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Supplemental Tables 

Table S1. Sample characteristics (human). 

The table lists age, sex and death cause of the subjects, postmortem intervals in hours 

(PMI), RNA integrity values of RNA samples (RIN - an indicator of RNA quality 

calculated by Agilent® Bioanalyser 2100). The microarray experiments were carried out 

in two batches. Two individuals are included in both batches as technical replicates. The 

column with the “Exp” header indicates the experiments that each sample was used in: a- 

mRNA microarray, b- miRNA-sequencing, c- protein sequencing. Note that technical and 

demographic characteristics are independent of subject age: Spearman correlations of age 

with sex, PMI or RIN are -0.02, -0.10, 0.07, respectively (p>0.5). Two individuals, H5 

and H19, overlap with a previously published dataset on brain development (the DFPLC 

dataset in (Somel et al. 2009)). Abbreviations: ASCVD: arteriosclerotic cardiovascular 

disease; HASCVD: hypertensive arteriosclerotic cardiovascular disease. For 5 elder 

individuals we have no detailed information on exact birth dates besides the year of birth; 

for these, age in years has been used. 

 

ID Year Day Sex B Eatch xp RIN PMI Cause of death Overlap 

H1 0 2 m 1 , 2 a,b,c 8 3 
complications of 
prematurity 3 

H2 0 4 m 1  a,b,c 8.8 5 congenital heart defect 5 

H3 0 34 m 1 7  a,b,c 7.9 7 
idiopathic pulmonary 
hemorrhage  

H4 0 204 m 1  a,b,c 8.4 6 
sudden infant death 
syndrome 6 

H5 8 2 m 1  a,b,c 8.3 5 cardiac arrhythmia 5 
H6 13 360 m 1  a,b,c 8.3 13 hanging 13 
H7 25 152 m 1  a,b,c 9.2 19 asthma 19 
H8 53 112 m 1  a,b,c 8.3 17 ASCVD 17 

H9 66 0 m 1  a,b,c 8.6 10 
ruptured abdominal 
aneurysm aorta 10 

H10 80 0 m 1 7 a,b,c 8.6 7 ventricular fibrillation  
H11 88 0 m 1  a,b,c 7.7 7 euthanasia 7 

H12 98 0 m 1 9 , 2 a,b,c 7.3 9 
cardiac tamponade due to 
bleeding from aorta fissure  

H13 0 19 f 2 a 7.1 14 
pneumonia associated with 
meconium aspiration 14 

H14 0 94 m 2  a 7.7 12 bronchopneumania 12 
H15 1 78 m 2  a 7.6 19 asthma 19 
H16 2 57 f 2 a 7.5 21 acute myocarditis 21 
H17 4 170 f 2 a 7.7 21 lymphocytic myocarditis 21 
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H18 16 271 m 2 a 9.1 15 accident, drowning 15 
H19 22 334 m 2  a 7.3 4 ASCVD 4 
H20 39 74 m 2  a 7.9 12 HASCVD 12 
H21 58 34 m 2  a 8.4 9 HASCVD 9 
H22 78 222 f 2 a 8 3 natural 3 
H23 90 0 f 2 a 7.8 4 natural 4 

 

Table S2. Sample characteristics (macaque). 

The table lists age and sex of the subjects and RNA integrity values of RNA samples 

(RIN - an indicator of RNA quality calculated by Agilent Bioanalyser 2100). Postmortem 

intervals for all individuals were < 20 minutes. The microarray experiments were carried 

out in two batches. Two individuals are included in both batches as technical replicates 

The column with the “Exp” header indicates the experiments each sample was used in: a- 

mRNA microarray, b- miRNA-sequencing.  

ID Year Day Sex Batch Exp RIN 
M1 0 16 m 1, 2 a,b 9.1 
M2 0 20 m 1 a,b 9.9 
M3 0 153 m 1 a,b 9.8 
M4 0 207 m 1 a,b 9.7 
M5 0 310 m 1 a,b 9.5 
M6 2 9 m 1 a,b 9.0 
M7 4 27 m 1 a,b 9.0 
M8 9 104 m 1 a,b 9.0* 
M9 20 91 m 1 a,b 9.0 
M10 22 74 m 1 a,b 8.5* 
M11 28 0 f 1, 2 a,b 7.8 
M12 26 28 m 1 a,b 8.8 
M13 0 22 m 2 a 9.3 
M14 0 151 m 2 a 9.1 
M15 0 179 m 2 a 9.5 
M16 0 237 m 2 a 9.0 
M17 1 84 m 2 a 9.2 
M18 1 242 m 2 a 8.6 
M19 3 40 m 2 a 8.7 
M20 8 16 m 2 a 8.7 
M21 15 3 m 2 a 8.1 
M22 21 8 m 2 a 8.7 
M23 25 166 f 2 a 8.2 
M24 25 0 f 2 a 8.8 

* RIN could not be calculated by the machine, but was estimated from the gel pictures. 
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Table S3. Proportions of transition genes in mRNA, miRNA and protein datasets.  

The table shows the proportion of genes identified as “transition genes” (Methods and 

represented in Figure 3A). These are genes that show significant change with age 

(FDR<0.1%), have non-linear trajectories in multiple regression tests and show 

significant transition points (F-test p<0.05). For the protein dataset and a previously 

published human dataset (Somel et al. 2009), we chose genes reliably detected and 

changing significantly with age among the 4,084 age-related genes in the human cortex 

dataset. The transition points and their significance is estimated separately using log 

transformed and linear age scales, which capture developmental and post-developmental 

changes, respectively.  

Dataset Species 
% of age-

related 
genesa 

n. age-
related genes 

% transition 
genes  

(log-age) b 

% transition 
genes 

(linear-age) b 

% union  
(log or 
linear) 

mRNA Human 32.9 4084 60.6 66.8 88.7 
mRNA* Human 21.6 3723 56.6 68.1 85.0 
mRNA Macaque 20.8 2005 27.5 35.5 56.5 
miRNA Human 30.8 115 50.4 38.3 67.0 
miRNA Macaque 20.6 69 29.4 23.5 40.6 
Protein Human 19.7 895 12.5 17.0 25.2 

 

a Proportion of genes showing significant change with age among all expressed genes in a dataset. 
b Proportion of genes showing a significant transition point and having a non-linear trajectory, among all 
genes showing significant change with age. 

* An independent dataset of postnatal mRNA changes in human cortex (Somel et al. 2009). 
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Table S4. miRNA changes with age in human and mouse.  

The table shows the comparison of two studies on mouse post-natal cerebral with miRNA 

expression changes during human development measured in our study. The signs indicate 

increase (+) or decrease (-) with age during development, based on Table 1 in (Dogini et 

al. 2008), visually assessed from Figure 2 in (Smirnova et al. 2005), or calculated using 

linear regression in the present human cortex dataset. NA indicates that the miRNA is not 

present in the human miRNA dataset. (?) indicates an ambiguous case, where the hsa-mir-

140-5p was decreasing while hsa-mir-140-3p was increasing.  

  
mir-
124a 

mir-
125a 

mir-
125b 

mir-
130 

mir-
140 

mir-
205 

mir-
9 

mir-
181a 

mir-
199a 

mir-
301 

Human 
cortex* - - - - ? NA - - - - 
Dogini et 
al. - - - - - - - - - - 
                      

  
mir-
9 

mir-
23 

mir-
29 

mir-
125 

mir-
128           

Human 
cortex* - + + - -           
Smirnova 
et al. - + + - -           

* Present study 

 

 6



Table S5. miRNA-target pairs involved in human cortex development and aging.  

The table shows the miRNA-target gene group pairs chosen based on two criteria: (1) the 

miRNA showing target enrichment in a co-expressed gene group (at HT p<0.05), (2) the 

miRNA showing significantly more negative correlation (at r<-0.75) with its targets in 

that group (at binomial test p<0.05), compared to correlations between miRNAs without 

target enrichment in that group and their targets in that group. The regulators are 

identified based on correlations during development (0-20 years) or aging (20-98 years), 

separately. The target genes listed in the table are those negatively correlated with their 

regulator (at r<-0.75). The columns labeled “Macaque” and “Protein” indicate whether 

the miRNA-target gene group pairs are supported (+) or not (-), either by the rhesus 

macaque data, or by human protein data, respectively. In these cases, we only require a 

higher number of negatively correlated targets per miRNA, compared to the background 

(i.e. negatively correlated targets per non-enriched miRNAs), irrespective of statistical 

significance. NA: the miRNA is not detected in macaque. 

Period Gene 
group miRNA Maca-

que Protein Target genes 

Development 1 hsa-mir-212 - + 

SRGAP2, JARID1B, HN1, AFF2, MAF, 
C7orf60, SEMA4G, OSBPL8, DYRK2, 
LEMD3, DPYSL3, C9orf30, TMEFF1, 
ZNF362, SOS1, SPAST, KIAA1211, SOX5, 
CTDSPL2, SOX4, SOX11, PCGF3 

Development 1 hsa-mir-29a + + 

NID1, SRGAP2, JARID1B, DGKD, KIRREL, 
CLDN1, HN1, MAP2K6, BACH2, CACNG4, 
C11orf57, COMMD2, PTP4A1, KLHDC10, 
AMMECR1L, AFF2, C7orf60, ZNF346, 
RALGPS1, BCORL1, UBTD2, NKIRAS2, 
SERBP1, DCX, RCOR1, ROD1, ROBO1, 
AP3M1, MMP2, PCDHA13, PCDHAC1, 
PCDHA10, PCDHAC2, DTX4, NCOA3, 
KIAA2022, IL17RD,  TET1, VASH1, EDC3, 
ANKRD13B, ISLR2, FAM123B, TRAF4, 
KLHL8, ZBTB10, COL4A2, COL4A1, 
CSNK1G1, EML4, ZNF362, MMP24, NAV2, 
NKAIN1, SPAST, KIAA0895, GNG2, 
WDR40A, FRMD4A, LCORL, MYCN, 
ZNF518B, USP42, DOT1L, PXDN, TUBB2B, 
POLR1D, SDK1, PCGF3 

Development 1 hsa-mir-29b + + 

NID1, SRGAP2, JARID1B, NAV1, DGKD, 
KIRREL, CLDN1, HN1, MAP2K6, BACH2, 
CACNG4, C11orf57, COMMD2, PTP4A1, 
KLHDC10, AMMECR1L, AFF2, C7orf60, 
ZNF346, RALGPS1, BCORL1, UBTD2, 
LSM11, NKIRAS2, SERBP1, DCX, RCOR1, 
ROD1, ROBO1, AP3M1, MMP2, PCDHA13, 
PCDHAC1, PCDHA10, PCDHAC2, DTX4, 
NCOA3, KIAA2022, IL17RD, TET1, VASH1, 
EDC3, ANKRD13B, ISLR2, FAM123B, 
TRAF4, KLHL8, ZBTB10, COL4A2, 
COL4A1, CSNK1G1, EML4, ZNF362, 
MMP24, NAV2, NKAIN1, SPAST, 
KIAA0895, GNG2, WDR40A, FRMD4A, 
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HMGCS1, LCORL, MYCN, USP6NL, 
ZNF518B, USP42, DOT1L, PXDN, TUBB2B, 
POLR1D, SDK1, PCGF3 

Development 1 hsa-mir-29c + + 

NID1, SRGAP2, JARID1B, NAV1, DGKD, 
KIRREL, CLDN1, HN1, MAP2K6, BACH2, 
CACNG4, C11orf57, VANGL1, COMMD2, 
PTP4A1, KLHDC10, AMMECR1L, AFF2, 
C7orf60, ZNF346, RALGPS1, BCORL1, 
UBTD2, LSM11, NKIRAS2, SERBP1, DCX, 
RCOR1, ROD1, ROBO1, AP3M1, MMP2, 
PCDHA13, PCDHAC1, PCDHA10, 
PCDHAC2, DTX4, NCOA3, KIAA2022, 
IL17RD, TET1, VASH1, EDC3, ANKRD13B, 
ISLR2, FAM123B, TRAF4, KLHL8, ZBTB10, 
COL4A2, COL4A1, CSNK1G1, EML4, 
ZNF362, MMP24, NAV2, NKAIN1, SPAST, 
KIAA0895, GNG2, WDR40A, FRMD4A, 
HMGCS1, LCORL, MYCN, USP6NL, 
ZNF518B, USP42, DOT1L, PXDN, TUBB2B, 
POLR1D, SDK1, PCGF3 

Development 1 
hsa-mir-338-

5p + + 

SRGAP2, JARID1B, KIAA0408, C6orf174, 
MARCKS, BACH2, RND3, ACVR2A, 
MED13, PTP4A1, AMMECR1L, ATXN7L1, 
BCORL1, USP15, TSHZ3, RNF139, AP3M1, 
B4GALT5, NNAT, CSNK1G1, ZNF362, 
SPAST, FRMD4A, MYCN, AFAP1, MEIS2, 
WHSC1, BTG3 

Development 1 
hsa-mir-499-

5p + + 

TRIM67, SRGAP2, MARCKS, MED13, 
PTP4A1, DYRK2, LRCH2, ZSWIM5, 
RRAGB, CSNK1G1, FAM110B, EML4, 
NAV2, SOX5, EIF4G2, WDR40A 

Development 4 hsa-mir-34a + + 

GREM2, TNRC4, CAMSAP1, WDR68, 
TANC2, NAV3, LRRC7, SLC16A2, E2F5, 
BMP3, FKBP1B, PTPRD, GRM7 

Development 4 
hsa-mir-34c-

5p + + 

GREM2, TNRC4, CAMSAP1, WDR68, 
TANC2, NAV3, LRRC7, SLC16A2, E2F5, 
BMP3, EVI5L, FOXJ2, PTPRD, GRM7 

Development 6 hsa-mir-212 + + 
HNRNPU, RC3H1, APAF1, ZNF644, 
ZCCHC11, CCDC88A, CBFA2T2, SLAIN2 

Development 6 hsa-mir-22 NA - 
LAMC1, HNRNPH1, MYST4, CHD9, MURC, 
TET2, C5orf24, EPC1 

Development 6 hsa-mir-222 - + 
APAF1, REV1, MED1, TET2, RFX7, SLAIN2, 
ATAD2B 

Development 6 hsa-mir-23b + + 

HNRNPU, ENAH, ZNF292, ZC3H12C, 
CTTNBP2NL, APAF1, ATP11C, CFDP1, 
BTAF1, MTSS1, ADNP, PBRM1, QSER1, 
SETD2, UBA6, TNPO1 

Development 6 hsa-mir-29a + + 

ENAH, LAMC1, DYNLT1, REV3L, 
SH3GLB1, SH3PXD2B, MARK3, BRWD3, 
C5orf24, NUP160, CCDC88A, C16orf88, 
EPC1, RFX7, RNF122, ZNF532, LRP6, 
ATAD2B, SCML2 

Development 6 hsa-mir-29b + + 

ENAH, LAMC1, DYNLT1, REV3L, 
SH3GLB1, SH3PXD2B, MARK3, BRWD3, 
C5orf24, NUP160, CCDC88A, C16orf88, 
EPC1, RFX7, RNF122, ZNF532, LRP6, 
ATAD2B, SCML2 

Development 6 hsa-mir-29c + + 

ENAH, LAMC1, DYNLT1, REV3L, 
SH3GLB1, SH3PXD2B, MARK3, BRWD3, 
C5orf24, NUP160, CCDC88A, C16orf88, 
EPC1, RFX7, RNF122, ZNF532, LRP6, 
ATAD2B, SCML2 

Development 6 hsa-mir-433 - + 
HNRNPU, ENAH, LAMC1, MARK3, MED1, 
CHD9, TIA1, PBRM1, CEP135 

Aging 4 hsa-mir-1271 + + 

ARL4C, UCK2, RAP2B, ODZ4, L1CAM, 
LRRC7, GRIA1, TSPAN14, EPHA3, SEPT11, 
MYO16, CUGBP2, BASP1, GRM7 

Aging 4 hsa-mir-33b + - 
PTGFRN, TANC2, ADRA2A, LHX6, REEP1, 
ROBO2, GRIN3A, PRICKLE2, CALN1, 
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BMP3, RNF165, NRIP1 

Aging 4 hsa-mir-34a + + 

GREM2, TNRC4, DPYSL4, CAMSAP1, 
WDR68, TANC2, NAV3, NRXN2, SLC16A2, 
B4GALT2, CALN1, RGMB, EVI5L, PNOC, 
FKBP1B, FOXJ2, RTN4RL1 

Aging 6 hsa-mir-181c + + 

ENAH, MLL3, BPTF, ZNF292, ATP11C, 
CHD9, QSER1, BIRC6, CEP135, TNPO1, 
LRP6 

Aging 6 hsa-mir-222 - + 
SH3PXD2B, MED1, TET2, CCDC88A, 
ATAD2B 

Aging 6 hsa-mir-433 + + MED1, CHD9, TIA1, PBRM1, CEP135 
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Table S6. miRNA-target pairs overlapping with experimentally verified target sets.  

The table lists miRNA-target gene pairs predicted in the current study (based on the 

target site enrichment and correlation tests; shown in Table S5), which overlap with four 

datasets of experimentally verified miRNA targets: Tarbase (Papadopoulos et al. 2009), 

Mirwalk (http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/contact.html), Khan et al. 

(Khan et al. 2009) and Baek et al. (Baek et al. 2008). Left columns show a particular 

miRNA and its targets found in both the current study and the study/database in question. 

Right columns indicate whether the relationship was estimated in development or aging 

(using 20 years of age as cutoff). The significance of each overlap (“p-value”) was 

estimated by a randomization test (Methods). Expected: the number of target-gene pairs 

expected to overlap between the current study and a particular database by chance.  

  
Baek et al 2008 
miR-181 
TNPO1 
ATP11C 
ENAH 

Aging 

p-value=0.002 
Expected=0  
Khan et al 2009 
miR-34a 
E2F5 

Development 

miR-34c-5p 
EVI5L 

Development 

miR-34a 
FOXJ2 
DPYSL4 

Aging 

p-value<0.001 
Expected =0  
Tarbase 
miR-29c 
COL4A1 
COL4A2 
LAMC1 

Development 

p-value<0.001 
Expected =0  
Mirwalk 
miR-29a 
COL4A1 
COL4A2 
LAMC1 

Development 

miR-29b 
COL4A1 

Development 
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COL4A2 
NKIRAS2 
SERBP1 
LAMC1 
miR-29c 
COL4A1 
COL4A2 
LAMC1 

Development 

miR-34a 
GRM7 
NAV3 

Development 

miR-34a 
FOXJ2 
EVI5L 
NAV3 
B4GALT2 

Aging 

p-value=0.003 
Expected =3.5 
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Table S7. Gene Ontology categories enriched among gene groups.  

The table shows results from an enrichment analysis of gene groups among Gene 

Ontology (GO) “biological process” categories (Ashburner et al. 2000), conducted using 

the func_hyper program (Prüfer et al. 2007). Each gene group is compared to all 4,084 

age-related genes. For each gene group, GO categories are chosen based on enrichment in 

genes in that group at HT p<0.05. The table shows five significantly enriched categories 

with the largest numbers of genes. The global p-value column indicates the probability 

that the overall distribution of genes in test group among all GO “biological process” 

categories is non-random compared to the background group, estimated by 1,000 

permutations of genes across gene groups (Prüfer et al. 2007). Note that not all co-

expressed groups are significant in the global enrichment test. 

 

Gene 
group 

Global 
p Enriched Gene Ontology categories 

1 0

R
R

m
p

R
o

t
D

d

N
d

P
r
t
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d
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ranscription, 
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ell cycle 

2 0
P

t

I
p

t

C
h

E
t

c

N
t

.004 rotein 
ransport 

ntracellular 
rotein 

ransport 

ellular 
omeostasis 

lectron 
ransport 
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eurotransmitter 
ransport 

3 0
O
r

R
w

C
d

i
t

F
b

p

A
c
p

.005 xidation 
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iosynthetic 
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mino acid 
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4 0
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c
C

C
a

P
i

N
d
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ommunication ell motion ell-cell 
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otassium 

on transport 
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5 0 T

R
o

b
p

O
p
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f 

iosynthetic 
rocess 

xidative 
hosphorylation 

E
t

c

A
b

p

lectron 
ransport 
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TP 
iosynthetic 

rocess 

6 0
R

m
p

R
o

t
D

d

m
p

N
r

g
e

C
m

.003 
NA 
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rocess 
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f 
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rocessing 
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7 0
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Table S8. KEGG pathways enriched among gene groups.  

The table shows results from an enrichment analysis of gene groups among KEGG 

pathway categories (Kanehisa et al. 2008), conducted using in-house R code following 

the same scheme as the func_hyper program (Prüfer et al. 2007). Each gene group is 

compared to all 4,084 age-related genes. For each gene group, KEGG categories are 

chosen based on enrichment in genes in that group at HT p<0.05. The table shows five 

enriched categories with the largest number of genes. The global p-value column 

indicates the probability that, for each gene group, the distribution of genes among all 

KEGG categories is non-random, estimated by 1,000 permutations of genes across gene 

groups (Methods).  

 

Gene 
group 

G
p

E
lobal 

 
nriched KEGG pathways 

1 0
P

c
c

.134 
athways in 
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Natural killer 
cell mediated 

ytotoxicity 
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5 0
M
p p
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Supplemental Figures 

 

Figure S1. Age effect on expression and correlation between datasets.  

(A) Amount of variance explained by age in the mRNA, miRNA and protein datasets, 

calculated using polynomial regression models. The distributions represent age effect in 

batch 1 (dark blue) and batch 2 (light blue) samples of the mRNA dataset and age effect 

in miRNA (red) or protein expression (purple) among the same 12 batch 1 individuals. (B) 

The distribution of Pearson correlation coefficients age-related genes across genes in the 

human cortex dataset used in this study and reliably measured in a second (Somel et al. 

2009) or third (Lu et al. 2004) human cortical gene expression dataset (3723 and 2038 
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genes, respectively). The y-axis represents gene frequency as Gaussian kernel density. 

The correlations are based on spline curves describing expression change with age 

(degrees of freedom=3) estimated for each gene in each pair of datasets, calculated for 

the common age window between two datasets. Note that all three experiments involve 

approximately the same brain region (prefrontal cortex), all use different Affymetrix 

platforms. Two of 44 individuals (with ages 8 and 22.9) in the second dataset (the DFPLC 

dataset in (Somel et al. 2009)) overlap with those in the current dataset. (C) Expression 

change trends between development and aging. 4,084 age-related genes in the human 

cortex dataset are classified as being up- or down-regulated during development or aging 

(before and after 20 years of age, respectively). Expression change trends are estimated 

based on Pearson correlation between age and expression levels during either period. 

Genes are sorted at different correlation cutoffs, as indicated on the x-axis. The “Up-Up” 

and “Down-Down” labels represent up-regulation and down-regulation in both 

development and aging, respectively. The “Down-Up” and “Up-Down” labels represent 

down-regulation in development and up-regulation in aging, and vice versa. (D) 

Correlation between mRNA and protein expression changes in the human prefrontal 

cortex. The 901 genes shown in the histogram are chosen as expressed at reliable levels 

in the protein dataset (total peptide reads≥20) and showing significant expression change 

with age in the mRNA dataset. The curve represents correlations based on interpolated 

points from cubic spline curves, describing expression change with age in protein and 

mRNA.  
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Figure S2. Correlation among genes within gene groups.  

Left panel: distribution of Pearson correlation coefficients between each gene groups’ 

members’ expression profiles and gene groups’ average. Other panels: Cubic spline 

curves representing standardized expression profiles of each member gene of each group. 

The grey line indicates the mean. The y-axis shows the standardized expression levels of 

genes, the x-axis shows age of individuals, in (age)1/4 scale.  
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Figure S3. Co-expressed mRNA and protein groups. 

The graph shows the mean expression levels among co-expressed mRNA and protein 

groups in the human cortex, plotted against age. (A-B) 4,084 age-related genes are 

clustered into either 8 (A) or 12 groups (B) using k-means clustering, based on their 

normalized expression profiles among 23 individuals in the human cortex mRNA dataset. 

Notably, when both groupings are tested for enrichment in miRNA targets (Methods), we 

find target enrichment in similar expression change patterns (groups showing an excess 

of miRNA targets are indicated by the red frames). (C) 8 k-means clusters of 738 age-

related proteins in the human cortex protein expression dataset, based on 12 individuals. 

Age-related proteins were chosen based on the age-test (at F-test p<0.01, FDR<15%). In 

all panels, the points represent the mean standardized (z-transformed) expression level of 

all genes in a group, per individual. The vertical bars indicate the expression variation in 

the 25%-75% quantile range. The fitted lines correspond to the spline curves and 

summarize mean expression change with age within the gene group. 
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Figure S4. Gene groups showing reversal. 

The figure shows results k-means clustering of age-related genes, using 2, 3 and 4 groups. 

The y-axis shows the mean standardized expression levels of genes in a group, the x-axis 

shows age of individuals, in (age)1/4 scale. Vertical bars show the standard deviation 

across genes in a group. Notice that reversal between expression changes in early and late 

life phases can already be detected at the 3 group level. 
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Figure S5. Examples of mRNA expression changes during aging.  

The plots show mRNA expression trajectories of genes with strong correlation (Pearson 

|r|>0.8, p<0.01) between expression and age after 20 years of age and with no correlation 

(|r|<0.2, p>0.5) before 20 years of age, in the human cortex. The 40 examples are 

randomly chosen among the total of 157 such “aging only” genes found in the human 

cortex dataset. The y-axis shows the standardized expression levels of genes, the x-axis 

shows age of individuals, in (age)1/4 scale. Dots represent expression levels of individuals, 

lines represent cubic spline curves. Notably, despite being chosen for showing no 

statistically significant correlation during development, many genes show visible 

tendencies of change with age before 20 years of age (shown as the dotted vertical line), 

although blurred by large inter-individual variance. Thus, genes that show expression 

changes exclusive to aging are rare. Furthermore, we test whether these genes show 

significant functional differentiation from gene groups with similar profiles but with clear 

developmental change trajectories. Specifically, we compare “aging only” genes that 

decrease during aging, with genes in group 4 as defined in the main text (Figure 2). We 

similarly compare “aging only” genes that increase during aging with genes in group 7. 

In both cases, we find no significant differentiation between the two groups using the 

FUNC tool (global enrichment p> 0.05).  
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Figure S6. Decreasing magnitude of expression changes in the brain during lifetime. 

(A) Absolute difference in expression levels between individuals of consecutive age, 

normalized by their age difference. The expression differences are calculated using 

expression levels standardized to mean=0 and standard deviation=1, per gene. (B) Same 

as Panel A, but the y-axis is log transformed to display changes in late life. (C) Global 

expression change in a single dimension. We employed multidimensional scaling (using 

the “isoMDS” function in the R “MASS” package) to calculate a single value 

summarizing expression variation across all expressed genes (following (Somel et al. 

2009)). The measure is analogous to the first principle component of a PCA. Note the 

large magnitude of change in early life, which subsides by adolescence. In Panels A-C, x-
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axes show individuals’ age, in (age)1/4 scale. (D) Correlation of expression changes with 

age during development (<20 years of age) and aging (>20) in the human prefrontal 

cortex. The x-axis shows Pearson correlation coefficient between expression and 

individual age. The y-axis shows the relative frequency of correlation values across age-

related genes, calculated using Gaussian kernel density estimation (using the “density” 

function in R). Note the lower correlations during aging relative to during development. 
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Figure S7. miRNA-target regulation prediction across lifespan. 

Our regulator prediction uses 20 years of age as division point between development and 

aging. Here we tested the influence of the division point choice on regulator estimation. 

The figure shows the putative regulator miRNA-gene group pairs, estimated during 

development and aging (left and right panels, respectively), using alternative division 

points (4, 10, 40, and 60 years of age). Regulator miRNA-gene group pairs are estimated 

using the distribution of correlation coefficients across individuals in that age range. E.g. 

at division point 40, we calculate correlations across all individuals younger than 40 

(“development”) and older than 40 (“aging”). Red: a miRNA-gene group pair is 

supported by excess of negative correlations, using a certain division point. Yellow: a pair 

is not supported. Dark red: miRNA-gene group pairs estimated using 20 years as division 

point and reported in the main text and Table S5 (also highlighted grey). Pairs highlighted 

light brown are estimated using other division points. Notice that putative miRNA-gene 

group pairs estimated using 20 years tend to be supported by other division points. 
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Figure S8. Testing miRNA regulation of mRNA changes. 

(A) Excess of negative correlations between miRNA-target pairs in the human dataset. In 

contrast to Figure 4A, correlations here are based on mRNA and miRNA/TF levels 

interpolated using spline models of expression change with age (degrees of freedom = 3). 

This step ensures that the miRNA-mRNA correlations are largely independent of 

individual variation unrelated to age. Left panel: The density distribution of Pearson 

correlation coefficients between miRNA and genes, both showing significant expression 

change with age. The colored lines (red) indicate correlations between regulators and 

their targets. The grey lines indicate correlations between regulators and non-targets 

(genes not supposed to be targeted by those regulators) and represent the background. 

Right panel: The difference between the density distributions of regulator-target 

correlations and regulator - non-target correlations. The grey lines represent 100 

simulation results, where a selection of random regulator-target pairs, the same number as 

regulator-target pairs, were randomly chosen and compared to the background. (B) 

Excess of negative correlations between miRNA-target pairs in the rhesus macaque 

dataset. The two panels are drawn following panel (A), using correlations based on 

original expression data in the rhesus macaque dataset (i.e. without interpolation). (C) An 

example of coordinated divergence between human and rhesus macaque expression 

profiles for miR-33b and its 12 target genes falling into co-expressed group 4. The y-axis 
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represents the z-transformed miRNA and mean mRNA expression levels, and the solid 

lines show spline curves of expression changes with age. (D) Testing whether miRNA 

expression divergence between human and rhesus macaque is reflected in their target 

gene expression. The y-axis shows the proportion of putative regulatory miRNA-target 

pairs (Table S5) that show coordinated human-macaque expression divergence, compared 

to random miRNA-target pairs (Methods). The statistics are calculated separately for 

development and for aging. Here and in panel E asterisks indicate significance based on 

HT. ***: p<0.001, **: p<0.01, *: p<0.05, o: p<0.10. (E) Testing whether a substitution in 

the miRNA binding site in rhesus macaque causes dysregulation, i.e. loss of correlation 

between miRNA and target gene expression in rhesus macaque. The y-axis shows the 

proportion of putative regulatory miRNA-target pairs that contain a mutation in the 

rhesus macaque binding site and lack miRNA-target correlation in macaques (i.e. that are 

dysregulated). The proportion is compared to putative regulatory miRNA-target pairs that 

do not contain a mutation, but are dysregulated in macaque. The numbers above the bars 

indicate the number of mutated pairs observed at that correlation cutoff. (F) Sequence 

identity between human and macaque mature miRNA sequences detected in both species 

(n=306). 
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Figure S9. Transcription factor (TF) regulation of mRNA changes with age. 

(A) Excess of positive and negative correlations between TF-target pairs in the human 

and rhesus macaque datasets. The two panels are drawn based on TF and their predicted 

target expression values using the same procedure as in Figure S8A and Figure S8B. The 

leftmost panels show excess of TF-target correlations in the human dataset calculated 

based on interpolated data. The rightmost panels show excess of TF-target correlations in 

the macaque, based on non-interpolated data. (B-C) Excess of negative or positive 

correlations among TF-target pairs in three selected gene groups.�The y-axis indicates 

the proportion of TF-target pairs that show a minimum correlation. The x-axis shows the 

Pearson correlation cutoff. The colored bars indicate the proportion of above-cutoff 

correlations among TFs that show target enrichment in a gene group (at HT p<0.05) and 

their targets in that group. The grey shaded bars indicate the proportion of above-cutoff 

correlations among TFs without target enrichment in a gene group (at HT p>=0.05) and 
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their targets in that group. The TFs shown above each gene group indicate those that have 

significantly more negatively/positively correlated targets than in the background (at r<-

0.75 or r>0.75), at binomial test p<0.05 (Methods).� The difference between Figure 

S9B-C and Figure 5B is that in the latter, negative and positive correlations are combined. 
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Figure S10. Gene Ontology and KEGG categories enriched in miRNA and TF 

targets. 

We tested gene sets targeted by putative miRNA regulators for enrichment in Gene 

Ontology biological process categories (Ashburner et al. 2000) or KEGG pathways 

(Kanehisa et al. 2008).�GO and KEGG categories were pre-selected based on their 

enrichment in the respective gene groups (Table S7 and Table S8, Methods). These gene 

sets were compared to two different backgrounds: (a) all 4,084 age-related genes 

(asterisks on the right), (b) genes in the particular gene group (asterisks on the left). The 

significance level labels indicate *: p<0.05, o: p<0.10. The results are calculated 

separately for development (A) and aging (B). 
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Figure S11. Promoter GC and phylogenetic conservation levels among gene groups. 

(A) The average promoter GC content among genes in the 8 co-expressed gene groups. 

The GC content was calculated for +/- 2000 kb of the transcription start site of each 

Ensembl gene. The error bars show the standard error of the mean. (B-C) Phylogenetic 

conservation among age-related genes in the 8 co-expressed mRNA groups. (B) Median 

3’ UTR and promoter conservation scores among gene groups. The conservation scores 

are calculated per gene as average Phastcons scores in 3’ UTR or promoter regions, 

divided by intronic conservation scores to control for mutation rate differences (Methods). 

The y-axis shows the z-transformed median conservation score across gene groups. 

Positive values indicate above-average conservation within gene groups. In both panels, 

vertical bars indicate 95% confidence intervals estimated by 1,000 bootstraps across 

genes within groups. (C) Amino acid sequence conservation rates among gene groups. 

The y-axis shows the z-transformed median conservation score (negative dN/dS) across 

groups. The rates are calculated between human and mouse, and human and rhesus 

macaque genomes, obtained from Ensembl (Hubbard et al. 2007). 
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Figure S12. Match between human and macaque transition points of expression 

change with age. 

The y-axis shows relative frequency of transition points across age-related genes, 

calculated using Gaussian kernel density estimation (using the “density” function in R). 

The x-axis shows transition points of expression change (see Figure 3), in (age)1/4 scale. 

Here we estimate macaque transition points while transforming macaque ages based on a 

regression of life-history traits between human and rhesus macaque (Text S1). This yields 

the dark blue and dark red curves for macaque mRNA and miRNA, respectively. Dashed 

lines: transition point distributions calculated using the original macaque ages. The red 

and blue curves are human transition point distributions for mRNA and miRNA, 

respectively. Note that the age-transformation yields similar transition point distributions 

between the two species. 
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Figure S13. Human-macaque differences in development and aging. 

(A) Correlation of expression changes between human and rhesus macaque during brain 

development (<20 years of age for human, <4 years of age in macaque; red curve), and 

aging (>20 and >4, respectively; blue curve). The grey dotted line indicates correlation 

across the full lifespan. Pearson correlations are calculated after transforming macaque 

ages based on a regression of life-history traits between human and rhesus macaque (Text 

S1), calculating cubic spline curves using (age) 1/4 scale, and interpolating points per 

species. The y-axis shows the relative frequency of correlation values across all age-
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related human genes with macaque orthologs (n=3,233), calculated using Gaussian kernel 

density estimation (using the “density” function in R). (B) The number of anti-correlated 

genes at different cutoffs of Pearson correlation between human and macaque, in 

development and aging. This is based on the same results as in panel A. (C) Anti-

correlated genes between human and macaque in development. Genes are chosen at 

Pearson correlation cutoff r<-0.75 and clustered into 6 groups using k-means clustering. 

The largest group of anti-correlated genes is shown. The y-axis shows the mean 

standardized expression levels of genes in a group, the x-axis shows age of individuals, in 

(age in days)1/4 scale. Vertical bars show the standard deviation across genes in a group. 

Each point represents an individual. Light blue: human, green: macaque. Note that 

expression changes in the later phase of life are similar. (D) Anti-correlated genes 

between human and macaque during aging. We use the same procedure to choose and 

lot genes as in panel C.  

 

p
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Figure S14. Modeling expression changes with alternative age scales. 

Mean normalized expression levels of genes in co-expressed groups 4 and 6 in the human 

mRNA dataset, plotted against the age of individuals on different scales. Note the non-

uniform distribution of subjects across the age scale when linear or log-transformed age 

scales are used. 
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Figure S15. Scheme for identifying miRNA regulators of mRNA change. 
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Text S1 

The R code used in the analyses is available at 

http://www.picb.ac.cn/Comparative/data.html. 

 
Sample collection and RNA isolation.  

Healthy human tissue was obtained from the NICHD Brain and Tissue Bank for 

Developmental Disorders at the University of Maryland, Baltimore, MD, USA, and the 

Chinese Brain Bank Center, Wuhan, PR China. Rhesus macaque samples were obtained 

from the Suzhou Experimental Animal Center, Suzhou, PR China.  

The role of the NICHD Brain and Tissue Bank is to distribute tissue and, therefore, 

cannot endorse the studies performed or the interpretation of results. Informed consent 

for use of the human tissues for research was obtained in writing from all donors or the 

next of kin. All subjects were defined as normal controls by forensic pathologists at the 

NICHD Brain and Tissue Bank. No subjects who suffered a prolonged agonal state were 

included. 

All samples were taken from the frontal part of the superior frontal gyrus, a cortical 

region approximately corresponding to Brodmann area 9. For all samples, dissections 

contained a 2:1 grey matter to white matter volume ratio. 

 

Hybridization to microarrays.  

Total RNA was extracted from approximately 100mg of the dissected tissue sample using 

the standard TriZOL® protocol with no modifications, and purified with the QIAGEN® 

RNeasy MiniElute kit following the "RNA cleanup" protocol. RNA quality was assessed 

with the Agilent® 2100 Bioanalyzer system. For each sample, 2 micrograms of isolated 

total RNA was used as starting material for the standard Affymetrix eukaryotic target 
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preparation protocol (see 

http://www.affymetrix.com/products_services/arrays/specific/hugene_1_0_st.affx). Each 

sample was then hybridized to a Affymetrix® Human Gene 1.0 ST array. The samples 

were prepared and processed in two batches, including 12-14 human and rhesus samples 

each. Age distributions were similar across batches. To estimate technical variance, for 

each species, two individual samples were processed twice each, in both batches. 

Raw and processed data was submitted to NCBI GEO and can be accessed at 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18069. 

 

Microarray data preprocessing.  

We used BLAT to align all Human Gene 1.0 ST probes to the human (hg18) or rhesus 

macaque genomes (rhemac2) downloaded from the UCSC Genome Browser database 

(Karolchik et al. 2008). For calculating expression levels, we only included probes that 

perfectly match the respective species’ genome sequence, and at a unique location.  

Note that we do not use rhesus macaque genome annotation, and assume that transcript 

structure is conserved between the species. There will be exceptions to this, but because 

probes in each gene’s probe set are distributed across the transcript length, we expect 

such instances to have only negligible effect on average expression levels used in the 

analysis.  

We used the R Bioconductor “affy” library (Gautier et al. 2004) to extract probe 

intensities from the raw data files. These were then corrected for the background signal 

(using "antigenomic" probes of the same GC content), log-transformed, and quantile 

normalized. Intensity values per transcript were calculated by median polishing, 

following standard procedure (Gautier et al. 2004). 
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Criteria for probeset expression.  

The following criteria were used to determine expressed transcripts: (i) In each sample, a 

probe with intensity >95th percentile of the antigenomic probes' intensity distribution, of 

the same GC content, was accepted as reliable. (ii) In each sample, a transcript was 

considered expressed only if it contained >7 reliable probes, and the majority of its 

probes were reliable. (iii) Among all samples in a dataset, a transcript was considered 

reliably expressed if it was expressed in ≥2 individuals per dataset. We mapped transcript 

IDs to Ensemble Genes using the table provided at the Affymetrix support site 

(“HuGene-1_0-st-v1.na26.hg18.transcript.csv”). For genes with multiple transcripts, we 

chose the transcript with the highest mean expression level as representative. This step 

avoids multiple representation of the same gene in downstream analysis. 

 

Normalization of batches.  

For both human and macaque, experimental samples were processed in two batches 

containing 12-14 individuals each, with similar ages. Preprocessing was also conducted 

separately per batch. Because the sample preparation and hybridization order can have an 

effect on mean expression levels or variance, we removed any such differences between 

batches: namely, for each gene in each batch, we z-transformed the expression levels 

(normalized the mean to 0 and variance to 1) and thereafter merged the datasets for each 

species. 

 

miRNA isolation, sequencing, and quantification.  

The procedures for microRNA experiments and pre-analyses are described in (Hu et al. 
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2009). Briefly, low molecular weight RNA was isolated, ligated to adapters, amplified, 

and sequenced following the Small RNA Sample Preparation Protocol (Illumina, USA) 

without modification. Technical replication was completed by independently processing 

the samples starting from the low molecular weight RNA isolation step.  

For data preprocessing, adapter sequences were trimmed from the 3'-end of the reads as 

described in (Hu et al. 2009). Trimmed sequences (18-26nt long) were mapped to the 

human genome (hg18) using the Illumina-supplied ELAND algorithm, requiring perfect 

match. Per sample, ~60% of sequence reads could be mapped, whereas <1% are expected 

by chance, as determined by mapping scrambled reads. To annotate and quantify 

miRNAs, we used miRBase version 11 (Griffiths-Jones et al. 2006), only including 

sequences with copy number ≥2. We required all sequences to map within three 

nucleotides up- / down-stream of the annotated 5'-position of the mature miRNAs. For 

each mature miRNA, the sequence with the maximal copy number was designated as the 

reference sequence. The expression level of each miRNA was then calculated as a sum of 

the copy number of the reference sequence and the sequences mapping at the same 5'-end 

position as the reference sequence. Raw and processed data was submitted to NCBI GEO 

and can be accessed at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18069. 

 

Novel miRNA identification.  

For the miRNA precursors with one annotated miRNA, small RNA sequences mapping to 

the opposite arm of the precursor hairpin were also included in the analysis as novel 

miRNA (Hu et al. 2009). The sequence with the maximal copy number was considered a 

novel miRNA candidate. As a further criterion, we required the existence of at least 14 bp 

overlap between the annotated miRNA and the novel miRNA candidate within the 
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precursor hairpin. The quantification process for novel miRNA was the same as for 

known miRNA. 

 

Rhesus macaque miRNA identification.  

For quantifying macaque miRNAs, we used human miRNA sequences downloaded from 

miRBase (v.11) (n=944). First, for each human miRNA, we extracted the most likely 

miRNA precursor ortholog in macaque. Specifically, we mapped all annotated human 

miRNA precursors to the rhesus macaque genome (rhemac2) using reciprocal BLAST 

with the following parameters: [-F F -b 1 –e 10-5]. We further required the length of hit 

sequence to be longer than 70% and shorter than 130% of the query sequence. Next, we 

extracted mature miRNAs based on the aligned precursor sequences using the Clustalw2 

alignment program, with default parameters as in (http://www.ebi.ac.uk/clustalw/). Using 

an alternative software, Muscle (http://www.ebi.ac.uk/muscle/), yields essentially the 

same results (data not shown). We thus identified 776 orthologous miRNA in macaque, 

306 of which are detected (total expression >100 reads) in our expression dataset. Note 

that highly expressed miRNA, which we use in downstream analysis, tend to be highly 

conserved at the sequence level (Liang and Li 2009). Consistently, among all orthologs, 

76% of identified sequences share identical mature sequences between human and 

macaque, and among the 306 detected miRNAs, this proportion is 97% (Figure S8F). 

Quantification of macaque miRNA expression levels was performed as for human 

expression levels. 

 

Protein sample preparation, sequencing and peptide identification.  

For extraction, we used 100mg frozen prefrontal cortex samples from 12 human 
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individuals (Table S1). The 12 human samples were processed in two batches with 6 

individuals in each, with similar age distributions in both batches. Tissue samples were 

minced, washed in ice-cold PBS and homogenized in ice-cold lysis buffer (8 M urea, 4% 

CHAPS, 65 mM DTT, 40 mM Tris, cocktail protease inhibitor, 100 mg of tissue/1 ml) 

using an electric homogenizer. The resulting protein solutions were sonicated on ice for a 

total of 3 minutes and then centrifugated at 25,000g for 1 hour at 4°C to remove DNA, 

RNA and other cell debris. Next, the protein supernatants were precipitated using 5× 

volumes of precipitation solution (ethanol: acetone: acetic acid = 50:50:0.1, volume ratio) 

at 4°C overnight, centrifugated and resolubilized in denaturing buffer [6 M guanidine 

hydrochloride, 100mM Tris, cocktail protease inhibitor, phosphatase inhibitors (1mM 

sodium orthovanadate and 1mM sodium fluoride), pH 8.3]. Protein concentration was 

determined using the Bradford assay. Next, 600μg of protein from each sample was 

reduced with DTT (100μg / 1μl 1M DTT), alkylated with IAA (100μg / 2μl 1M IAA), 

and precipitated again at 4°C overnight (as described above). After centrifugation, the 

resulting precipitates were resolubilized in digestion buffer (100mM ammonium 

bicarbonate) and incubated with Trypsin (enzyme:protein = 1:40, mass ratio) at 37°C for 

20 hours, followed by ultrafiltration and lyophilization.  

Each peptide sample was resolubilized in 50μl SCX loading buffer, loaded on a SCX 

(Strong Cation Exchange) column (Column Technology Inc., CA, USA) and eluted using 

a pH continuous gradient buffer (from pH 2.5-8.5), resulting in 10 fractions. Each of 

these fractions was then automatically loaded on one of two RP (Reversed Phase) 

alternative trap columns, by switching to the other RP column every 3 hours. Notably, the 

pH gradient-based elution yields more basic peptides than the commonly used salt-based 
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elution and also increases sequence coverage and concomitant confidence levels in 

protein identification (Zhou et al. 2007). Analysis was performed on the LTQ mass 

spectrometer equipped with a metal needle electrospray interface mass spectrometer 

(ThermoFinnigan, San Jose, CA, USA) in a data-dependent collection model (each full 

scan followed by ten MS/MS scans of most intense ions).  

The peptides were identified by searching against an IPI human database (IPI human 

v3.61) using the SEQUEST program in BioWorks™ 3.2 software suite. We allowed a 

mass tolerance of 3.0Da and one missed cleavage site of trypsin. Cysteine 

carboxyamidomethlation was set as static modification and methionine oxidation was set 

as variable modification. All output results were filtered and integrated to proteins by an 

in-house software BuildSummary, using common filtering parameters: Xcorr 1.9 for 

charge +1; Xcorr 2.2 for charge +2; Xcorr 3.75 for charge +3 and delta CN above 0.1. By 

reversed database searching, at a cutoff minimum total of 20 peptides among all 12 

samples, the FDR of protein identification was estimated to be 3%. 

 

Protein data preprocessing.  

Peptide identification in the two batches, containing 635,527 and 665,515 total peptide 

counts, were preprocessed separately and subsequently joined together. Peptide IDs were 

mapped to human Ensembl gene IDs using the Ensembl database (v. 55); peptides 

mapping to multiple genes were excluded (188 and 208 peptide IDs out of 7,551 and 

6,996 in the two batches, respectively). If >1 peptide IDs were assigned to an Ensembl 

gene, we calculated expression levels as the mean across peptides. Peptide counts were 

base-two log transformed and quantile normalized for downstream analysis. We restricted 

downstream analysis to proteins with total peptide counts ≥20. The protein expression 
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level dataset is available from 

[http://www.picb.ac.cn/Comparative/data_methods/age_reg_2009/pr_h_cx1.txt].  

 

Age-scales for modeling expression change.  

A log2-age scale is suited for modeling exponential changes during early development 

(e.g. (Clancy et al. 2001; Lu et al. 2001; Shupe et al. 2006)). In contrast, linear age allows 

better identification of linear changes that occur during aging (e.g. (Rodwell et al. 2004; 

Erraji-Benchekroun et al. 2005)). To avoid bias toward development or ageing, we used 

age ranks of the samples to simultaneously capture developmental and aging-related 

changes (Figure S14). Using age ranks also ensures more uniform distribution of samples 

across age scale, compared to the other two scales. At the same time, it limits 

heteroscedasticity across ages, which pertains to the assumption of parametric regression 

models that errors be normally distributed and homogeneous among samples (Sokal and 

Rohlf 1995). We therefore use age-rank-based estimates when testing for age-effects. For 

comparison between two species, we use the log2-age scale, unless otherwise indicated. 

The choice of age scale does not qualitatively affect our results regarding development-

aging reversal or regulation (data now shown). 

 

Variance explained by age and other factors.  

For calculating the average expression variance explained by age, we followed (Somel et 

al. 2009). Briefly, per gene, we fit the following formula:  

Yij = β0i + β1i Aj + β2i Aj
2 + β3i Aj

3 + εij,                                     (1) 

where Yij is the expression level for gene i and subject j, Aj is the age of the subject j 

(transformed to ranks; see above and Figure S14) and εij is the error term. The sum of 
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squared errors in this model are compared to the null model, Yij = β0i + εij.  

For the mRNA microarray datasets, the test was performed on each batch separately. We 

estimated the significance of the proportion of variance explained by age by randomly 

permuting ages of the subjects and repeating the calculation 300 times. 

Using the same scheme, the proportion of expression variance explained by sex, PMI or 

RIN was calculated as approximately 8%, 30% and 30%, respectively. However, these 

proportions were not significantly different from random (permutation test [PT] p>0.05). 

In contrast, age explains 65% and 61% of variance in both batches, while 25% and 27% 

are expected by chance (PT p<0.01). Note that neither sex, PMI nor RIN are correlated 

with individual age. 

 

Comparing human and macaque. To estimate conservation of age-related expression 

change trends in the two species, we calculated Pearson correlations between expression 

profiles of orthologs. The genes were chosen to show significant expression change with 

age, based on the human dataset (4,084 mRNA and 115 miRNA, at FDR<0.1%). The 

correlations were based on interpolated points from spline curves that describe expression 

change with age (degrees of freedom=3), estimated for each gene in each pair of datasets 

and calculated for the overlapping age window in both datasets. 

 

Clustering genes in groups.  

We grouped age-related genes into 8 co-expressed groups using the human mRNA 

dataset of age-related genes (4,084 X 23) using k-means clustering. Before clustering, 

each gene was standardized to mean=0 and standard deviation=1. Because k-means is a 

heuristic algorithm, we repeated the procedure 10,000 times to determine the most 
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frequent constellation (which was 28%, while the next most frequent constellation was 

10%), and used this clustering in downstream analyses. We also performed clustering 

with 12 groups, and repeated the downstream analyses in order to identify the extent our 

results are affected by the initial choice of k (Figure S3). By plotting individual genes’ 

expression profiles, and by calculating the correlation between each group’s average 

profile and member genes’ profiles, we confirmed that the group averages are 

representative of their members (Figure S2). 

 

Transition point analysis.  

We used the following procedure, based on segmental linear regression, to estimate the 

age when early- and late-life expression change trends intersect:  

(i) Fit spline curves to the expression data to describe change with age (with variable 

degrees of freedom, as described in (Somel et al. 2009)).  

(ii) Interpolate 25 points along the age range. Interpolation is done because our sample’s 

ages are not uniform along the age-range, and interpolating renders transition point 

prediction immune to such irregularities.  

(iii) Divide the age-range into two sections at each subpoint within this range (excluding 

the most extreme ones).  

(iv) For the two sections separately, construct two linear regression functions describing 

expression change with age (see Figure 3B).  

(v) Among all subpoints, choose the one at which the two functions explain maximum 

variance as the putative “transition point”.  

(vi) On the original (not interpolated) data, test if fitting two regression models, compared 

to fitting a single linear regression model, is significantly better. The comparison is done 
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with the F-test.  

(vii) Choose “transition genes” that are both age-related (using the age-test described 

above), to which a polynomial regression model fits at least as good as a linear regression 

model, and which show significant (F-test p<0.05) support for a transition point [as 

described in (vi)].  

The whole procedure was performed using a log transformed age scale to identify 

transition points in the early developmental period (e.g. Figure 3B), as well as using the 

linear age scale to identify transition points in the post-developmental period. Figure 3A 

represents both estimates. The proportions of age-related genes/proteins chosen as 

“transition genes” range from 25% in the human protein dataset to 89% in the human 

mRNA dataset (Table S3). See below for a more information on the age range in 

transition point analysis. 

 

Age ranges in transition point analysis.  

Note that, in order to estimate a transition point accurately, we need sufficient 

information about expression change both before and after the candidate point. Therefore, 

it is advisable to limit a search to a range with sufficient numbers of data for earlier and 

older ages. Thus we did not interpolate the whole age-range in the datasets, but started 

from 2 months (the range of the spline curves in Figure 3B), and ended at 70 years.  

In the analysis shown in Figure 3, for macaque, we used the same scale as human. On the 

other hand, in Figure S12, we compared macaque and human, while correcting for life-

history differences between the species. For this, we first calculated the regression 

between time of first and last deciduous tooth eruption, first and last permanent tooth 

eruption, female sexual maturation, first reproduction, and maximum lifespan in human 
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and rhesus macaque, using a number of resources (Smith et al. 1994; Walker et al. 2006a; 

Walker et al. 2006b; de Magalhães and Costa 2009). This yielded the following formula: 

agehuman = 2.257 + 2.953*agemacaque. We then repeated the transition point identification 

procedure after transforming macaque ages based on this formula. 

 

miRNA/TF binding site estimation.  

For estimating conserved miRNA target sites, we used the Conserved Site Context Score 

Table from TargetScan5.0 (Lewis et al. 2005). The EntrezGene IDs were mapped to 

Ensembl gene IDs using the Ensembl database. For estimating conserved TF binding 

sites (TFBS), we used the Ensembl database for gene annotation, and extracted 2,000 bp 

+/- around the transcription start site (TSS) for each gene. We ran the Match™ algorithm, 

which uses the TRANSFAC® database (Kel et al. 2003), on the extracted proximal 

promoter regions, using the input files matrixTFP112.lib and 

vertebrate_non_redundant_minFP.prf. We then calculated average Phastcons 

(conservation) scores, using the UCSC Genome Browser 17-way vertebrate Conserved 

Element Table (Siepel et al. 2005), on each predicted TFBS site. For each candidate 

TFBS, we required that ≥80% of nucleotides have Phastcons score and an average score 

≥0.6.  

TFBS names were mapped to transcription factors using two paths: (a) we used HGNC 

symbols parsed from the Transfac® Matrix Table (v. 11.2). These were mapped to 

Ensembl genes using the HGNC database (www.genenames.org/data/gdlw_index.html). 

(b) We used the UCSC Genome Browser HMR Conserved Transcription Factors Table, 

which contains Transfac TFBS IDs and corresponding SwissProt IDs; the latter were 

mapped to Ensembl genes using the Ensembl database. The genes lists from the two 
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paths were combined, which resulted in 426 TFBS mapped to ≥1 Ensembl gene that were 

also annotated with “transcription factor activity” (GO:0003700) in Ensembl.  

 

Regulator miRNA/TF identification – detailed description.  

In order to restrict the false discovery rate of regulator-target identification, we limited 

the target predictions to genes showing age-related change at F-test p=4*10-6 (the 

Bonferroni correction cutoff). For miRNA/TF, we required evidence for age-related 

change at p<1*10-3 (a more relaxed cutoff was chosen due to the smaller number of 

miRNA/TF, compared to all expressed genes).  

For the identification of miRNA regulators of brain development/aging, we required two 

conditions: (1) Enrichment of targets in one of the 8 co-expressed age-related gene 

groups. For this, we tested if a miRNA’s targets are enriched among genes in a gene 

group using the HT, compared to other miRNAs and all other gene groups (including 

only genes with ≥1 target site). To avoid the influence of miRNA gene families, we 

restricted this comparison to a single test per unique miRNA seed. These results were 

compared to results obtained using randomized gene groups generated by 1,000 

permutations of genes among 8 co-expressed clusters. If a miRNA’s targets were enriched 

in a cluster at HT p<0.05, we considered that miRNA “specific” to that gene group. All 

other miRNA-targets pairs (at p>0.05) were considered “non-specific.” (2) Negative 

correlation with targets in a specific gene group. For this, we calculated correlations 

between the miRNA and its targets. The correlations were separately calculated for 

development and aging periods (with 20 and 5 years as borderline for human and 

macaque, respectively, representing approximate times of age at first reproduction 

(Walker et al. 2006a; Walker et al. 2006b)). For both periods we use data from similar 
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numbers of individuals. Using these correlations, for each miRNA, for each gene group, 

we determined the proportion of negatively correlated miRNA-target pairs in that gene 

group (at correlation cutoff Pearson r<-0.75, p<0.05). Next, for each miRNA that showed 

excess of targets in a particular gene group (as described above), we compared the 

proportion of its negatively correlated targets in that gene group, with the mean 

proportion among all miRNAs that did not show enrichment in that gene group (which 

represents the random background). The proportions were compared using binomial tests 

(BT).  

A putative regulatory miRNA was defined as one that had both a significant excess of 

targets in a gene group (at one-sided HT p<0.05) and a significant excess of negative 

correlation with its targets in that group (at one-sided BT p<0.05) (Figure S15). 

 

Testing predicted regulators – age-independent effects.  

We calculated gene expression profiles using miRNA and mRNA expression levels 

predicted from spline models of expression change with age (degrees of freedom=3), 

instead of the original expression levels. The models were calculated using log and linear 

age scales for estimating developmental and aging-related effects, respectively. If the 

miRNA-mRNA covariance is due to a factor independent of age, we expect to find no 

correlation in this case. Instead, the excess of negative correlations among specific 

miRNA-mRNA pairs became even more prominent (Figure S8A), which indicates that 

the correlations mainly reflect age-related changes.  

 

Testing predicted regulators – conservation in rhesus macaque.  

To identify regulators in rhesus macaque conserved between macaques and humans, we 
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pre-selected miRNA showing the same direction of expression change with age (in either 

the development or aging periods) as in human (67 and 66 miRNAs, respectively, out of 

98 age-related miRNA with macaque orthologs). We then separated these miRNA-gene 

group pairs into “enriched” and “non-enriched” classes, and compared the correlations 

between the two groups, as described above. Note that regulator identification may be 

less precise in the rhesus macaque analysis, as it is based on target enrichment in human 

clusters. Furthermore, the rhesus macaque data, presumably due to its shorter age-range, 

shows less age-related change than human (both in development and aging, and both in 

miRNA and mRNA). There were 10 regulator-target gene group pairs identified for 

development, and 5 identified for aging (Figure 5A). In addition, we checked if putative 

regulator miRNA identified in human show tendency for excess negative correlations 

(mean r<0) with their targets in macaque (Table S5). 

 

Testing predicted regulators – coordinated divergence.  

Here, we tested whether miRNA expression differences between humans and macaques 

would be reflected in expression of their putative target genes. For instance, if a miRNA 

expression change occurs at a later age in humans compared to macaques, would the 

target genes' expression profiles be similarly shifted (Figure S8C)? We first interpolated 

the human and macaque expression-age curves at 25 points along each species’ lifespans, 

for both the miRNA and mRNA datasets. Next, for each orthologous miRNA/mRNA, we 

calculated human-macaque expression level divergence, and standardized these to 

mean=0 and standard deviation=1, per gene. We then calculated the correlations between 

human-macaque miRNA divergence and target mRNA divergence across the 25 

interpolated points. Divergence correlations at r<-0.95 (p<1*10-6) were considered 
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“coordinated” (a stringent cutoff was chosen, as we are using interpolated data here). For 

putative regulatory miRNAs, which are enriched in a gene group and which are 

negatively correlated with their targets in human (see above), we expected to observe 

coordinated divergence between human-macaque. In contrast, we did not expect 

coordinated divergence for background miRNA-target pairs. Indeed, the proportion of 

coordinated divergence among putative regulator miRNA-target pairs is higher than the 

same proportion among miRNA not enriched for target sites in the same gene group 

(Figure S8D). The significance of the difference was calculated using the hypergeometric 

test (HT). 

 

Testing predicted regulators – target site mutation test.  

In another approach, we took advantage of the fact miRNA-based regulation requires 

perfect base-pairing between a 6 to 7 nucleotide stretch in miRNA 5’ end, the “seed” 

region, and gene’s 3’ UTR. Due to sequence differences between the human and the 

rhesus macaque genomes, some of the miRNA binding sites predicted in humans are 

disrupted in macaques. If our predictions are correct, loss of the target sites should disrupt 

miRNA-target relationship, which should be reflected in lack of negative correlation 

between miRNA expression and expression of its target genes, or dysregulation, in rhesus 

macaques. We calculated the number of mutations in the macaque orthologs of human 

miRNA target sites. To define human miRNA target sites, we used the Conserved Site 

Context Score Table from TargetScan5.0 (Lewis et al. 2005). We then extracted the 

corresponding orthologous seed sequences in rhesus macaque from the TargetScan5.0 23-

way UTR sequence alignment table. Next, we divided each seed sequence pair between 

human and macaque into 3 categories based on sequence similarity: (a) containing at 
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least one mutation (among 7,331 miRNA-target pairs, 298 (4.1%) contained at least one 

mutation), (b) exactly the same, (c) uncertain, if a human microRNA target site is missing 

in macaque. Using this data, we calculated the proportion of miRNA-target pairs that 

show negative correlation in human at a certain correlation cutoff, but show weaker 

negative correlation in macaque, which we refer to as dysregulated miRNA-target pairs. 

Next, using the HT, we compared the proportion of dysregulated cases among miRNA-

target pairs with a mutation in macaque, with the proportion of dysregulated cases among 

miRNA-target pairs devoid of mutation (Figure S8E). In this test we only used miRNAs 

that show significant enrichment in the gene groups (see section “Regulator miRNA/TF 

identification”). The proportion of dysregulated pairs was calculated at different cutoffs. 

Disrupted target sites was found to lead to decreased correlation among specific miRNA-

target pairs in macaque: the effect is significant for gene expression changes taking place 

in development (HT p<0.01), although appears only as a tendency for the regulators 

identified for aging (Figure S8E, note the small numbers of mutated miRNA binding 

sites). Hence, a loss of conserved binding sites leads to a loss of regulation, as predicted 

by the consensus model of miRNA function.  

 

Testing predicted regulators – comparison with experimentally verified targets.  

We compared miRNA-target gene pairs estimated in our study with four experimentally 

verified miRNA target gene sets. We used two databases, Tarbase 

(http://diana.cslab.ece.ntua.gr/tarbase/tarbase_download.php) (Papadopoulos et al. 2009) 

and Mirwalk (http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/contact.html, 

unpublished); we also used a recently published study by Khan et al. (Khan et al. 2009), 

which collected results from multiple experiments, and results from Baek et al. (Baek et 
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al. 2008) on mRNA regulation by overexpression of miR-181. All gene sets were 

converted to human Ensembl gene IDs using Ensembl Biomart. Table S6 lists miRNA-

target gene pairs predicted in our study (based on the target site enrichment and 

correlation tests, shown in Table S5) that overlap with each of these four datasets. The 

significance of each overlap was estimated by a randomization test. For this, we used all 

1,771 potential age-related target genes (based on TargetScan (Lewis et al. 2005)). 

Among these genes, we randomly chose and assigned pseudotargets to each miRNA; the 

same number as predicted targets. We then tested the overlaps between the random sets of 

targets, with targets in each database. This was repeated 1,000 times, per database. The p-

value was calculated as the number of times we find an as large or larger overlap between 

pseudotarget sets and the database, as originally observed. The random expectation was 

calculated as the median number of overlapping target-gene pairs in the permutations. 

Note these datasets partially overlap; also, most experiments involve over-expression of a 

miRNA in cell lines (e.g. HeLa cells) and thus represent a quite distinct environment 

compared to the brain. Therefore, finding only limited overlap with these experiments is 

not unexpected. 

 

FDR of regulator prediction.  

We estimated the false discovery rate (FDR) in the binding site enrichment test and the 

regulator-target correlation test using permutation. In the binding site enrichment test, we 

find a total of 90 miRNAs showing enrichment in gene groups (note that one miRNA 

may target multiple groups, and the 90 consists of 80 unique miRNAs). Eighty-three (83) 

of these are enriched in 1, 4, and 6. For FDR estimation, we randomly assigned age-

related genes to gene groups, and calculated the number of regulators with enriched 
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binding sites in these random groups, 1,000 times. Using the median number of miRNAs 

found across the permutations, we estimated an FDR of 24.6%. In the binomial test for 

higher negative correlations between miRNAs and their targets in a gene group, we find 

22 miRNA-target pairs (16 in development, 6 in aging; only using age-related miRNAs). 

Per gene group, we then randomly chose age-related miRNAs without enriched binding 

sites in that group, the same number as age-related miRNAs with enriched binding sites. 

Next we applied the binomial test for higher negative correlations. This was repeated 

1,000 times and yielded a FDR estimate of 52.3%. Note that these could be overestimates, 

as any non-identified regulators in our dataset should have an inflating effect on these 

figures. 

 

Functional analysis.  

We used the func_hyper (Prüfer et al. 2007) program to test for enrichment of gene 

groups in Gene Ontology (GO) categories (Ashburner et al. 2000). In addition to using 

the HT, func_hyper runs a permutation test to determine if the number of significant HT 

results is higher than expected by chance, given multiple testing. It thus calculates a 

“global enrichment p-value”.  We used the same strategy to test for enrichment among 

KEGG pathways (Kanehisa et al. 2008), using in-house code. The Ensembl gene-GO data 

were downloaded from the Ensembl database and Ensembl gene-KEGG data from the 

KEGG database.  

For identifying cell type-specific expression, we used expression levels measured from 

purified mouse neurons, astrocytes and oligodendrocytes (Cahoy et al. 2008). From this 

dataset, for each mouse-human ortholog, we calculated the effect size of each size cell 

type, and assigned genes with effect size >2 as specific to that cell type (this cutoff 
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ensured no overlap between cell type specific gene groups). This procedure yielded 1116, 

965, and 991 human genes specific to neurons, astrocytes and oligodendrocytes, 

respectively.  

For putative targets of miRNAs/TFs identified in this study, we conducted secondary tests 

for functional enrichment. Here we only used the GO/KEGG groups that were previously 

identified as enriched in the respective gene group. This is because the gene numbers are 

too small to pass correction for multiple testing among all GO/KEGG categories. We 

used two backgrounds in these tests: (1) all age-related genes targeted by an age-related 

regulator, (2) all genes in that gene group targeted by an age-related regulator. Test type 

(1) is biased, because we pre-select categories found to be significantly enriched in this 

cluster compared to other age-related genes, and the targets belong to the same cluster. 

For test type (2), we expect no such bias. 

 

Evolutionary conservation analysis.  

We used the PhastCons 18-way Placental Mammal Conservation Track (a subset of the 

28-way Placental Track) from the UCSC Genome Browser to calculate non-coding 

sequence conservation measures (Siepel et al. 2005), and the Ensembl database for gene 

coordinates. For each human gene, we computed mean sequence conservation for (a) 3’ 

UTR, and (b) the proximal promoter, defined as 2,000 bp +/- around the transcription 

start site (TSS) (Xie et al. 2005). For genes with multiple transcripts, we chose the one 

with the largest number of exons. To estimate the basal mutation rate per gene, we used 

intronic conservation (excluding first introns, excluding 100 bp around each splice site, 

and considering only 2,500 bp at each end inside an intron, as used by (Haygood et al. 

2007)). For estimating protein conservation, we used negative dN/dS ratios calculated for 
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mouse-human (hsa-mmus) and macaque-human (hsa-rhemac), downloaded from the 

Ensembl database (v. 55) (Hubbard et al. 2007). Notably, sequence conservation on 

protein-coding regions is the strongest among genes in co-expression groups 4, 5, and 8, 

which are enriched in neuron-specific genes (Figure 6F and Figure S11). Sequence 

conservation on regulatory regions, however, is the strongest amongst genes in groups 1, 

4, 5, and 6 (Figure S11). 

 

Stabilizing Selection Score.  

This score is calculated as the Pearson correlation coefficient between the standardized 

expression levels of an individual, and sequence conservation levels (corrected for 

variation in mutation rate) among the 4,084 age-related genes in the human dataset. Note 

that all four types of conservation values are positively correlated with mean expression 

levels (Spearman rank correlation p<0.05). However, the Stabilizing Selection Score 

(SSS) is calculated between expression levels standardized across the 23 human 

individuals per gene. We also tested whether change in SSS is driven by particular gene 

groups under positive selection. We identified 507 genes potentially under positive 

selection, involved in immune and stress response, involved in reproduction, or with the 

ratio of non-synonymous to synonymous substitution rates (dN/dS)>1 (between human 

and macaque, or human and mouse), using the Ensembl and Gene Ontology databases 

(6,955 such genes in total). Excluding these genes does not affect the decrease in SSS 

with age (Figure 7B). Similarly, restricting the analysis to 935 age-related genes with 

enriched in neuronal expression profiles (i.e. with higher expression in neurons compared 

to glia, based on (Cahoy et al. 2008); 2,500 such genes in total), yields the same result 

(Figure 7C). Finally, we analyzed three potential confounding factors across age-related 
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genes: number of protein-protein interaction partners (based on the Human Protein 

Reference Database (Keshava Prasad et al. 2009)) and the number of tissues or cell types 

a gene is expressed in (i.e. expression breath; based on the GNF dataset which was 

downloaded from the Ensembl database, v.54). All three measures were positively 

correlated with conservation scores across genes, as expected (Duret and Mouchiroud 

2000) (data not shown). However, none of these three measures showed decreasing 

correlation with expression levels with age (Figure 7D), in contrast to decreasing SSS. 
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