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1. MEDIPS package overview

The MEDIPS software was developed for analyzing data derived from methylated DNA

immunoprecipitation (MeDIP) experiments (Weber et al. 2005) followed by sequencing (MeDIP-

seq). Nevertheless, functionalities like the saturation analysis may be applied to other types of

sequencing data (e.g. ChIP-Seq). MEDIPS addresses several aspects in the context of MeDIP-seq

data analysis. These are:

estimating the reproducibility for obtaining full genome methylation profiles with respect
to the total number of given short reads and to the size of the reference genome,

analyzing the coverage of genome wide DNA sequence patterns (e.g. CpGs) with the
given set of sequence reads,

calculating a CpG enrichment factor as a quality control for the immunoprecipitation and
for a rough impression of the overall amount of enriched methylated CpGs,

calculating genome wide MeDIP-seq signal densities at a user specified resolution,
calculating genome wide sequence pattern densities (e.g. CpGs) at a user specified
resolution,

plotting of calibration plots as a data quality check and for a visual inspection of the
dependency between local sequence pattern (e.g. CpG) densities and MeDIP-seq signals,
normalization of MeDIP-seq data with respect to local sequence pattern (e.g. CpG)
densities,

summarized methylation values for genome wide windows of a specified length or for
user supplied regions of interest (ROISs),

identification of differentially methylated regions on raw or normalized data comparing
two sets of MeDIP-seq data and with respect to background data derived from input
experiments,

exporting raw and normalized data for visualization in common genome browsers (e.g.
the UCSC genome browser (Kuhn et al. 2009)).



The input to MEDIPS is the result of the sequence mapping. MEDIPS can be applied to any
genome of interest. The only limitation to its use, are the available genomes within
Bioconductors (Gentleman et al. 2004) BSgenome (Pages) package. For a detailed description of

the MEDIPS package, please see the tutorial as provided together with the package.

2. Modelling of MeDIP-seq data

2.1 Genome vector

In order to calculate the genome-wide short read coverage, a targeted data resolution has to be
determined. In principle, a short read coverage can be calculated for each base position. Because
the resolution of MeDIP-seq data is restricted by the size of the sonicated DNA fragments after
amplification and size selection (typically between 0.2-1kb), a bin size of 50bp is considered as a
reasonable compromise on data resolution and computational costs. Moreover, short reads
generated by modern-day sequencers do not represent the full DNA fragments but are of shorter
length (e.g. 36bp). Therefore, the data is smoothed by extending each read to a length according
to the estimated average length of sequenced DNA fragments (here 400 bp), either along the + or
along the - direction, as specified by the short read dependent strand information. MEDIPS
divides each chromosome into bins of size 50 bp and subsequently calculates the short read
coverage on this resolution. In the following, the bin representation of the genome is called the

genome vector.

2.2 Reads per million (rpm)

For each pre-defined genomic bin, the genome vector stores the number of provided overlapping
extended short reads (these are the raw MeDIP-seq signals). Based on the total number of
provided short reads (n), the raw MeDIP-seq signals can be transformed into a reads per million
(rpm) format in order to assure that coverage profiles derived from different biological samples

are comparable, although generated from differing amounts of short reads. Let x;, be the raw

MeDIP-seq signal of the genomic bin i, where i =1,...,m and m is the total number of genomic
bins, then the rpm value of the genomic bin is simply defined as:
Xbini 106

IFpmbini - n



MEDIPS allows for exporting WIG files containing genome wide rpm values at a user-specified
resolution (here 50 bp). By utilizing these WIG files, the rpm profiles of the processed biological

sample can be immediately visualised using a suitable genome browser.

2.3 Quality controls
2.3.1 Saturation analysis
MeDIP-seq aims to reconstruct methylation profiles on the basis of local short read coverages. It
is supposed that an insufficient number of short reads will not represent the true methylation
profile. Only when a sufficient number of short reads is generated, the resulting genome vector
will represent a saturated methylation profile. Therefore, the saturation analysis addresses the
question, whether the number of available short reads is sufficient to generate a saturated and
reproducible methylation profile of the reference genome.
The basic assumption of the saturation analysis is that only a sufficient number of short reads will
result in a genome wide methylation profile which will be reproducible by another independent
set of a similar number of short reads. The correlation of two independently generated genome
vectors will increase when the total number of short-reads considered for the construction of each
of the two genome vectors increases. It is supposed that the increase of correlation between two
independently generated genome vectors will saturate as soon as the total number of considered
short reads is increased to a level that is able to represent the analysed methylome in a saturated
way. Obviously, the number of short reads that have to be generated for a sufficient sequencing
depth depends on the size of the reference genome.
For the saturation analysis, the total set of available regions (n) is divided into two distinct
random sets A and B of equal size. Both sets A and B are again divided into k random subsets of
equal size:

A=a,,..,a,

B=Db,..,b,
The saturation analysis runs in k iterations. For each set A and B independently, the saturation
analysis iteratively selects an increasing number of subsets and creates according genome vectors
by using an arbitrary bin size (here 50bp) and by previously extending the short reads to a
suitable length (here 400bp). In each iteration step, the resulting genome vectors for the subsets
of A and B are compared using Pearson correlation. As the number of considered short reads
increases during each iteration step, it is supposed that the resulting genome vectors become more
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similar, a dependency that is expressed by an increased correlation. By storing the resulting
correlation coefficients after each iteration step, the change of correlation during the k iteration
steps can be visualized by plotting the number of considered reads against the resulting
correlation coefficients. Such a plot allows for gaining an impression of the reproducibility of
constructing a methylome with respect to the number of considered short reads and with respect
to the size of the reference genome.

However, such a saturation analysis can be performed on two independent sets of short reads,
only. Therefore, a true saturation analysis can only be calculated for half of the available short
reads. Obviously, it is of interest to examine the reproducibility of the MeDIP-seq experiment for
the total amount of available short reads. Therefore, the saturation analysis is followed by an
estimated saturation analysis. For the estimated saturation analysis, the full set of given regions
(n) is artificially doubled by considering each region twice. Afterwards, the described saturation
analysis is performed on the artificially doubled set of regions. Because the artificially doubled
set of short reads does not represent a true outcome of a MeDIP-seq experiment, the calculated
correlations will overestimate the true reproducibility. It is assumed that the true correlation for
the full set of available short reads will be between the results of the true and of the estimated
saturation analysis. Methods that randomly select data entries can be processed several times in
order to obtain more stable results. Therefore, the random partitioning of the short reads into the

several subsets of A and B was repeated ten times and the results were averaged.

2.3.2 Coverage analysis

The coverage analysis addresses the question about the genome wide depth of sequence pattern
(here CpG) coverage by an increasing number of integrated sequencing derived short reads. For
this, all genomic coordinates of the sequence pattern of interest have to be identified. The
MEDIPS package provides a function for identifying the genomic positions of arbitrary sequence
patterns. In the following, it is expected that all genomic pattern positions are stored on a vector
P=p,..P P, Where mis the number of sequence patterns present in the reference genome.
For the coverage analysis, the total set of available short reads (A) is divided into k random
subsets of equal size:

A=a,,..,a,
The coverage analysis runs in k iterations. The coverage analysis iteratively selects an increasing
number of subsets and tests how many pattern positions from P are covered by the available
4



regions. In addition, the coverage analysis counts how many p,’s are covered at least Q times,
where Q =q,,...,q, represents an arbitrary number of coverage depths to be tested. For example,

the according function of the MEDIPS package tests by default how many CpGs are covered at
least 1x, 2x, 3X, 4x, 5%, and 10x times (this is equivalent to the notation Q = 1, 2, 3, 4, 5, 10). The
k-th iteration step of the coverage analysis shows the depth of sequence pattern coverages
obtained with the full set of available short reads.

The advantage of the iterative approach is that the behaviour of pattern coverage can be examined
with respect to an increasing number of considered short reads. For this, coverage curves can be
generated by plotting the number of covered sequence patterns after each iteration step and for
each level of Q against the number of considered short reads. The progressions of the resulting
coverage curves indicate the state of saturation of the overall sequence pattern coverages.
Because methods that randomly select data entries can be processed several times in order to
obtain more stable results, the random partitioning of the short reads into the several subsets of A
was repeated ten times and the results were averaged. As for calculating the genome vector and
as done for the saturation analysis the length of the short reads were previously extended to
400bp.

2.3.3 CpG enrichment

As a third MeDIP-seq data quality control, the CpG enrichment approach examines how strong
the genomic regions underlying the obtained short reads are enriched for CpGs compared to the
frequency of CpGs present in the reference genome. For this, firstly the number of cytosines
(G.c), the number of guanines (G.g), the number CpGs (G.cg), and the total number of bases (m)
within the specified reference genome (here hgl9) are counted. Subsequently, the relative
frequency of CpGs and the observed/expected (Gardiner-Garden and Frommer 1987) ratio of
CpGs as present in the reference genome are calculated as:

Genome.CpG,,, ; = G.eg

rel. f

~ G.egrm

Genome.CpG ys ey = rGg

Additionally, the number of cytosines (SR.c), the number of guanines (SR.g), the number CpGs

(SR.cg), and the total number of bases (n) are counted for the DNA sequences underlying the



given short reads. Subsequently, the relative frequency of CpGs and the observed/expected ratio
of CpGs as present in the short reads specific DNA sequences are calculated accordingly:

SR.CpG.,,, , = SR.cg

rel. f
SR.CPGyyeoey = %
The final enrichment values result by dividing the relative frequency of CpGs (or the
observed/expected value, respectively) of the short reads by the relative frequency of CpGs (or
the observed/expected value, respectively) of the reference genome:

enrich = SRCPG
“" " Genome.CpG,,
enrich = SR.CPGpsexp
obs /exp Genome.CpG usexp

For short reads derived from an INPUT experiment (that is sequencing of none-enriched DNA
fragments), the enrichment values are expected to be close to 1. In contrast, short reads derived
from MeDIP-seq experiments are expected to be enriched for CpG rich DNA sequences, a

circumstance which will be indicated by increased enrichment scores.

2.4 MeDIP-seq data normalization

The idea of a MeDIP experiment is to identify cytosine methylation profiles of a sample of
interest by immunocapturing methylated CpGs (mCpGs) using an mCpG specific antibody
(Weber et al. 2005). However, it has been shown (Down et al. 2008; Pelizzola et al. 2008) that
MeDIP signals scale with local densities of CpGs and are not necessarily influenced by mCpGs,
only. Therefore, the need for MeDIP-seq data correction occurs through an unspecific binding of
the utilized antibody to un-methylated CpGs, especially in genomic regions associated to elevated

densities of un-methylated CpGs and low densities of mCpGs.

2.4.1 Coupling factors
Similar to other MeDIP normalization approaches (Down et al. 2008; Pelizzola et al. 2008), the
presented method corrects for the unspecific antibody binding by incorporating local CpG

densities into the MeDIP-seq derived signals. In order to integrate the information about CpG
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densities into the following analysis, it is necessary to identify the genomic positions of all CpGs.
This can be achieved by executing the MEDIPS.getPosition() function of the MEDIPS package.
Following the valuable concept of coupling factors presented by Down et al. (Down et al. 2008),
a coupling vector is calculated based on the received genomic positions of all CpGs. The
coupling vector is of the same size as the predefined genome vector (here bin size of 50bp) but
contains local CpG denisties (also called coupling factors) for each genomic bin, instead. For
each predefined genomic bin at position b, the density of surrounding CpGs has to be calculated.
For this, first a maximal distance (d) has to be defined. Only CpGs within the range of

[b—d,b,b+d] will contribute to the final local coupling factor at b. The optimized value for d

will reflect the estimated size of the sonicated DNA fragments after amplification and size
selection. This is because MeDIP-seq derived signals at position b are influenced by sequenced
DNA fragments that overlap with position b. Immunoprecipitation of these DNA fragments can
be caused by a methylated and antibody bound CpG located at any position of the DNA-
fragment. The maximal distance of a CpG contributing to the signal at b is therefore the estimated
average length of the sonicated DNA fragments (d).

There are several ways for calculating coupling factors for genomic bins. Let ¢ be the
chromosomal position of a CpG and as b is the chromosomal position of a genomic bin,

dist =|b —c| is the distance between the genomic bin and the CpG. A CpG will contribute to the

coupling factor of a genomic bin at position b, if dist <d. The simplest way is to count the
number of CpGs within the maximal distance d around a genomic bin at position b (count
function). Another approach is to weight each CpG by its distance to the current genomic bin.
CpGs farther away from the current genomic bin will receive smaller weights, whereas CpGs
close to the genomic bin will receive higher weights. The upper panel in Figure 1 illustrates a
genome vector generated by defining a bin size of 50bp. In addition, CpGs are given in a
schematic way. The Figure illustrates that immuoprecipitated DNA fragments of an estimated
average length greater than the pre-defined bin size can contribute to the signal of the genomic
bin at position b (vertical red line). Moreover, the schematic distance function illustrates that
CpGs close to position b will receive higher weights than CpGs located farther away. There are
several possible ways for defining weighting functions. In the context of this thesis, the following
weighting functions were evaluated: count, linear, exp (Pelizzola et al. 2008), log (Pelizzola et al.
2008), and custom (Down et al. 2008). The images at the bottom of Figure 1 show the

progression of these weighting functions by defining a maximal distance d = 700.
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Figure 1: Calculation of coupling factors. The upper panel shows a schematic view of the genome vector
created by defining a bin size of 50bp. In addition, CpGs are shown in a schematic way. A coupling factor is
calculated for the centered genomic bin at position b (marked by a red vertical line). For this, all CpGs within
a maximal distance d are considered. The maximal distance d reflects the estimated average size of sequenced
DNA fragments. There are several ways for calculating coupling factors. The simplest way is to count the
number of CpGs in the surrounding of b but with a maximal distance of d. Alternatively, a weighting function
can be applied to weight each CpG by its distance (dist) to the current genomic bin at position b. Again, there
are several possible weighting functions. The five images at the bottom of the Figure show the progression of
the weighting functions linear, exp, log, count, and custom (Down et al. 2008) by defining d = 700.

Whereas the weighting functions count, linear, exp, and log are calculated by defined formulas,
the custom function allows for specifying user-defined weights for any possible distance dist. For
example, Down et al. (Down et al. 2008) have generated custom weights for the distances

dist € [0,648]. These weights were estimated empirically by sampling from the fragment-length

distribution and randomly placing each fragment such that it overlaps the genomic bin Down et
al. 2008). Such weights can be up-loaded using MEDIPS and are returned when the custom

function is called. Let C, be the coupling factor between a CpG at position ¢ and a genomic bin
at position b calculated based on an arbitrary weighting function and for any specified parameter

d. Then C

tot

= Zch is the sum of coupling factors at the genomic bin b with respect to all CpGs

at a genomic position ¢, where |b—c < d . For simplification, in the following, C,, is called the

tot

coupling factor at a genomic bin b and gives a measure of local CpG density.

It has been shown Weber et al. 2005; Eckhardt et al. 2006) that in mammalian cells, methylation

is negatively correlated to CpG densities. In other words, regions of low CpG density tend to be

high methylated, whereas regions of high CpG density tend to be mainly unmethylated. In order

to test the correlation of meassured methylation values (Eckhardt et al. 2006) compared to local
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CpG densities calculated with respect to the different weighting functions, we have

systematically calculated coupling vectors (bin size=50) with varying d [0,2000] using the

weighting functions count, linear, exp, log, as well as for the empirically derived weights
presented by Down et al. (Down et al. 2008) (custom). Because the custom weights are available

for the range d €[0,648], only, the weight at d=648 is also utilized for the remaining distances

up to d=2000. For the comparisons, we have accessed DNA-methylation values derived from
bisulphite sequencing experiments of a sperm sample as presented by the human epigenome
project (HEP) (Eckhardt et al. 2006). Bisulphite sequencing derived methylation data was
generated for approximately 3000 selected genomic regions (called HEP traces) of length 50bp to
500bp (Eckhardt et al. 2006). In order to compare CpG densities to the available methylation
data, for all utilized weighting functions with varying parameter d, we have calculated mean
coupling factors for each of the HEP traces and examined the relation to corresponding mean
methylation values by Pearson correlation. Figure 2a shows the resulting Pearson correlations for

varying parameter d and for the several tested weighting functions.
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Figure 2: Evaluation of coupling factor calculations. Figure a shows the resulting Pearson correlations (y-axis)
between the mean coupling factors and bisulphite sequencing derived mean methylation values for a varying
distance parameter d (x-axis) and for different weighting factors (colours). The best negative correlation (-
0.73) was achieved by setting the parameter d = 700 and by using the count function. Figure b shows the
according scatterplot where each data point represents a HEP trace. The scatterplot contrasts the mean
methylation value (x-axis) and mean CpG denisty (y-axis). The color code divides the full range of CpG
densities into quantiles.



Interestingly, the best negative correlation (that is the higher the CpG density, the lower the
bisulphite derived methylation values) was achieved (-0.73) by setting the parameter d = 700 and
by using the count function. For this parameter settings, Figure 2b shows a scatterplot comparing
mean HEP methylation values and mean coupling factors. Here, each data point represents a HEP
trace and the plot contrasts the mean methylation value (x-axis) with the mean CpG denisty (y-
axis). The color code divides the full range of CpG densities into quantiles. Based on these
results, in the following, the coupling vector is calculated by specifying d = 700 and by using the
count function. However, the MEDIPS package allows for justifying the according parameters or
for supplying any custom defined distance weights. Moreover, coupling vectors can be calculated
for any arbitrary DNA sequence pattern and the resulting coupling vectors can be exported into a
WIG file for visualizing the sequence pattern densities along the chromosomes using a suitable

genome browser.

2.4.2 Calibration curve

As we have created a genome vector that contains the raw signals at each genomic bin as well as
an according coupling vector containing the calculated coupling factors at each genomic bin, the
dependency of local MeDIP-seq signal intensities and local CpG densities can be examined.
However, by simply plotting the genome vector against the coupling vector, no concrete
dependency is observable. However, a dependency between CpG densities and MeDIP-seq
signals can be made tangible by calculating the calibration curve (Down et al. 2008). Calculation
of the calibration curve is achieved by first dividing the total range of coupling factors into
regular levels. Second, all genomic bins are partitioned into these levels by considering their
associated coupling factors. Finally, for each level of coupling factors, the mean signal and mean
coupling factor of all genomic bins that fall into this level are calculated. As the calibration curve
represents the averaged signals and coupling factors over the full range of coupling factors, it
reveals the experiment specific dependency between signal intensities and CpG densities (see
Supplementary Figures 3a and b of the main manuscript).

In fact, for the low range of coupling factors, the calibration curve indicates that the MeDIP-seq
signals, in average, increase because of an increasing CpG density. Therefore, an increased signal
is not necessarily caused by a higher level of mCpGs but scales with the general CpG density. In

contrast, for INPUT derived sequencing data this dependency of CpG density and sequencing
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signals is not observable (see Supplementary Figure 3c of the main manuscript). Therefore, the
calibration plot is very characteristic for MeDIP-seq data and the quality of the enrichment step
of the MeDIP experiment can be estimated by visual inspection of the progression of the
calibration curve. For higher levels of CpG densities, the mean MeDIP-seq signals decrease. It is
assumed that this decrease is caused by the fact that in biological systems, regions of higher CpG
denstities are mainly unmethylated. Interestingly, in biological systems, cytosine methylation
occurs mainly in regions of low CpG density. The other way round, cytosines located in regions
of high CpG density are mainly unmethylated. This circumstance implicates that the dependency
between increased signal intensities caused by increased CpG densities is visible for regions of

low CpG densities, only.

2.4.3 Relative and absolute methylation scores

The calibration curve reveals that, in average, an increase of MeDIP-seq signals is caused by an
increasing CpG density. This approximately linear dependency is visible for the low range of
coupling factors, only. For higher levels of CpG densities, the mean MeDIP-seq signals decrease.
As mentioned above, it is assumed that this decrease is caused by the fact that in mammalian
cells, regions of higher CpG denstities are mainly unmethylated. In agreement with this
assumption, Pelizzola and colleagues (Pelizzola et al. 2008) have shown that the dependency of
MeDIP derived signals and CpG density continues for higher levels of CpG densities, by
analysing artificially fully methylated samples using MeDIP-Chip. In fact, they identified a
sigmoidal dependency between CpG density and MeDIP-Chip data (Pelizzola et al. 2008). In
agreement with Pelizzola et al. (Pelizzola et al. 2008), the signal plateau in the lower range of
chip signals is caused by background noise and it is assumed that the signal plateau in the upper
range of chip signals occurs by a saturation of hybridization events and is therefore an array
specific artefact.

By visual inspection of the MeDIP-seq derived calibration curves, and motivated by the
observations made by Pelizzola et al. (Pelizzola et al. 2008), a continuing linear dependency of
MeDIP-seq signals for higher levels of CpG densities is assumed. Analogous to Down et al.
(Down et al. 2008), the local maximum of mean MeDIP-seq signals of the calibration curve in
the lower part of coupling factors is identified. Let

Y=Y

be the mean coupling factors, and let
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X = Xg e X,

be the according mean MeDIP-seq signals of the calibration curve, where | is the number of

tested coupling factor levels and i =1,...,1, then the smallest level i is identified, where

Xi 30X 20 Xi g S X, = Xioq, Xiugs X

i+10 i+21 M43t

Let i, be the according identified level of i, then

ymax = yl""’ yimax

Xax = Xpyeees X,

max [

is the part of the calibration curve in the low range of coupling factors, where an approximately

linear dependency between MeDIP-seq signals and coupling factors is observed. Here, X, can
be explained by a function of vy, as

Xmax = f (ymax) + &
where ¢ is an error variable (i.e. measurement errors) that is expected to spread by chance and

therefore, its expectation value is E(¢) = 0. Because a linear dependency between x,.,, and Y.,

is assumed, X, can be described as

X max :a+ﬂ' Yiax T €
where the parameter « is the theoretical y-intercept, and the parameter £ is the theoretical
slope. Based on the pre-calculated x,,, and vy, Vvectors, linear regression is performed, in order

to identify a suitable linear model. Linear regression estimates concrete values a and b for the

parameters « and £ so that it is valid:

X, =@ +D- Y +e

max i

where i=1, Here, the residuum e, reflects the difference between the regression curve

e Imax '
a+b-y.,, and the measurements for x,, . Moreover, X, can be replaced by an estimate
X

where X, —X.. =€ and therefore, it is valid:

max; max

)zmaxi =a+b- ymaxi
MEDIPS calculates the linear regression model using the least squares approach (www.R-
Project.org) and concrete values a and b are obtained. Subsequently, for the low range of

coupling factors, the observed progression of the calibration curve can be modelled. As discussed
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above, a continuing linear dependency between MeDIP-seq signals and CpG density is expected
for the higher range of coupling factors. Based on the obtained linear model parameters, concrete

X e, Values can be calculated for the full range of coupling factors. Therefore,

X = Ky ooy Ky, 00 X
are the estimated mean MeDIP-seq signals over the full range of coupling factor levels I.
For MeDIP-seq data normalization, X is utilized in order to weight the observed MeDIP-seq

signals of the genomic bins with respect to their associated coupling factors. Let (X, , Yy, ) be

the raw MeDIP-seq signal of the genomic bin i (i.e. the number of overlapping extended short
reads), and the pre-calculated coupling factor at the genomic bin i, where i =1,...,m and m is the

total number of genomic bins, then the normalized relative methylation score is defined as

X, * i Xpin, -10°
MSy;p, :I092(—(a+bi y )'n) :I092(—)A( ' > )
bin; bin;

where X, =a+b-y,, is the estimated weighting parameter obtained by considering the
coupling factor y,;, of the genomic bin i, and n is the total number of short reads considered for

the generation of the genome vector. Based on the total number of short reads (n), the raw
MeDIP-seq signals are, in parallel, transformed into a reads per million (rpm) format in order to
assure that rms values are comparable between methylomes generated from differing amounts of
short reads. The MEDIPS package subsequently transforms the resulting rms data range into the

consistent interval [0,1000], before finally returned. We consider the rms values as the

normalized MeDIP-seq signals corrected for the effect of unspecific antibody binding.

In order to identify an absolute methylation estimate for any specified region of interest, i.e.
either any functional genomic regions like promoters or CpG islands or genome wide windows of
arbitrary length, the raw MeDIP-seq values are normalized into absolute methylation scores
(ams). The absolute methylation scores correct for the relative CpG density of the regions of
interest and therefore, allow for comparing methylation profiles of regions with differing CpG

densities. Let ROI = ((Xyin, s Yiin, )+ (Xoing» Yoin, ) D€ the raw MeDIP-seq signals and coupling

factors of adjacent genomic bins i that define a region of interest (ROI), where i =1,...,s and s is
the total number of genomic bins comprised by the ROI, then the absolute methylation score for
the ROI is defined as
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1 zs Xoin, -10°
s==(a+b- Yiin, ) N

1
g Zi:1 Yoin,

Again, the MEDIPS package subsequently transforms the resulting ams data range into the

amsg,, = log 2(

)

consistent interval [0,1000], before finally returned. Analogous to Pelizzola et al. (Pelizzola et al.

2008), we interpret the ams values (Pelizzola et al. (Pelizzola et al. 2008) call them rms), as the
measure of the normalized methylation that is independent of the CpG density of the

corresponding genomic region.

3 Identification of differentially methylated regions (DMRs)

Identification of DMRs is essential for determining local differences in the methylation profiles
of diverse biological samples. While there exist several methods for determining statistically
significant enriched genomic regions from ChlIP-on-Chip (Li et al. 2005; Johnson et al. 2006;
Toedling et al. 2007; Chavez et al. 2009) and ChlP-Seq experiments (Boyle et al. 2008; Ji et al.
2008; Valouev et al. 2008; Lun et al. 2009; Rozowsky et al. 2009), the identification of
differentially methylated regions from MeDIP-seq data remains insufficiently explored. The main
difference between the ChIP-Seq and MeDIP-seq approaches is that TFBSs are of short length
(8-16bp) and therefore, ChlP-Seq specific methods intend to identify isolated short genomic
regions of high short read enrichments. In contrast, CpGs are spread more widely along the
chromosomes and are partly accumulated in CpG islands of length >300bp. Moreover,
methylation alterations may occur at few CpG locations, only, and therefore, no sharp TFBSs like
ChIP-Seq peaks are expected. Subsequently, in order to identify DMRs, comparatively longer
genomic stretches have to be considered and methylation alterations have to be determined in a
more sensitive way.

For the identification of DMRs, we propose two alternative approaches. Firstly, it is of interest to
specify pre-defined genomic regions of interest (ROIs) like CpG islands, promoters etc., and to
specifically compare methylation patterns for these regions. Secondly, it is of interest to calculate
differential methylation for genome wide frames of arbitrary length. However, in both cases we
call any predefined genomic region as ROI. Here, we present a statistical approach for calculating
differential methylation for any predefined ROI, based on sequencing data from two different

MeDIP treated samples (Control and Treatment) with respect to an additional input sequencing
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data set (Input). Let C, T, and | be the genome vectors generated based on the sequencing data
from Control, Treatment, and Input using an arbitrary bin size b and let ROI be a set of
predefined ROIs:

ROI =ROI,,...,,ROl,,...,ROI

n

where n is the number of ROIs to be tested and the ROI,’s are of length m,,...,m . In the
following, the identification of DMRs is only supported for any ROI, of length m, >5-b.

Therefore, each ROI; consists out of a set of at least five genomic bins (bing, ), where

bing,, =bin;,,..,bin; ;,...,bin;, €ROI; and k; = floor(%). For each ROI;, mean rpm and

rms values are calculated based on C and T as:

ki
C.RPM ¢, =kinpm(C.bin”)

i j=1

K
C.RMSg, = kiz rms(C.bin, ;)
i j=1

ki

T.RPM ¢, =kiz rpm(T .bin, ;)

i j=1

ki
T.RMS,,, =ki2rms(T.bini’j)
i =t

where rpm(C.bin;;), rms(C.bin;;), rpm(T.bin;;), and rms(T.bin; ;) are the pre-calculated
rpm (see section 2.2) and rms values (see section 2.4.3) for the according genomic bins of the
Control and of the Treatment samples. In addition, for each ROI,, mean rpm values are

calculated based on 1 as:
13
I.RPM ¢, :k—erm(I.bini'j)
i Jj=1
where rpm(l.bin, ;) are the pre-calculated rpm values for the genomic bins of the Input sample.
Based on the mean rms values of the Control and of the Treatment sample, for each ROI; the

following ratio is calculated:

15



CRMS,,

S50 = T RS,
. ROV,

In addition, by considering the mean rpm values of the Control or of the Treatment sample,

respectively, the following ratios are calculated with respect to rpm values of the Input sample:

C.RPM g,
P o = RPM g,
: ROI;

T.RPM¢q,
.
: RO,

Because local background sequencing signals are variable along the chromosomes due to
differing DNA availability, a global background rpm signal threshold is estimated based on the

distribution of all calculated 1.RPM ., values. This is done by defining a targeted quantile gt
(e.g. gt = 0.95) and by identifying the I.RPM ., value (t), where qt% of all 1.RPM g, values
are < t. Figure 3 illustrates the distributions of the 1.RPM ., , C.RPM, , and T.RPM .,

values as obtained from the Input, hESCs (Control) and DE (Treatment) samples, when defining
regions of interest as overlapping genome wide 500 bp windows, where neighbouring windows
overlap by 250 bp. By setting the gt parameter to qt=0.90, here, an rpm threshold t=0.2566 is
obtained from the input I.RPM ¢, distribution.
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Figure 3: Global mean rpm signal distributions. The figure illustrates histograms for the mean rpm values of
all genome-wide overlapping 500bp windows for hESCs, DE, and input samples. The grey lines indicate three
possible global rpm thresholds as derived by setting the gt parameter to gt=0.9, qt=0.95, and qt=0.99.

This estimated global minimal mean rpm threshold t will serve as an additional parameter for
selecting genomic regions that show mean MeDIP-seq derived rpm signals of at least t in either
the Control or the Treatment sample.

Moreover, statistical testing is utilized in order to rate whether the obtained rms data series of the

genomic bins within any ROI,; significantly differs in the Control sample compared to the
Treatment sample. For each ROI, it is tested, whether the rms values of the genomic bins
bing, =bin;,,...,bin; ;,...,bin;, € ROI; of the Control sample significantly differ from the rms

values of the according genomic bins of the Treatment sample. For this, the MEDIPS package
utilises the t.test() and wilcox.test() functions of the R environment (www.R-project.org) with

default parameter settings (two-sided tests in both cases). Therefore, for each tested ROI; two p-
values (ROIl.p.value.t;and ROI.p.value.w;) will be calculated and serve as a further level for

discriminating between local methylation profiles.

For identifying ROI, ’s that show differential methylation between the Control and the Treatment

sample and with respect to the Input sample, based on the pre-calculated parameters, a filtering

procedure is performed. The following filtering procedure also discriminates between increased

17



methylation in the Control sample compared to the Treatment sample (Control>Treatment, a) and

vice versa (Treatment>Control, b):

1. ROI;’swhere C.RMSy,, =T.RMS;, =0 are neglected,

2. ROI,’s where ROI.p.valuet; > p and ROI.p.value.w, > p are neglected, where p is any

targeted level of significance,
3. filtering for the ratio:

a. ROI; s where r.rmsg,, <h are neglected, where h is an upper ratio threshold,
b. ROI;’s where r.rmsg,, > |are neglected, where | is a lower ratio threshold,

4. filtering for global Input derived background signals:

a. ROI,;’swhere C.RPM ., <t are neglected,
b. ROI;’s where T.RPM ., <t are neglected,
5. filtering for local Input derived background signals:

a. ROI,;’s where r.rpm.C,, < h are neglected,

b. ROI;’s where r.rpm.Tg,, <h are neglected.

The remaining ROI,; are considered as candidate genomic regions where events of differential

methylation can be deduced from the data in a sophisticated statistical way.

For selecting significant regions that show de- or de-novo methylation events, we executed the
MEDIPS.selectSignificants() function of the MEDIPS package two times separately, and
specified the following parameters: qt=0.9, up=1.333333; down=0.75, p.value=0.001.
Afterwards, we ended up with highly significant candidate regions of differential methylation.
Because we have executed the according MEDIPS.diffMethyl() function for overlapping 500bp
windows, we partly received overlapping significant frames. Therefore, we finally merged
overlapping regions into one super sized region using the MEDIPS.mergeFrames() function of
the MEDIPS package.
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