partitioning of the short reads into the several subsets of A 

was repeated ten times and the results were averaged. As for calculating the genome vector and 

as done for the saturation analysis the length of the short reads were previously extended to 

400bp. 

 

2.3.3 CpG enrichment 

As a third MeDIP-seq data quality control, the CpG enrichment approach examines how strong 

the genomic regions underlying the obtained short reads are enriched for CpGs compared to the 

frequency of CpGs present in the reference genome. For this, firstly the number of cytosines 

(G.c), the number of guanines (G.g), the number CpGs (G.cg), and the total number of bases (m) 

within the specified reference genome (here hg19) are counted. Subsequently, the relative 

frequency of CpGs and the observed/expected (Gardiner-Garden and Frommer 1987) ratio of 

CpGs as present in the reference genome are calculated as: 

m

cgG
CpGGenome frel

.
. .   

gGcG

mcgG
CpGGenome obs ..

.
. exp/ 


  

Additionally, the number of cytosines (SR.c), the number of guanines (SR.g), the number CpGs 

(SR.cg), and the total number of bases (n) are counted for the DNA sequences underlying the 
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given short reads. Subsequently, the relative frequency of CpGs and the observed/expected ratio 

of CpGs as present in the short reads specific DNA sequences are calculated accordingly: 

n

cgSR
CpGSR frel

.
. .   

gSRcSR

ncgSR
CpGSR obs ..

.
. exp/ 


  

The final enrichment values result by dividing the relative frequency of CpGs (or the 

observed/expected value, respectively) of the short reads by the relative frequency of CpGs (or 

the observed/expected value, respectively) of the reference genome:  

frel

frel
frel CpGGenome

CpGSR
enrich

.

.
. .

.
  

exp/

exp/
exp/ .

.

obs

obs
obs CpGGenome

CpGSR
enrich   

 

For short reads derived from an INPUT experiment (that is sequencing of none-enriched DNA 

fragments), the enrichment values are expected to be close to 1. In contrast, short reads derived 

from MeDIP-seq experiments are expected to be enriched for CpG rich DNA sequences, a 

circumstance which will be indicated by increased enrichment scores. 

 

2.4 MeDIP-seq data normalization 

The idea of a MeDIP experiment is to identify cytosine methylation profiles of a sample of 

interest by immunocapturing methylated CpGs (mCpGs) using an mCpG specific antibody 

(Weber et al. 2005). However, it has been shown (Down et al. 2008; Pelizzola et al. 2008) that 

MeDIP signals scale with local densities of CpGs and are not necessarily influenced by mCpGs, 

only. Therefore, the need for MeDIP-seq data correction occurs through an unspecific binding of 

the utilized antibody to un-methylated CpGs, especially in genomic regions associated to elevated 

densities of un-methylated CpGs and low densities of mCpGs. 

 

2.4.1 Coupling factors 

Similar to other MeDIP normalization approaches (Down et al. 2008; Pelizzola et al. 2008), the 

presented method corrects for the unspecific antibody binding by incorporating local CpG 

densities into the MeDIP-seq derived signals. In order to integrate the information about CpG 
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densities into the following analysis, it is necessary to identify the genomic positions of all CpGs. 

This can be achieved by executing the MEDIPS.getPosition() function of the MEDIPS package. 

Following the valuable concept of coupling factors presented by Down et al. (Down et al. 2008), 

a coupling vector is calculated based on the received genomic positions of all CpGs. The 

coupling vector is of the same size as the predefined genome vector (here bin size of 50bp) but 

contains local CpG denisties (also called coupling factors) for each genomic bin, instead. For 

each predefined genomic bin at position b, the density of surrounding CpGs has to be calculated. 

For this, first a maximal distance (d) has to be defined. Only CpGs within the range of 

 will contribute to the final local coupling factor at b. The optimized value for d 

will reflect the estimated size of the sonicated DNA fragments after amplification and size 

selection. This is because MeDIP-seq derived signals at position b are influenced by sequenced 

DNA fragments that overlap with position b. Immunoprecipitation of these DNA fragments can 

be caused by a methylated and antibody bound CpG located at any position of the DNA-

fragment. The maximal distance of a CpG contributing to the signal at b is therefore the estimated 

average length of the sonicated DNA fragments (d). 

],,[ dbbdb 

There are several ways for calculating coupling factors for genomic bins. Let c be the 

chromosomal position of a CpG and as b is the chromosomal position of a genomic bin, 

|  is the distance between the genomic bin and the CpG. A CpG will contribute to the 

coupling factor of a genomic bin at position b, if 

| cbdist 

ddist  . The simplest way is to count the 

number of CpGs within the maximal distance d around a genomic bin at position b (count 

function). Another approach is to weight each CpG by its distance to the current genomic bin. 

CpGs farther away from the current genomic bin will receive smaller weights, whereas CpGs 

close to the genomic bin will receive higher weights. The upper panel in Figure 1 illustrates a 

genome vector generated by defining a bin size of 50bp. In addition, CpGs are given in a 

schematic way. The Figure illustrates that immuoprecipitated DNA fragments of an estimated 

average length greater than the pre-defined bin size can contribute to the signal of the genomic 

bin at position b (vertical red line). Moreover, the schematic distance function illustrates that 

CpGs close to position b will receive higher weights than CpGs located farther away. There are 

several possible ways for defining weighting functions. In the context of this thesis, the following 

weighting functions were evaluated: count, linear, exp (Pelizzola et al. 2008), log (Pelizzola et al. 

2008), and custom (Down et al. 2008). The images at the bottom of Figure 1 show the 

progression of these weighting functions by defining a maximal distance d = 700. 
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Figure 1: Calculation of coupling factors. The upper panel shows a schematic view of the genome vector 
created by defining a bin size of 50bp. In addition, CpGs are shown in a schematic way. A coupling factor is 
calculated for the centered genomic bin at position b (marked by a red vertical line). For this, all CpGs within 
a maximal distance d are considered. The maximal distance d reflects the estimated average size of sequenced 
DNA fragments. There are several ways for calculating coupling factors. The simplest way is to count the 
number of CpGs in the surrounding of b but with a maximal distance of d. Alternatively, a weighting function 
can be applied to weight each CpG by its distance (dist) to the current genomic bin at position b. Again, there 
are several possible weighting functions. The five images at the bottom of the Figure show the progression of 
the weighting functions linear, exp, log, count, and custom (Down et al. 2008) by defining d = 700. 
 

Whereas the weighting functions count, linear, exp, and log are calculated by defined formulas, 

the custom function allows for specifying user-defined weights for any possible distance dist. For 

example, Down et al. (Down et al. 2008) have generated custom weights for the distances 

. These weights were estimated empirically by sampling from the fragment-length 

distribution and randomly placing each fragment such that it overlaps the genomic bin Down et 

al. 2008). Such weights can be up-loaded using MEDIPS and are returned when the custom 

function is called. Let  be the coupling factor between a CpG at position c and a genomic bin 

at position b calculated based on an arbitrary weighting function and for any specified parameter 

d. Then  is the sum of coupling factors at the genomic bin b with respect to all CpGs 

at a genomic position c, where 

]648,0[dist

totC

cbC


c

cbC

dcb  || . For simplification, in the following,  is called the 

coupling factor at a genomic bin b and gives a measure of local CpG density.  

totC

It has been shown Weber et al. 2005; Eckhardt et al. 2006)  that in mammalian cells, methylation 

is negatively correlated to CpG densities. In other words, regions of low CpG density tend to be 

high methylated, whereas regions of high CpG density tend to be mainly unmethylated. In order 

to test the correlation of meassured methylation values (Eckhardt et al. 2006) compared to local 
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CpG densities calculated with respect to the different weighting functions, we have 

systematically calculated coupling vectors (bin size=50) with varying  using the 

weighting functions count, linear, exp, log, as well as for the empirically derived weights 

presented by Down et al. (Down et al. 2008) (custom). Because the custom weights are available 

for the range , only, the weight at d=648 is also utilized for the remaining distances 

up to d=2000. For the comparisons, we have accessed DNA-methylation values derived from 

bisulphite sequencing experiments of a sperm sample as presented by the human epigenome 

project (HEP) (Eckhardt et al. 2006). Bisulphite sequencing derived methylation data was 

generated for approximately 3000 selected genomic regions (called HEP traces) of length 50bp to 

500bp (Eckhardt et al. 2006). In order to compare CpG densities to the available methylation 

data, for all utilized weighting functions with varying parameter d, we have calculated mean 

coupling factors for each of the HEP traces and examined the relation to corresponding mean 

methylation values by Pearson correlation. Figure 2a shows the resulting Pearson correlations for 

varying parameter d and for the several tested weighting functions.  

]2000,0[d

]648,0[d

 

 
Figure 2: Evaluation of coupling factor calculations. Figure a shows the resulting Pearson correlations (y-axis) 
between the mean coupling factors and bisulphite sequencing derived mean methylation values for a varying 
distance parameter d (x-axis) and for different weighting factors (colours). The best negative correlation (-
0.73) was achieved by setting the parameter d = 700 and by using the count function. Figure b shows the 
according scatterplot where each data point represents a HEP trace. The scatterplot contrasts the mean 
methylation value (x-axis) and mean CpG denisty (y-axis). The color code divides the full range of CpG 
densities into quantiles. 
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Interestingly, the best negative correlation (that is the higher the CpG density, the lower the 

bisulphite derived methylation values) was achieved (-0.73) by setting the parameter d = 700 and 

by using the count function. For this parameter settings, Figure 2b shows a scatterplot comparing 

mean HEP methylation values and mean coupling factors. Here, each data point represents a HEP 

trace and the plot contrasts the mean methylation value (x-axis) with the mean CpG denisty (y-

axis). The color code divides the full range of CpG densities into quantiles. Based on these 

results, in the following, the coupling vector is calculated by specifying d = 700 and by using the 

count function. However, the MEDIPS package allows for justifying the according parameters or 

for supplying any custom defined distance weights. Moreover, coupling vectors can be calculated 

for any arbitrary DNA sequence pattern and the resulting coupling vectors can be exported into a 

WIG file for visualizing the sequence pattern densities along the chromosomes using a suitable 

genome browser. 

 

 
2.4.2 Calibration curve 

As we have created a genome vector that contains the raw signals at each genomic bin as well as 

an according coupling vector containing the calculated coupling factors at each genomic bin, the 

dependency of local MeDIP-seq signal intensities and local CpG densities can be examined. 

However, by simply plotting the genome vector against the coupling vector, no concrete 

dependency is observable. However, a dependency between CpG densities and MeDIP-seq 

signals can be made tangible by calculating the calibration curve (Down et al. 2008). Calculation 

of the calibration curve is achieved by first dividing the total range of coupling factors into 

regular levels. Second, all genomic bins are partitioned into these levels by considering their 

associated coupling factors. Finally, for each level of coupling factors, the mean signal and mean 

coupling factor of all genomic bins that fall into this level are calculated. As the calibration curve 

represents the averaged signals and coupling factors over the full range of coupling factors, it 

reveals the experiment specific dependency between signal intensities and CpG densities (see 

Supplementary Figures 3a and b of the main manuscript).  

In fact, for the low range of coupling factors, the calibration curve indicates that the MeDIP-seq 

signals, in average, increase because of an increasing CpG density. Therefore, an increased signal 

is not necessarily caused by a higher level of mCpGs but scales with the general CpG density. In 

contrast, for INPUT derived sequencing data this dependency of CpG density and sequencing 
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signals is not observable (see Supplementary Figure 3c of the main manuscript). Therefore, the 

calibration plot is very characteristic for MeDIP-seq data and the quality of the enrichment step 

of the MeDIP experiment can be estimated by visual inspection of the progression of the 

calibration curve. For higher levels of CpG densities, the mean MeDIP-seq signals decrease. It is 

assumed that this decrease is caused by the fact that in biological systems, regions of higher CpG 

denstities are mainly unmethylated. Interestingly, in biological systems, cytosine methylation 

occurs mainly in regions of low CpG density. The other way round, cytosines located in regions 

of high CpG density are mainly unmethylated. This circumstance implicates that the dependency 

between increased signal intensities caused by increased CpG densities is visible for regions of 

low CpG densities, only. 

 

2.4.3 Relative and absolute methylation scores 

The calibration curve reveals that, in average, an increase of MeDIP-seq signals is caused by an 

increasing CpG density. This approximately linear dependency is visible for the low range of 

coupling factors, only. For higher levels of CpG densities, the mean MeDIP-seq signals decrease. 

As mentioned above, it is assumed that this decrease is caused by the fact that in mammalian 

cells, regions of higher CpG denstities are mainly unmethylated. In agreement with this 

assumption, Pelizzola and colleagues (Pelizzola et al. 2008) have shown that the dependency of 

MeDIP derived signals and CpG density continues for higher levels of CpG densities, by 

analysing artificially fully methylated samples using MeDIP-Chip. In fact, they identified a 

sigmoidal dependency between CpG density and MeDIP-Chip data (Pelizzola et al. 2008). In 

agreement with Pelizzola et al. (Pelizzola et al. 2008), the signal plateau in the lower range of 

chip signals is caused by background noise and it is assumed that the signal plateau in the upper 

range of chip signals occurs by a saturation of hybridization events and is therefore an array 

specific artefact.  

By visual inspection of the MeDIP-seq derived calibration curves, and motivated by the 

observations made by Pelizzola et al. (Pelizzola et al. 2008), a continuing linear dependency of 

MeDIP-seq signals for higher levels of CpG densities is assumed. Analogous to Down et al. 

(Down et al. 2008), the local maximum of mean MeDIP-seq signals of the calibration curve in 

the lower part of coupling factors is identified. Let  

lyyy ,...,1  

be the mean coupling factors, and let  

 11



lxxx ,...,1  

be the according mean MeDIP-seq signals of the calibration curve, where l is the number of 

tested coupling factor levels and , then the smallest level i is identified, where  li ,...,1

321123 ,,,,   iiiiiii xxxxxxx . 

Let be the according identified level of i, then  maxi

max
,...,1max iyyy   

max
,...,1max ixxx    

is the part of the calibration curve in the low range of coupling factors, where an approximately 

linear dependency between MeDIP-seq signals and coupling factors is observed. Here,  can 

be explained by a function of  as 

maxx

maxy

 )( maxmax yfx  

where   is an error variable (i.e. measurement errors) that is expected to spread by chance and 

therefore, its expectation value is 0)( E . Because a linear dependency between  and  

is assumed,  can be described as 

maxx maxy

maxx

  maxmax yx  

where the parameter   is the theoretical y-intercept, and the parameter   is the theoretical 

slope. Based on the pre-calculated  and  vectors, linear regression is performed, in order 

to identify a suitable linear model. Linear regression estimates concrete values a and b for the 

parameters 

maxx maxy

  and   so that it is valid: 

ieybax
ii
 maxmax  

 

where . Here, the residuum  reflects the difference between the regression curve 

 and the measurements for . Moreover,  can be replaced by an estimate 

 , where   and therefore, it is valid: 

max,...,1 ii 

i
ymax

x
imax

ie

xmaxba 

i
xmaxˆ

i i
xmax

iex
i
 maxˆ

ii
ybax maxmaxˆ   

MEDIPS calculates the linear regression model using the least squares approach (www.R-

Project.org) and concrete values a and b are obtained. Subsequently, for the low range of 

coupling factors, the observed progression of the calibration curve can be modelled. As discussed 
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above, a continuing linear dependency between MeDIP-seq signals and CpG density is expected 

for the higher range of coupling factors. Based on the obtained linear model parameters, concrete 

values can be calculated for the full range of coupling factors. Therefore,  
i

xmaxˆ

lxxxx
i

ˆ,...,ˆ,...,ˆˆ max1  

are the estimated mean MeDIP-seq signals over the full range of coupling factor levels l.  

For MeDIP-seq data normalization,  is utilized in order to weight the observed MeDIP-seq 

signals of the genomic bins with respect to their associated coupling factors. Let  be 

the raw MeDIP-seq signal of the genomic bin i (i.e. the number of overlapping extended short 

reads), and the pre-calculated coupling factor at the genomic bin i, where i  and m is the 

total number of genomic bins, then the normalized relative methylation score is defined as 

x̂

),(
ii binbin yx

m,...,1

)
ˆ

10
(2log)

)(

10
(2log

66

nx

x

nyba

x
rms

i

i

i

i

i

bin

bin

bin

bin
bin 







  

where  is the estimated weighting parameter obtained by considering the 

coupling factor  of the genomic bin i, and n is the total number of short reads considered for 

the generation of the genome vector. Based on the total number of short reads (n), the raw 

MeDIP-seq signals are, in parallel, transformed into a reads per million (rpm) format in order to 

assure that rms values are comparable between methylomes generated from differing amounts of 

short reads. The MEDIPS package subsequently transforms the resulting rms data range into the 

consistent interval , before finally returned. We consider the rms values as the 

normalized MeDIP-seq signals corrected for the effect of unspecific antibody binding.  

ii binbin ybax ˆ

ibiny

,0[ ]1000

 

In order to identify an absolute methylation estimate for any specified region of interest, i.e. 

either any functional genomic regions like promoters or CpG islands or genome wide windows of 

arbitrary length, the raw MeDIP-seq values are normalized into absolute methylation scores 

(ams). The absolute methylation scores correct for the relative CpG density of the regions of 

interest and therefore, allow for comparing methylation profiles of regions with differing CpG 

densities. Let  be the raw MeDIP-seq signals and coupling 

factors of adjacent genomic bins i that define a region of interest (ROI), where  and s is 

the total number of genomic bins comprised by the ROI, then the absolute methylation score for 

the ROI is defined as 

)),(),...,,((
11 sbinsbinbinbin yxyxROI 

si ,...,1
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)
1

)(

101

(2log

1

1

6







 




s

i bin

s

i
bin

bin

ROI

i

i

i

y
s

nyba

x

s
ams  

Again, the MEDIPS package subsequently transforms the resulting ams data range into the 

consistent interval , before finally returned. Analogous to Pelizzola et al. (Pelizzola et al. 

2008), we interpret the ams values (Pelizzola et al. (Pelizzola et al. 2008) call them rms), as the 

measure of the normalized methylation that is independent of the CpG density of the 

corresponding genomic region. 

]1000,0[

 

3 Identification of differentially methylated regions (DMRs) 

Identification of DMRs is essential for determining local differences in the methylation profiles 

of diverse biological samples. While there exist several methods for determining statistically 

significant enriched genomic regions from ChIP-on-Chip (Li et al. 2005; Johnson et al. 2006; 

Toedling et al. 2007; Chavez et al. 2009) and ChIP-Seq experiments (Boyle et al. 2008; Ji et al. 

2008; Valouev et al. 2008; Lun et al. 2009; Rozowsky et al. 2009), the identification of 

differentially methylated regions from MeDIP-seq data remains insufficiently explored. The main 

difference between the ChIP-Seq and MeDIP-seq approaches is that TFBSs are of short length 

(8-16bp) and therefore, ChIP-Seq specific methods intend to identify isolated short genomic 

regions of high short read enrichments. In contrast, CpGs are spread more widely along the 

chromosomes and are partly accumulated in CpG islands of length >300bp. Moreover, 

methylation alterations may occur at few CpG locations, only, and therefore, no sharp TFBSs like 

ChIP-Seq peaks are expected. Subsequently, in order to identify DMRs, comparatively longer 

genomic stretches have to be considered and methylation alterations have to be determined in a 

more sensitive way. 

For the identification of DMRs, we propose two alternative approaches. Firstly, it is of interest to 

specify pre-defined genomic regions of interest (ROIs) like CpG islands, promoters etc., and to 

specifically compare methylation patterns for these regions. Secondly, it is of interest to calculate 

differential methylation for genome wide frames of arbitrary length. However, in both cases we 

call any predefined genomic region as ROI. Here, we present a statistical approach for calculating 

differential methylation for any predefined ROI, based on sequencing data from two different 

MeDIP treated samples (Control and Treatment) with respect to an additional input sequencing 
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data set (Input). Let C, T, and I be the genome vectors generated based on the sequencing data 

from Control, Treatment, and Input using an arbitrary bin size b and let ROI be a set of 

predefined ROIs: 

ni ROIROIROIROI ,...,,...,1  

where n is the number of ROIs to be tested and the ’s are of length . In the 

following, the identification of DMRs is only supported for any  of length 

iROI nmm ,...,1

miiROI b 5 . 

Therefore, each  consists out of a set of at least five genomic bins ( ), where 
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where , , , and  are the pre-calculated 

rpm (see section 2.2) and rms values (see section 2.4.3) for the according genomic bins of the 

Control and of the Treatment samples. In addition, for each , mean rpm values are 

calculated based on I as: 

).( , jibinCrpm ).( , jibinCrms ).( , jibinTrpm ).( , jibinTrms

iROI





i

i

k

j
ji
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k
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1
, ).(

1
.  

where  are the pre-calculated rpm values for the genomic bins of the Input sample. ).( , jibinIrpm

Based on the mean rms values of the Control and of the Treatment sample, for each  the 

following ratio is calculated: 

iROI
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In addition, by considering the mean rpm values of the Control or of the Treatment sample, 

respectively, the following ratios are calculated with respect to rpm values of the Input sample: 
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Because local background sequencing signals are variable along the chromosomes due to 

differing DNA availability, a global background rpm signal threshold is estimated based on the 

distribution of all calculated  values. This is done by defining a targeted quantile qt 

(e.g. qt = 0.95) and by identifying the  value (t), where qt% of all  values 

are < t. Figure 3 illustrates the distributions of the  , and 

values as obtained from the Input, hESCs (Control) and DE (Treatment) samples, when defining 

regions of interest as overlapping genome wide 500 bp windows, where neighbouring windows 

overlap by 250 bp. By setting the qt parameter to qt=0.90, here, an rpm threshold t=0.2566 is 

obtained from the input  distribution.  

iROIRPMI .

I .

iROI

iROIRPM
iROIRPMI .

i
T

iROIRPMI . , ROIRPMC.
iROIRPM.  

RPMI .
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Figure 3: Global mean rpm signal distributions. The figure illustrates histograms for the mean rpm values of 
all genome-wide overlapping 500bp windows for hESCs, DE, and input samples. The grey lines indicate three 
possible global rpm thresholds as derived by setting the qt parameter to qt=0.9, qt=0.95, and qt=0.99. 
 

This estimated global minimal mean rpm threshold t will serve as an additional parameter for 

selecting genomic regions that show mean MeDIP-seq derived rpm signals of at least t in either 

the Control or the Treatment sample.  

Moreover, statistical testing is utilized in order to rate whether the obtained rms data series of the 

genomic bins within any  significantly differs in the Control sample compared to the 

Treatment sample. For each  it is tested, whether the rms values of the genomic bins 

 of the Control sample significantly differ from the rms 

values of the according genomic bins of the Treatment sample. For this, the MEDIPS package 

utilises the t.test() and wilcox.test() functions of the R environment (www.R-project.org) with 

default parameter settings (two-sided tests in both cases). Therefore, for each tested  two p-

values ( and ) will be calculated and serve as a further level for 

discriminating between local methylation profiles. 

iROI

ROI

kibin
i,

ROI .

i



p.

ijiiROI ROIbinbinbin
i
 ,1, ,...,,...,

itvaluepROI ... value.

iROI

iw

For identifying ’s that show differential methylation between the Control and the Treatment 

sample and with respect to the Input sample, based on the pre-calculated parameters, a filtering 

procedure is performed. The following filtering procedure also discriminates between increased 

iROI
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methylation in the Control sample compared to the Treatment sample (Control>Treatment, a) and 

vice versa (Treatment>Control, b): 

 

1. iROI ’s where 0.. 
ii ROIROI RMSTRMSC  are neglected, 

2. iROI ’s where pt nd pw  are neglected, where p is any 

targeted level of significance, 

valuepROI i ...  a valuepROI i ...

3. filtering for the ratio: 

a. iROI ’s where hrmsr
iROI .  are neglected, where h is an upper ratio threshold, 

b. iROI ’s where l are neglected, where l is a lower ratio threshold, rmsr
iROI .

4. filtering for global Input derived background signals: 

a. iROI ’s where tRPMC
iROI .  are neglected, 

b. iROI ’s where tRPMT
iROI .  are neglected, 

5. filtering for local Input derived background signals: 

a. iROI ’s where hCrpmr
iROI .. are neglected, 

b. iROI ’s where hTrpmr
iROI ..  are neglected. 

 

The remaining  are considered as candidate genomic regions where events of differential iROI

methylation can be deduced from the data in a sophisticated statistical way. 

 

For selecting significant regions that show de- or de-novo methylation events, we executed the 

MEDIPS.selectSignificants() function of the MEDIPS package two times separately, and 

specified the following parameters: qt=0.9, up=1.333333; down=0.75, p.value=0.001.  

Afterwards, we ended up with highly significant candidate regions of differential methylation. 

Because we have executed the according MEDIPS.diffMethyl() function for overlapping 500bp 

windows, we partly received overlapping significant frames. Therefore, we finally merged 

overlapping regions into one super sized region using the MEDIPS.mergeFrames() function of 

the MEDIPS package. 
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