Supplemental Material
MicroRNA, mRNA, and Protein Expression Link Development and Aging in Human and
Macaque Brain

SUPPIEMENTAL TADIES ... .o nre s 3
Table S1. Sample characteristics (MUMAN). ..........cociiiiiiiiiiiiiie e 3
Table S2. Sample characteristics (IMACAQUE). .....ecvverureruierierieiientestesteseeseesieesreesseesseesseesseesseesseenens 4
Table S3. Proportions of transition genes in mRNA, miRNA and protein datasets. ............c.ccvennen.e. 5
Table S4. miRNA changes with age in human and MOUSE.............ccccvveriieriierciieeiie e 6
Table S5. miRNA-target pairs involved in human cortex development and aging. ...........cccceevenenee. 7
Table S6. miRNA-target pairs overlapping with experimentally verified target sets............ccceeu..n. 10
Table S7. Gene Ontology categories enriched among Zene GroupPs. .........cccveerveerveeeriveerveercveenoreenns 12
Table S8. KEGG pathways enriched among gene groups..........eceecveerieerueerieenieenieenieeeeeeeeeeeeesneens 13

SUPPIEMENTAL FIGUIES ...ttt sae e ra e e enes 15
Figure S1. Age effect on expression and correlation between datasets. ..........coceeveeveriiieieniennenee. 15
Figure S2. Correlation among genes within gene groups. .......cceeeveevereierienienie et seee s 17
Figure S3. Co-expressed mMRNA and protein Groups. .....c..ecveeeveerveerreerieenreesreesieesteesseesseesseesseessesnsenns 19
Figure S4. Gene groups ShOWIng reVersal...........c.vvvciiiiiiiiriierie ettt sree s s 20
Figure S5. Examples of mRNA expression changes during aging............cceceeveereeneenieenieenieenieennenns 22
Figure S6. Decreasing magnitude of expression changes in the brain during lifetime. .................... 23
Figure S7. miRNA-target regulation prediction across lifespan. ........c.cccecevverceiriinienienienieneeee, 25
Figure S8. Testing miRNA regulation of mMRNA changes. ........ccccoovevierieniinienieieceiceieeieeene 26
Figure S9. Transcription factor (TF) regulation of mRNA changes with age. .........cccccoeeveeiecirennnns 28
Figure S10. Gene Ontology and KEGG categories enriched in miRNA and TF targets................... 32
Figure S11. Promoter GC and phylogenetic conservation levels among gene groups..........c..ce.ee... 33
Figure S12. Match between human and macaque transition points of expression change with age. 34
Figure S13. Human-macaque differences in development and aging. ..........cccceevveveeneeniienieenieennenns 35
Figure S14. Modeling expression changes with alternative age scales..........coccevverierienieneeneenen. 37
Figure S15. Scheme for identifying miRNA regulators of mRNA change. .......c..ccccocevenincnncnnenne. 38

TEXE S 39
Sample collection and RINA 1SOLAtION. .....eevieruieiiiiiieiieit ettt 39
HyDbridization t0 MICTOAITAYS. ....ccverieriertieriiestienteesteesteesteesseesseesseeseeseenseeseessesssessesnsesssesssesssesssesns 39
MiCTOarIray data PIOPIOCESSINE. . cuvervrerrrerrrerrrerreerreesteesseesseesseesseesseesseesseessessesssesssesssesssesssesssesseesssenns 40
Criteria fOr PrODESEt EXPIESSION. ...viererierrieriieeiieerireestreesreesseessseeasseeessseessseessseessseesseesssssasssesssseses 41
Normalization 0f DALCRES. ....cc.eiiiiiiiiiiieiee ettt bbb 41
miRNA isolation, sequencing, and qUANtITICAtION. ........cuevieriirieiierierieee et 41
Novel MIRNA 1dentification. .......cccoeriiieiieriininieieeeeeeee ettt s 42
Protein sample preparation, sequencing and peptide identification. ............ceeveevvevvenieneeneeneeniens 43
Protein data PreproCESSING. ....ccuieviiieiieeieiteetesteeteeteesteesteesteesteesseesseesseesseesseesseesseesseesseessenssenssenns 45
Age-scales for modeling eXpression ChanGe. ...........ccvvevvieriieniiieiieeee e e e 46
Variance explained by age and other factors. ..........ooueriiiiiiienieieeeeeeeeeee e 46
ClUSLETING ZENES 1N ZIOUPS. c.vvevrerrerrierirerteeriresteesseesseesseesseesseenseenseenseesseenseensesnsesssesssesssesssesssesssesssesns 47
Transition POINE ANALYSIS. ....veeivieriiiieiiieerieesteesteesreesteeeteeesreeereessseessseessseesseeassesassssessseesseesnsseees 48
Age ranges in transition POINt ANALYSIS. ..ec.eerieriieriieriieiieiieriieeei ettt ettt ettt e s eneeen 49
MIRNA/TF binding Sit€ eStIMALION. .....vevieiieiieiieeieetiesieseeseesteestee st et esteesteesseeseeseenseeseenseensenns 50
Regulator miRNA/TF identification — detailed desCription. ...........ccveeveeeiiecieeciieciieieeie e eeve e 51
Testing predicted regulators — age-independent effects. .........ccceocvveviieriiiincieiiece e 52
Testing predicted regulators — conservation in rhesus MaCaAqUE. .......cccueevverierieeienieneenieneeneenenens 52
Testing predicted regulators — coordinated diVEIZENCE. .......c.cccuevviriiriieiieiie e eee e seeeseeens 53
Testing predicted regulators — target Site€ MULAtION tESt. .......cccveervreriieriieriieeiee e eee e e e e 54
Testing predicted regulators — comparison with experimentally verified targets...........c.cccceevenenne. 55



FDR 0f 1€gUIatOr PIrEdiCtiON. .....eeeeieiiieiiiesiiesitesteestt ettt ettt eteeteeteeteeeteeeaesstessaessaessaessnesnsesnsenns 56

FUNCHIONAL ANALYSIS. ....evviiiiiieieiieiiecite e ettt et et e et esteeste e teeste e teesseesseesseenseensaenseesseensesssenssennsenns 57
Evolutionary conservation analySiS.........ccccccveiciieriiieeriieeriresieesriesseeeseeessreessseesseessseesssssessseesssesnes 58
StabiliZing SEIECTION SCOTE. .....eertieriieiieitieit ettt ete e eteeteeteeteeteesaessaessaessaessaesseesseesseesseesssensns 59
RETEIBNCES ... 60



Supplemental Tables

Table S1. Sample characteristics (human).

The table lists age, sex and death cause of the subjects, postmortem intervals in hours
(PMI), RNA integrity values of RNA samples (RIN - an indicator of RNA quality
calculated by Agilent® Bioanalyser 2100). The microarray experiments were carried out
in two batches. Two individuals are included in both batches as technical replicates. The
column with the “Exp” header indicates the experiments that each sample was used in: a-
mRNA microarray, b- miRNA-sequencing, c- protein sequencing. Note that technical and
demographic characteristics are independent of subject age: Spearman correlations of age
with sex, PMI or RIN are -0.02, -0.10, 0.07, respectively (p>0.5). Two individuals, H5
and H19, overlap with a previously published dataset on brain development (the DFPLC
dataset in (Somel et al. 2009)). Abbreviations: ASCVD: arteriosclerotic cardiovascular
disease; HASCVD: hypertensive arteriosclerotic cardiovascular disease. For 5 elder
individuals we have no detailed information on exact birth dates besides the year of birth;

for these, age in years has been used.

1D Year Day Sex  Batch Exp RIN PMI Cause of death Overlap
complications of

H1 0 2 m 1,2 a,b,c 8 3 prematurity 3

H2 0 4 m 1 abc 88 5 congenital heart defect
idiopathic pulmonary

H3 0 34 m 1 ab,c 7.9 7 hemorrhage 7

sudden infant death

H4 0 204 m 1 ab,c 8.4 6 syndrome

H5 8 2 m 1 ab,c 8.3 5 cardiac arrhythmia 5

H6 13 360 m 1 abc 83 13 hanging 13

H7 25 152 m 1 a,b,c 9.2 19  asthma 19

H8 53 112 m 1 abec 83 17 ASCVD 17
ruptured abdominal

H9 66 0 m 1 ab,c 8.6 10  aneurysm aorta 10

H10 80 0 m 1 ab,c 8.6 7 ventricular fibrillation 7

H11 88 0 m 1 ab,c 7.7 7 euthanasia 7
cardiac tamponade due to

HI12 98 0 m 1,2 a,b,c 7.3 9 bleeding from aorta fissure 9
pneumonia associated with

H13 0 19 f 2 a 7.1 14  meconium aspiration 14

H14 0 94 m 2 a 7.7 12 bronchopneumania 12

H15 1 78 m 2 a 7.6 19  asthma 19

H16 2 57 f 2 a 7.5 21  acute myocarditis 21

H17 4 170 f 2 a 7.7 21  lymphocytic myocarditis 21




HI18 16 271 m 2 a 9.1 15  accident, drowning 15
H19 22 334 m 2 a 7.3 4  ASCVD 4
H20 39 74 m 2 a 7.9 12 HASCVD 12
H21 58 34 m 2 a 8.4 9  HASCVD 9
H22 78 222 f 2 a 8 3 natural 3
H23 90 0 f 2 a 7.8 4 natural 4

Table S2. Sample characteristics (macaque).

The table lists age and sex of the subjects and RNA integrity values of RNA samples
(RIN - an indicator of RNA quality calculated by Agilent Bioanalyser 2100). Postmortem
intervals for all individuals were < 20 minutes. The microarray experiments were carried
out in two batches. Two individuals are included in both batches as technical replicates
The column with the “Exp” header indicates the experiments each sample was used in: a-

mRNA microarray, b- miRNA-sequencing.

ID Year Day Sex Batch Exp RIN
M1 0 16 m 1,2 a,b 9.1
M2 0 20 m 1 a,b 9.9
M3 0 153 m 1 a,b 9.8
M4 0 207 m 1 ab 9.7
MS5 0 310 m 1 a,b 9.5
M6 2 9 m 1 ab 9.0
M7 4 27 m 1 a,b 9.0
M8 9 104 m 1 ab 9.0%
M9 20 91 m 1 a,b 9.0
M10 22 74 m 1 ab 8.5%
M1l 28 0 f 1,2 a,b 7.8
M12 26 28 m 1 a,b 8.8
M13 0 22 m 2 a 9.3
M14 0 151 m 2 a 9.1
M15 0 179 m 2 a 9.5
M16 0 237 m 2 a 9.0
M17 1 84 m 2 a 9.2
M18 1 242 m 2 a 8.6
M19 3 40 m 2 a 8.7
M20 8 16 m 2 a 8.7
M21 15 3 m 2 a 8.1
M22 21 8 m 2 a 8.7
M23 25 166 f 2 a 8.2
M24 25 0 f 2 a 8.8

* RIN could not be calculated by the machine, but was estimated from the gel pictures.



Table S3. Proportions of transition genes in mMRNA, miRNA and protein datasets.

The table shows the proportion of genes identified as “transition genes” (Methods and
represented in Figure 3A). These are genes that show significant change with age
(FDR<0.1%), have non-linear trajectories in multiple regression tests and show
significant transition points (F-test p<0.05). For the protein dataset and a previously
published human dataset (Somel et al. 2009), we chose genes reliably detected and
changing significantly with age among the 4,084 age-related genes in the human cortex
dataset. The transition points and their significance is estimated separately using log
transformed and linear age scales, which capture developmental and post-developmental

changes, respectively.

% of age- % transition | % transition % union
. n. age-
Dataset | Species related genes genes (log or
a related genes b . b .

genes (log-age) (linear-age) linear)
mRNA | Human 32.9 4084 60.6 66.8 88.7
mRNA* | Human 21.6 3723 56.6 68.1 85.0
mRNA | Macaque 20.8 2005 27.5 35.5 56.5
miRNA | Human 30.8 115 50.4 38.3 67.0
miRNA | Macaque 20.6 69 294 23.5 40.6
Protein | Human 19.7 895 12.5 17.0 25.2

& Proportion of genes showing significant change with age among all expressed genes in a dataset.

® Proportion of genes showing a significant transition point and having a non-linear trajectory, among all

genes showing significant change with age.

* An independent dataset of postnatal mRNA changes in human cortex (Somel et al. 2009).




Table S4. miRNA changes with age in human and mouse.

The table shows the comparison of two studies on mouse post-natal cerebral with miRNA
expression changes during human development measured in our study. The signs indicate
increase (+) or decrease (-) with age during development, based on Table 1 in (Dogini et
al. 2008), visually assessed from Figure 2 in (Smirnova et al. 2005), or calculated using
linear regression in the present human cortex dataset. NA indicates that the miRNA is not
present in the human miRNA dataset. (?) indicates an ambiguous case, where the hsa-mir-

140-5p was decreasing while hsa-mir-140-3p was increasing.

mir- mir- mir- mir- mir- mir- mir- mir- mir- mir-
124a  125a 125b 130 140 205 9 181a 199a 301

Human

cortex* - - - - ? NA - - - -

Dogini et

al. - - - - - - - - - -
mir- mir- mir- mir- mir-
9 23 29 125 128

Human

cortex* - + + - -

Smirnova

et al. - + + - -

* Present study



Table S5. miRNA-target pairs involved in human cortex development and aging.

The table shows the miRNA-target gene group pairs chosen based on two criteria: (1) the
miRNA showing target enrichment in a co-expressed gene group (at HT p<0.05), (2) the
miRNA showing significantly more negative correlation (at r<-0.75) with its targets in
that group (at binomial test p<0.05), compared to correlations between miRNAs without
target enrichment in that group and their targets in that group. The regulators are
identified based on correlations during development (0-20 years) or aging (20-98 years),
separately. The target genes listed in the table are those negatively correlated with their
regulator (at r<-0.75). The columns labeled “Macaque” and “Protein” indicate whether
the miRNA-target gene group pairs are supported (+) or not (-), either by the rhesus
macaque data, or by human protein data, respectively. In these cases, we only require a
higher number of negatively correlated targets per miRNA, compared to the background
(i.e. negatively correlated targets per non-enriched miRNAs), irrespective of statistical

significance. NA: the miRNA is not detected in macaque.

Gene MIiRNA Maca-
group que

Period Protein | Target genes

SRGAP2, JARIDIB, HN1, AFF2, MAF,
C7orf60, SEMA4G, OSBPLS, DYRK2,
LEMD3, DPYSL3, C90rf30, TMEFF1,
ZNF362, SOS1, SPAST, KIAA1211, SOXS,
Development 1 hsa-mir-212 - + CTDSPL2, SOX4, SOX11, PCGF3

NID1, SRGAP2, JARID1B, DGKD, KIRREL,
CLDN1, HN1, MAP2K6, BACH2, CACNGA4,
Cllorf57, COMMD2, PTP4A1, KLHDCI10,
AMMECRIL, AFF2, C70rf60, ZNF346,
RALGPS1, BCORL1, UBTD2, NKIRAS2,
SERBP1, DCX, RCOR1, ROD1, ROBO1,
AP3M1, MMP2, PCDHA13, PCDHACI,
PCDHA 10, PCDHAC2, DTX4, NCOA3,
KIAA2022, IL17RD, TET1, VASHI1, EDC3,
ANKRDI13B, ISLR2, FAM123B, TRAF4,
KLHLS, ZBTB10, COL4A2, COL4Al,
CSNK1G1, EML4, ZNF362, MMP24, NAV?2,
NKAINI, SPAST, KIAA0895, GNG2,
WDR40A, FRMD4A, LCORL, MYCN,
ZNF518B, USP42, DOTIL, PXDN, TUBB2B,
Development 1 hsa-mir-29a + + POLRI1D, SDK1, PCGF3

NID1, SRGAP2, JARID1B, NAV1, DGKD,
KIRREL, CLDN1, HN1, MAP2K6, BACH2,
CACNG4, Cllorf57, COMMD?2, PTP4Al,
KLHDC10, AMMECRIL, AFF2, C70rf60,
ZNF346, RALGPS1, BCORLI, UBTD2,
LSMI11, NKIRAS2, SERBP1, DCX, RCORI,
RODI, ROBO1, AP3M1, MMP2, PCDHA13,
PCDHACI, PCDHA10, PCDHAC2, DTX4,
NCOA3, KIAA2022, IL17RD, TET1, VASHI,
EDC3, ANKRDI13B, ISLR2, FAM123B,
TRAF4, KLHLS, ZBTB10, COL4A2,
COL4A1, CSNK1G1, EML4, ZNF362,
MMP24, NAV2, NKAIN1, SPAST,
Development 1 hsa-mir-29b + + KIAA0895, GNG2, WDR40A, FRMD4A,




HMGCSI1, LCORL, MYCN, USP6NL,
ZNF518B, USP42, DOTIL, PXDN, TUBB2B,
POLRI1D, SDK1, PCGF3

Development

hsa-mir-29c¢

NID1, SRGAP2, JARIDIB, NAV1, DGKD,
KIRREL, CLDN1, HN1, MAP2K6, BACH2,
CACNG4, Cllorf57, VANGL1, COMMD2,
PTP4A1, KLHDC10, AMMECRIL, AFF2,
C70rf60, ZNF346, RALGPS1, BCORLI,
UBTD2, LSM11, NKIRAS2, SERBP1, DCX,
RCOR1, ROD1, ROBO1, AP3M1, MMP2,
PCDHA13, PCDHAC1, PCDHAL10,
PCDHAC2, DTX4, NCOA3, KIAA2022,
IL17RD, TET1, VASHI, EDC3, ANKRDI3B,
ISLR2, FAM123B, TRAF4, KLHLS, ZBTB10,
COL4A2, COL4A1, CSNK1G1, EML4,
ZNF362, MMP24, NAV2, NKAIN1, SPAST,
KIAA0895, GNG2, WDR40A, FRMDA4A,
HMGCS1, LCORL, MYCN, USP6NL,
ZNF518B, USP42, DOTI1L, PXDN, TUBB2B,
POLRID, SDK1, PCGF3

Development

hsa-mir-338-
5p

SRGAP2, JARID1B, KIAA0408, C6orfl174,
MARCKS, BACH2, RND3, ACVR2A,
MEDI13, PTP4A1, AMMECRIL, ATXN7LI,
BCORLI1, USP15, TSHZ3, RNF139, AP3M1,
B4GALTS5, NNAT, CSNK1G1, ZNF362,
SPAST, FRMD4A, MYCN, AFAP1, MEIS2,
WHSC1, BTG3

Development

hsa-mir-499-
5p

TRIM67, SRGAP2, MARCKS, MED13,
PTP4A1, DYRK2, LRCH2, ZSWIMS,
RRAGB, CSNK1G1, FAM110B, EMLA4,
NAV2, SOX5, EIF4G2, WDR40A

Development

hsa-mir-34a

GREM2, TNRC4, CAMSAP1, WDR6S,
TANC2, NAV3, LRRC7, SLC16A2, E2FS5,
BMP3, FKBP1B, PTPRD, GRM7

Development

hsa-mir-34c-
5p

GREM2, TNRC4, CAMSAP1, WDR6S,
TANC2, NAV3, LRRC7, SLC16A2, E2FS5,
BMP3, EVISL, FOXJ2, PTPRD, GRM7

Development

hsa-mir-212

HNRNPU, RC3H1, APAF1, ZNF644,
ZCCHCI11, CCDC88A, CBFA2T2, SLAIN2

Development

hsa-mir-22

NA

LAMCI, HNRNPHI1, MYST4, CHD9, MURC,
TET2, C5orf24, EPC1

Development

(=X Ko W o) W I SN

hsa-mir-222

APAF1,REVI1, MEDI, TET2, RFX7, SLAIN2,
ATAD2B

Development

hsa-mir-23b

HNRNPU, ENAH, ZNF292, ZC3H12C,
CTTNBP2NL, APAF1, ATP11C, CFDPI,
BTAF1, MTSS1, ADNP, PBRM1, QSERI,
SETD2, UBA6, TNPOI1

Development

hsa-mir-29a

ENAH, LAMCI1, DYNLTI, REV3L,
SH3GLB1, SH3PXD2B, MARK3, BRWD3,
C5orf24, NUP160, CCDC88A, C160rf88,
EPC1, RFX7, RNF122, ZNF532, LRP6,
ATAD2B, SCML2

Development

hsa-mir-29b

ENAH, LAMCI1, DYNLTI1, REV3L,
SH3GLB1, SH3PXD2B, MARK3, BRWD3,
C5orf24, NUP160, CCDC88A, C160rf88,
EPC1, RFX7, RNF122, ZNF532, LRP6,
ATAD2B, SCML2

Development

hsa-mir-29c

ENAH, LAMC1, DYNLT1, REV3L,
SH3GLB1, SH3PXD2B, MARK3, BRWD3,
C5orf24, NUP160, CCDC88A, C160rf88,
EPCI1, RFX7, RNF122, ZNF532, LRP6,
ATAD2B, SCML2

Development

hsa-mir-433

HNRNPU, ENAH, LAMC1, MARK3, MEDI,
CHD9, TIA1, PBRMI, CEP135

Aging

hsa-mir-1271

ARLA4C, UCK2, RAP2B, ODZ4, L1CAM,
LRRC7, GRIA1, TSPAN14, EPHA3, SEPT11,
MYO16, CUGBP2, BASP1, GRM7

Aging

hsa-mir-33b

PTGFRN, TANC2, ADRA2A, LHX6, REEPI,
ROBO2, GRIN3A, PRICKLE2, CALNI,




BMP3, RNF165, NRIP1

GREM2, TNRC4, DPYSL4, CAMSAPI,
WDR68, TANC2, NAV3, NRXN2, SLC16A2,
B4GALT2, CALNI, RGMB, EVISL, PNOC,

Aging hsa-mir-34a FKBP1B, FOXJ2, RTN4RLI
ENAH, MLL3, BPTF, ZNF292, ATP11C,
CHD9, QSER1, BIRC6, CEP135, TNPOL,
Aging hsa-mir-181¢ LRP6
SH3PXD2B, MEDI1, TET2, CCDCS88A,
Aging hsa-mir-222 ATAD2B
Aging hsa-mir-433 MEDI, CHDY, TIA1, PBRMI, CEP135




Table S6. miRNA-target pairs overlapping with experimentally verified target sets.

The table lists miRNA-target gene pairs predicted in the current study (based on the
target site enrichment and correlation tests; shown in Table S5), which overlap with four
datasets of experimentally verified miRNA targets: Tarbase (Papadopoulos et al. 2009),
Mirwalk (http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/contact.html), Khan et al.
(Khan et al. 2009) and Baek et al. (Baek et al. 2008). Left columns show a particular

miRNA and its targets found in both the current study and the study/database in question.
Right columns indicate whether the relationship was estimated in development or aging
(using 20 years of age as cutoff). The significance of each overlap (“p-value”) was
estimated by a randomization test (Methods). Expected: the number of target-gene pairs

expected to overlap between the current study and a particular database by chance.

Baek et al 2008
miR-181
TNPO1
ATPI11C

ENAH
p-value=0.002
Expected=0
Khan et al 2009
miR-34a

E2F5
miR-34c-5p
EVISL
miR-34a
FOXJ2 Aging
DPYSL4
p-value<0.001
Expected =0
Tarbase
miR-29c
COL4A1
COL4A2
LAMCI
p-value<0.001
Expected =0
Mirwalk
miR-29a
COL4A1
COL4A2
LAMCI
miR-29b Development
COL4A1

Aging

Development

Development

Development

Development

10


http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/contact.html

COL4A2
NKIRAS2
SERBP1
LAMCI1

miR-34a
GRM7
NAV3

p-value=0.003
Expected =3.5

Development

11



Table S7. Gene Ontology categories enriched among gene groups.

The table shows results from an enrichment analysis of gene groups among Gene

Ontology (GO) “biological process” categories (Ashburner et al. 2000), conducted using

the func_hyper program (Priifer et al. 2007). Each gene group is compared to all 4,084

age-related genes. For each gene group, GO categories are chosen based on enrichment in

genes in that group at HT p<0.05. The table shows five significantly enriched categories

with the largest numbers of genes. The global p-value column indicates the probability

that the overall distribution of genes in test group among all GO “biological process”

categories is non-random compared to the background group, estimated by 1,000

permutations of genes across gene groups (Priifer et al. 2007). Note that not all co-

expressed groups are significant in the global enrichment test.

Gene | Global Enriched Gene Ontology categories
group | p
RNA o Nervous system guiation Regulation of
1 0.001 metabolic transcription, development transcription, cell cvele
s DNA- P DNA- 4
P dependent dependent
Protein Intracel!ular Cellular Electron Neurotransmitter
2 0.004 protein . transport
transport homeostasis . transport
transport chain
o Cytoskeleton- Fatty acid Amino acid
Oxidation Response to dependent . . )
3 0.005 . . . biosynthetic catabolic
reduction wounding intracellular
process process
transport
4 0.038 Cel’l ' Cell motion Cell-gell ' Potassium Neuron
communication adhesion ion transport development
Reglcl)l;l e Oxidative Electron ATP
5 0.004 Transport . . . transport biosynthetic
biosynthetic | phosphorylation .
chain process
process
RNA Reglj)l? tion Negative
. o mRNA regulation of Chromatin
6 0.003 metabolic transcription, rocessin ene modification
process DNA- P & gene
dependent expression
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Response to E;Ziﬁ; Microtubule- Cell-matrix
7 0.139 external . . based . mRNA transport
. signaling adhesion
stimulus movement
pathway
Cell projection Potassium Calcium ion .GAB.A Cell-substrate
8 0.005 Ny . signaling .
organization ion transport transport adhesion
pathway

Table S8. KEGG pathways enriched among gene groups.

The table shows results from an enrichment analysis of gene groups among KEGG

pathway categories (Kanehisa et al. 2008), conducted using in-house R code following

the same scheme as the func hyper program (Priifer et al. 2007). Each gene group is

compared to all 4,084 age-related genes. For each gene group, KEGG categories are

chosen based on enrichment in genes in that group at HT p<0.05. The table shows five

enriched categories with the largest number of genes. The global p-value column

indicates the probability that, for each gene group, the distribution of genes among all

KEGG categories is non-random, estimated by 1,000 permutations of genes across gene

groups (Methods).

Gene | Global Enriched KEGG pathways
group | p
. Natural killer TGF-beta Fce RI Systemic
Pathways in . . . . :
1 0.134 cell mediated signaling signaling lupus
cancer .
cytotoxicity pathway pathway erythematosus
Metabolic Oxidative Huntington's Alzheimer's Parkinson's
2 0.005 . . . .
pathways phosphorylation disease disecase disecase
Valine, Metabolism of
leucine and xenobiotics by Sphingolipid Propanoate Histidine
3 0.011 ) . . : .
isoleucine cytochrome metabolism metabolism metabolism
degradation P450
Axon 'Neuroactlve Cell adhesion Prostate Long-term
4 0.011 Lidance ligand-receptor molecules cancer depression
g interaction (CAMs) P

13



Metabolic Oxidative Huntington's Parkinson's Alzheimer's
0.082 . . . .
pathways phosphorylation disease disecase disecase
Ubiquitin
0.799 Ribosome mediated - - -
proteolysis
Small cell ECM-receptor Adlp ocyt'okme Selenqammo Methionine
0.128 - . signaling acid .
lung cancer interaction . metabolism
pathway metabolism
Nellil r(;ifit_lve MAPK Calcium Heparan
0.17 regep tor signaling signaling Tight junction sulfate
interaction pathway pathway biosynthesis

14



Supplemental Figures
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Figure S1. Age effect on expression and correlation between datasets.

(A) Amount of variance explained by age in the mRNA, miRNA and protein datasets,
calculated using polynomial regression models. The distributions represent age effect in
batch 1 (dark blue) and batch 2 (light blue) samples of the mRNA dataset and age effect
in miRNA (red) or protein expression (purple) among the same 12 batch 1 individuals. (B)
The distribution of Pearson correlation coefficients age-related genes across genes in the
human cortex dataset used in this study and reliably measured in a second (Somel et al.

2009) or third (Lu et al. 2004) human cortical gene expression dataset (3723 and 2038
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genes, respectively). The y-axis represents gene frequency as Gaussian kernel density.
The correlations are based on spline curves describing expression change with age
(degrees of freedom=3) estimated for each gene in each pair of datasets, calculated for
the common age window between two datasets. Note that all three experiments involve
approximately the same brain region (prefrontal cortex), all use different Affymetrix
platforms. Two of 44 individuals (with ages 8 and 22.9) in the second dataset (the DFPLC
dataset in (Somel et al. 2009)) overlap with those in the current dataset. (C) Expression
change trends between development and aging. 4,084 age-related genes in the human
cortex dataset are classified as being up- or down-regulated during development or aging
(before and after 20 years of age, respectively). Expression change trends are estimated
based on Pearson correlation between age and expression levels during either period.
Genes are sorted at different correlation cutoffs, as indicated on the x-axis. The “Up-Up”
and “Down-Down” labels represent up-regulation and down-regulation in both
development and aging, respectively. The “Down-Up” and “Up-Down” labels represent
down-regulation in development and up-regulation in aging, and vice versa. (D)
Correlation between mRNA and protein expression changes in the human prefrontal
cortex. The 901 genes shown in the histogram are chosen as expressed at reliable levels
in the protein dataset (total peptide reads>20) and showing significant expression change
with age in the mRNA dataset. The curve represents correlations based on interpolated
points from cubic spline curves, describing expression change with age in protein and

mRNA.
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Figure S2. Correlation among genes within gene groups.

Left panel: distribution of Pearson correlation coefficients between each gene groups’
members’ expression profiles and gene groups’ average. Other panels: Cubic spline
curves representing standardized expression profiles of each member gene of each group.
The grey line indicates the mean. The y-axis shows the standardized expression levels of

1/4

genes, the x-axis shows age of individuals, in (age) " scale.
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Figure S3. Co-expressed mRNA and protein groups.

The graph shows the mean expression levels among co-expressed mRNA and protein
groups in the human cortex, plotted against age. (A-B) 4,084 age-related genes are
clustered into either 8 (A) or 12 groups (B) using k-means clustering, based on their
normalized expression profiles among 23 individuals in the human cortex mRNA dataset.
Notably, when both groupings are tested for enrichment in miRNA targets (Methods), we
find target enrichment in similar expression change patterns (groups showing an excess
of miRNA targets are indicated by the red frames). (C) 8 k-means clusters of 738 age-
related proteins in the human cortex protein expression dataset, based on 12 individuals.
Age-related proteins were chosen based on the age-test (at F-test p<0.01, FDR<15%). In
all panels, the points represent the mean standardized (z-transformed) expression level of
all genes in a group, per individual. The vertical bars indicate the expression variation in
the 25%-75% quantile range. The fitted lines correspond to the spline curves and

summarize mean expression change with age within the gene group.
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Figure S4. Gene groups showing reversal.
The figure shows results k-means clustering of age-related genes, using 2, 3 and 4 groups.
The y-axis shows the mean standardized expression levels of genes in a group, the x-axis

4 Scale. Vertical bars show the standard deviation

shows age of individuals, in (age)
across genes in a group. Notice that reversal between expression changes in early and late

life phases can already be detected at the 3 group level.
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Figure S5. Examples of mMRNA expression changes during aging.

The plots show mRNA expression trajectories of genes with strong correlation (Pearson
Ir|>0.8, p<0.01) between expression and age after 20 years of age and with no correlation
(r]<0.2, p>0.5) before 20 years of age, in the human cortex. The 40 examples are
randomly chosen among the total of 157 such “aging only” genes found in the human
cortex dataset. The y-axis shows the standardized expression levels of genes, the x-axis

" scale. Dots represent expression levels of individuals,

shows age of individuals, in (age)
lines represent cubic spline curves. Notably, despite being chosen for showing no
statistically significant correlation during development, many genes show visible
tendencies of change with age before 20 years of age (shown as the dotted vertical line),
although blurred by large inter-individual variance. Thus, genes that show expression
changes exclusive to aging are rare. Furthermore, we test whether these genes show
significant functional differentiation from gene groups with similar profiles but with clear
developmental change trajectories. Specifically, we compare “aging only” genes that
decrease during aging, with genes in group 4 as defined in the main text (Figure 2). We
similarly compare “aging only” genes that increase during aging with genes in group 7.
In both cases, we find no significant differentiation between the two groups using the

FUNC tool (global enrichment p> 0.05).

22



0.4

0.2

0.0
1

00009 8 €@ -0 @nem
1 | 1 1

0 06 4 17 44 98
Age (years)

Expression difference between
consequtive individuals

50
1

Global expression
in single dimension
-50 0

-150

0 0.5 4 16 44 98
Age (years)

Expression difference between

consequtive individuals (log)

Relative gene frequency

48 -4 -2

-8

o]
\
1 ®
\
. \
Ce
®Q
-
| b‘\o ""-O...OO CJ-_ _
° " oo
| I 1 I 1
0 06 4 17 44 98
Age (years)

O

00 02 04 06 08

B development
B aging

I I I 1 I 1

00 02 04 06 08 1.0

Correlation with age

Figure S6. Decreasing magnitude of expression changes in the brain during lifetime.

(A) Absolute difference in expression levels between individuals of consecutive age,

normalized by their age difference. The expression differences are calculated using

expression levels standardized to mean=0 and standard deviation=1, per gene. (B) Same

as Panel A, but the y-axis is log transformed to display changes in late life. (C) Global

expression change in a single dimension. We employed multidimensional scaling (using

the “isoMDS” function in the R “MASS” package) to calculate a single value

summarizing expression variation across all expressed genes (following (Somel et al.

2009)). The measure is analogous to the first principle component of a PCA. Note the

large magnitude of change in early life, which subsides by adolescence. In Panels A-C, x-
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¥ scale. (D) Correlation of expression changes with

axes show individuals’ age, in (age)
age during development (<20 years of age) and aging (>20) in the human prefrontal
cortex. The x-axis shows Pearson correlation coefficient between expression and
individual age. The y-axis shows the relative frequency of correlation values across age-
related genes, calculated using Gaussian kernel density estimation (using the “density”

function in R). Note the lower correlations during aging relative to during development.
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Figure S7. miRNA-target regulation prediction across lifespan.

Our regulator prediction uses 20 years of age as division point between development and
aging. Here we tested the influence of the division point choice on regulator estimation.
The figure shows the putative regulator miRNA-gene group pairs, estimated during
development and aging (left and right panels, respectively), using alternative division
points (4, 10, 40, and 60 years of age). Regulator miRNA-gene group pairs are estimated
using the distribution of correlation coefficients across individuals in that age range. E.g.
at division point 40, we calculate correlations across all individuals younger than 40
(“development”) and older than 40 (“aging”). Red: a miRNA-gene group pair is
supported by excess of negative correlations, using a certain division point. Yellow: a pair
is not supported. Dark red: miRNA-gene group pairs estimated using 20 years as division
point and reported in the main text and Table S5 (also highlighted grey). Pairs highlighted
light brown are estimated using other division points. Notice that putative miRNA-gene

group pairs estimated using 20 years tend to be supported by other division points.
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Figure S8. Testing miRNA regulation of mMRNA changes.

(A) Excess of negative correlations between miRNA-target pairs in the human dataset. In
contrast to Figure 4A, correlations here are based on mRNA and miRNA/TF levels
interpolated using spline models of expression change with age (degrees of freedom = 3).
This step ensures that the miRNA-mRNA correlations are largely independent of
individual variation unrelated to age. Left panel: The density distribution of Pearson
correlation coefficients between miRNA and genes, both showing significant expression
change with age. The colored lines (red) indicate correlations between regulators and
their targets. The grey lines indicate correlations between regulators and non-targets
(genes not supposed to be targeted by those regulators) and represent the background.
Right panel: The difference between the density distributions of regulator-target
correlations and regulator - non-target correlations. The grey lines represent 100
simulation results, where a selection of random regulator-target pairs, the same number as
regulator-target pairs, were randomly chosen and compared to the background. (B)
Excess of negative correlations between miRNA-target pairs in the rhesus macaque
dataset. The two panels are drawn following panel (A), using correlations based on
original expression data in the rhesus macaque dataset (i.e. without interpolation). (C) An
example of coordinated divergence between human and rhesus macaque expression

profiles for miR-33b and its 12 target genes falling into co-expressed group 4. The y-axis
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represents the z-transformed miRNA and mean mRNA expression levels, and the solid
lines show spline curves of expression changes with age. (D) Testing whether miRNA
expression divergence between human and rhesus macaque is reflected in their target
gene expression. The y-axis shows the proportion of putative regulatory miRNA-target
pairs (Table S5) that show coordinated human-macaque expression divergence, compared
to random miRNA-target pairs (Methods). The statistics are calculated separately for
development and for aging. Here and in panel E asterisks indicate significance based on
HT. ***: p<0.001, **: p<0.01, *: p<0.05, °: p<0.10. (E) Testing whether a substitution in
the miRNA binding site in rhesus macaque causes dysregulation, i.e. loss of correlation
between miRNA and target gene expression in rhesus macaque. The y-axis shows the
proportion of putative regulatory miRNA-target pairs that contain a mutation in the
rhesus macaque binding site and lack miRNA-target correlation in macaques (i.e. that are
dysregulated). The proportion is compared to putative regulatory miRNA-target pairs that
do not contain a mutation, but are dysregulated in macaque. The numbers above the bars
indicate the number of mutated pairs observed at that correlation cutoff. (F) Sequence
identity between human and macaque mature miRNA sequences detected in both species

(n=306).
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Figure S9. Transcription factor (TF) regulation of mMRNA changes with age.

(A) Excess of positive and negative correlations between TF-target pairs in the human
and rhesus macaque datasets. The two panels are drawn based on TF and their predicted
target expression values using the same procedure as in Figure S8A and Figure S8B. The
leftmost panels show excess of TF-target correlations in the human dataset calculated
based on interpolated data. The rightmost panels show excess of TF-target correlations in
the macaque, based on non-interpolated data. (B-C) Excess of negative or positive
correlations among TF-target pairs in three selected gene groups. |The y-axis indicates
the proportion of TF-target pairs that show a minimum correlation. The x-axis shows the
Pearson correlation cutoff. The colored bars indicate the proportion of above-cutoff
correlations among TFs that show target enrichment in a gene group (at HT p<0.05) and
their targets in that group. The grey shaded bars indicate the proportion of above-cutoff

correlations among TFs without target enrichment in a gene group (at HT p>=0.05) and

28



their targets in that group. The TFs shown above each gene group indicate those that have
significantly more negatively/positively correlated targets than in the background (at r<-
0.75 or r>0.75), at binomial test p<0.05 (Methods).[] The difference between Figure

S9B-C and Figure 5B is that in the latter, negative and positive correlations are combined.
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Figure S10. Gene Ontology and KEGG categories enriched in miRNA and TF
targets.

We tested gene sets targeted by putative miRNA regulators for enrichment in Gene
Ontology biological process categories (Ashburner et al. 2000) or KEGG pathways
(Kanehisa et al. 2008).[1GO and KEGG categories were pre-selected based on their
enrichment in the respective gene groups (Table S7 and Table S8, Methods). These gene
sets were compared to two different backgrounds: (a) all 4,084 age-related genes
(asterisks on the right), (b) genes in the particular gene group (asterisks on the left). The

o

significance level labels indicate *: p<0.05, °: p<0.10. The results are calculated

separately for development (A) and aging (B).
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Figure S11. Promoter GC and phylogenetic conservation levels among gene groups.

(A) The average promoter GC content among genes in the 8 co-expressed gene groups.
The GC content was calculated for +/- 2000 kb of the transcription start site of each
Ensembl gene. The error bars show the standard error of the mean. (B-C) Phylogenetic
conservation among age-related genes in the 8 co-expressed mRNA groups. (B) Median
3> UTR and promoter conservation scores among gene groups. The conservation scores
are calculated per gene as average Phastcons scores in 3> UTR or promoter regions,
divided by intronic conservation scores to control for mutation rate differences (Methods).
The y-axis shows the z-transformed median conservation score across gene groups.
Positive values indicate above-average conservation within gene groups. In both panels,
vertical bars indicate 95% confidence intervals estimated by 1,000 bootstraps across
genes within groups. (C) Amino acid sequence conservation rates among gene groups.
The y-axis shows the z-transformed median conservation score (negative dN/dS) across
groups. The rates are calculated between human and mouse, and human and rhesus

macaque genomes, obtained from Ensembl (Hubbard et al. 2007).
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Figure S12. Match between human and macaque transition points of expression
change with age.

The y-axis shows relative frequency of transition points across age-related genes,
calculated using Gaussian kernel density estimation (using the “density” function in R).

1/4
" scale.

The x-axis shows transition points of expression change (see Figure 3), in (age)
Here we estimate macaque transition points while transforming macaque ages based on a
regression of life-history traits between human and rhesus macaque (Text S1). This yields
the dark blue and dark red curves for macaque mRNA and miRNA, respectively. Dashed
lines: transition point distributions calculated using the original macaque ages. The red
and blue curves are human transition point distributions for mRNA and miRNA,
respectively. Note that the age-transformation yields similar transition point distributions

between the two species.
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Figure S13. Human-macaque differences in development and aging.

(A) Correlation of expression changes between human and rhesus macaque during brain
development (<20 years of age for human, <4 years of age in macaque; red curve), and
aging (>20 and >4, respectively; blue curve). The grey dotted line indicates correlation
across the full lifespan. Pearson correlations are calculated after transforming macaque
ages based on a regression of life-history traits between human and rhesus macaque (Text
S1), calculating cubic spline curves using (age) " scale, and interpolating points per

species. The y-axis shows the relative frequency of correlation values across all age-
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related human genes with macaque orthologs (n=3,233), calculated using Gaussian kernel
density estimation (using the “density” function in R). (B) The number of anti-correlated
genes at different cutoffs of Pearson correlation between human and macaque, in
development and aging. This is based on the same results as in panel A. (C) Anti-
correlated genes between human and macaque in development. Genes are chosen at
Pearson correlation cutoff r<-0.75 and clustered into 6 groups using k-means clustering.
The largest group of anti-correlated genes is shown. The y-axis shows the mean
standardized expression levels of genes in a group, the x-axis shows age of individuals, in
(age in days)"* scale. Vertical bars show the standard deviation across genes in a group.
Each point represents an individual. Light blue: human, green: macaque. Note that
expression changes in the later phase of life are similar. (D) Anti-correlated genes
between human and macaque during aging. We use the same procedure to choose and

plot genes as in panel C.
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Figure S14. Modeling expression changes with alternative age scales.

Mean normalized expression levels of genes in co-expressed groups 4 and 6 in the human
mRNA dataset, plotted against the age of individuals on different scales. Note the non-
uniform distribution of subjects across the age scale when linear or log-transformed age

scales are used.
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Figure S15. Scheme for identifying miRNA regulators of mRNA change.

38



Text S1

The R code used in the analyses is available at

http://www.picb.ac.cn/Comparative/data.html.

Sample collection and RNA isolation.

Healthy human tissue was obtained from the NICHD Brain and Tissue Bank for
Developmental Disorders at the University of Maryland, Baltimore, MD, USA, and the
Chinese Brain Bank Center, Wuhan, PR China. Rhesus macaque samples were obtained
from the Suzhou Experimental Animal Center, Suzhou, PR China.

The role of the NICHD Brain and Tissue Bank is to distribute tissue and, therefore,
cannot endorse the studies performed or the interpretation of results. Informed consent
for use of the human tissues for research was obtained in writing from all donors or the
next of kin. All subjects were defined as normal controls by forensic pathologists at the
NICHD Brain and Tissue Bank. No subjects who suffered a prolonged agonal state were
included.

All samples were taken from the frontal part of the superior frontal gyrus, a cortical
region approximately corresponding to Brodmann area 9. For all samples, dissections

contained a 2:1 grey matter to white matter volume ratio.

Hybridization to microarrays.

Total RNA was extracted from approximately 100mg of the dissected tissue sample using
the standard TriZOL® protocol with no modifications, and purified with the QITAGEN®
RNeasy MiniElute kit following the "RNA cleanup" protocol. RNA quality was assessed
with the Agilent® 2100 Bioanalyzer system. For each sample, 2 micrograms of isolated

total RNA was used as starting material for the standard Affymetrix eukaryotic target
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preparation protocol (see
http://www.affymetrix.com/products_services/arrays/specific’hugene 1 0 st.affx). Each
sample was then hybridized to a Affymetrix® Human Gene 1.0 ST array. The samples
were prepared and processed in two batches, including 12-14 human and rhesus samples
each. Age distributions were similar across batches. To estimate technical variance, for
each species, two individual samples were processed twice each, in both batches.

Raw and processed data was submitted to NCBI GEO and can be accessed at

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18069.

Microarray data preprocessing.

We used BLAT to align all Human Gene 1.0 ST probes to the human (hgl8) or rhesus
macaque genomes (rhemac2) downloaded from the UCSC Genome Browser database
(Karolchik et al. 2008). For calculating expression levels, we only included probes that
perfectly match the respective species’ genome sequence, and at a unique location.

Note that we do not use rhesus macaque genome annotation, and assume that transcript
structure is conserved between the species. There will be exceptions to this, but because
probes in each gene’s probe set are distributed across the transcript length, we expect
such instances to have only negligible effect on average expression levels used in the
analysis.

We used the R Bioconductor “affy” library (Gautier et al. 2004) to extract probe
intensities from the raw data files. These were then corrected for the background signal
(using "antigenomic" probes of the same GC content), log-transformed, and quantile
normalized. Intensity values per transcript were calculated by median polishing,

following standard procedure (Gautier et al. 2004).
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Criteria for probeset expression.

The following criteria were used to determine expressed transcripts: (i) In each sample, a
probe with intensity >95th percentile of the antigenomic probes' intensity distribution, of
the same GC content, was accepted as reliable. (ii) In each sample, a transcript was
considered expressed only if it contained >7 reliable probes, and the majority of its
probes were reliable. (iii) Among all samples in a dataset, a transcript was considered
reliably expressed if it was expressed in >2 individuals per dataset. We mapped transcript
IDs to Ensemble Genes using the table provided at the Affymetrix support site
(“HuGene-1_0-st-v1.na26.hgl8.transcript.csv”’). For genes with multiple transcripts, we
chose the transcript with the highest mean expression level as representative. This step

avoids multiple representation of the same gene in downstream analysis.

Normalization of batches.

For both human and macaque, experimental samples were processed in two batches
containing 12-14 individuals each, with similar ages. Preprocessing was also conducted
separately per batch. Because the sample preparation and hybridization order can have an
effect on mean expression levels or variance, we removed any such differences between
batches: namely, for each gene in each batch, we z-transformed the expression levels
(normalized the mean to 0 and variance to 1) and thereafter merged the datasets for each

species.

miRNA isolation, sequencing, and quantification.

The procedures for microRNA experiments and pre-analyses are described in (Hu et al.
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2009). Briefly, low molecular weight RNA was isolated, ligated to adapters, amplified,
and sequenced following the Small RNA Sample Preparation Protocol (Illumina, USA)
without modification. Technical replication was completed by independently processing
the samples starting from the low molecular weight RNA isolation step.

For data preprocessing, adapter sequences were trimmed from the 3'-end of the reads as
described in (Hu et al. 2009). Trimmed sequences (18-26nt long) were mapped to the
human genome (hgl18) using the [llumina-supplied ELAND algorithm, requiring perfect
match. Per sample, ~60% of sequence reads could be mapped, whereas <1% are expected
by chance, as determined by mapping scrambled reads. To annotate and quantify
miRNAs, we used miRBase version 11 (Griffiths-Jones et al. 2006), only including
sequences with copy number >2. We required all sequences to map within three
nucleotides up- / down-stream of the annotated 5'-position of the mature miRNAs. For
each mature miRNA, the sequence with the maximal copy number was designated as the
reference sequence. The expression level of each miRNA was then calculated as a sum of
the copy number of the reference sequence and the sequences mapping at the same 5'-end
position as the reference sequence. Raw and processed data was submitted to NCBI GEO

and can be accessed at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18069.

Novel miRNA identification.

For the miRNA precursors with one annotated miRNA, small RNA sequences mapping to
the opposite arm of the precursor hairpin were also included in the analysis as novel
miRNA (Hu et al. 2009). The sequence with the maximal copy number was considered a
novel miRNA candidate. As a further criterion, we required the existence of at least 14 bp

overlap between the annotated miRNA and the novel miRNA candidate within the
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precursor hairpin. The quantification process for novel miRNA was the same as for

known miRNA.

Rhesus macaque miRNA identification.

For quantifying macaque miRNAs, we used human miRNA sequences downloaded from
miRBase (v.11) (n=944). First, for each human miRNA, we extracted the most likely
miRNA precursor ortholog in macaque. Specifically, we mapped all annotated human
miRNA precursors to the rhesus macaque genome (rhemac2) using reciprocal BLAST
with the following parameters: [-F F -b 1 —¢ 10™]. We further required the length of hit
sequence to be longer than 70% and shorter than 130% of the query sequence. Next, we
extracted mature miRNAs based on the aligned precursor sequences using the Clustalw?2
alignment program, with default parameters as in (http://www.ebi.ac.uk/clustalw/). Using
an alternative software, Muscle (http://www.ebi.ac.uk/muscle/), yields essentially the
same results (data not shown). We thus identified 776 orthologous miRNA in macaque,
306 of which are detected (total expression >100 reads) in our expression dataset. Note
that highly expressed miRNA, which we use in downstream analysis, tend to be highly
conserved at the sequence level (Liang and Li 2009). Consistently, among all orthologs,
76% of identified sequences share identical mature sequences between human and
macaque, and among the 306 detected miRNAs, this proportion is 97% (Figure S8F).
Quantification of macaque miRNA expression levels was performed as for human

expression levels.

Protein sample preparation, sequencing and peptide identification.

For extraction, we used 100mg frozen prefrontal cortex samples from 12 human
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individuals (Table S1). The 12 human samples were processed in two batches with 6
individuals in each, with similar age distributions in both batches. Tissue samples were
minced, washed in ice-cold PBS and homogenized in ice-cold lysis buffer (§ M urea, 4%
CHAPS, 65 mM DTT, 40 mM Tris, cocktail protease inhibitor, 100 mg of tissue/1 ml)
using an electric homogenizer. The resulting protein solutions were sonicated on ice for a
total of 3 minutes and then centrifugated at 25,000g for 1 hour at 4°C to remove DNA,
RNA and other cell debris. Next, the protein supernatants were precipitated using 5x
volumes of precipitation solution (ethanol: acetone: acetic acid = 50:50:0.1, volume ratio)
at 4°C overnight, centrifugated and resolubilized in denaturing buffer [6 M guanidine
hydrochloride, 100mM Tris, cocktail protease inhibitor, phosphatase inhibitors (ImM
sodium orthovanadate and 1mM sodium fluoride), pH 8.3]. Protein concentration was
determined using the Bradford assay. Next, 600pg of protein from each sample was
reduced with DTT (100pg / 1ul 1M DTT), alkylated with IAA (100ug / 2ul 1M 1AA),
and precipitated again at 4°C overnight (as described above). After centrifugation, the
resulting precipitates were resolubilized in digestion buffer (100mM ammonium
bicarbonate) and incubated with Trypsin (enzyme:protein = 1:40, mass ratio) at 37°C for
20 hours, followed by ultrafiltration and lyophilization.

Each peptide sample was resolubilized in 50pul SCX loading buffer, loaded on a SCX
(Strong Cation Exchange) column (Column Technology Inc., CA, USA) and eluted using
a pH continuous gradient buffer (from pH 2.5-8.5), resulting in 10 fractions. Each of
these fractions was then automatically loaded on one of two RP (Reversed Phase)
alternative trap columns, by switching to the other RP column every 3 hours. Notably, the

pH gradient-based elution yields more basic peptides than the commonly used salt-based
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elution and also increases sequence coverage and concomitant confidence levels in
protein identification (Zhou et al. 2007). Analysis was performed on the LTQ mass
spectrometer equipped with a metal needle electrospray interface mass spectrometer
(ThermoFinnigan, San Jose, CA, USA) in a data-dependent collection model (each full
scan followed by ten MS/MS scans of most intense ions).

The peptides were identified by searching against an IPI human database (IPI human
v3.61) using the SEQUEST program in BioWorks™ 3.2 software suite. We allowed a
mass tolerance of 3.0Da and one missed cleavage site of trypsin. Cysteine
carboxyamidomethlation was set as static modification and methionine oxidation was set
as variable modification. All output results were filtered and integrated to proteins by an
in-house software BuildSummary, using common filtering parameters: Xcorr 1.9 for
charge +1; Xcorr 2.2 for charge +2; Xcorr 3.75 for charge +3 and delta CN above 0.1. By
reversed database searching, at a cutoff minimum total of 20 peptides among all 12

samples, the FDR of protein identification was estimated to be 3%.

Protein data preprocessing.
Peptide identification in the two batches, containing 635,527 and 665,515 total peptide

counts, were preprocessed separately and subsequently joined together. Peptide IDs were
mapped to human Ensembl gene IDs using the Ensembl database (v. 55); peptides
mapping to multiple genes were excluded (188 and 208 peptide IDs out of 7,551 and
6,996 in the two batches, respectively). If >1 peptide IDs were assigned to an Ensembl
gene, we calculated expression levels as the mean across peptides. Peptide counts were
base-two log transformed and quantile normalized for downstream analysis. We restricted

downstream analysis to proteins with total peptide counts >20. The protein expression
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level dataset is available from

[http://www.picb.ac.cn/Comparative/data_methods/age reg 2009/pr h cx1.txt].

Age-scales for modeling expression change.

A log,-age scale is suited for modeling exponential changes during early development
(e.g. (Clancy et al. 2001; Lu et al. 2001; Shupe et al. 2006)). In contrast, linear age allows
better identification of linear changes that occur during aging (e.g. (Rodwell et al. 2004;
Erraji-Benchekroun et al. 2005)). To avoid bias toward development or ageing, we used
age ranks of the samples to simultaneously capture developmental and aging-related
changes (Figure S14). Using age ranks also ensures more uniform distribution of samples
across age scale, compared to the other two scales. At the same time, it limits
heteroscedasticity across ages, which pertains to the assumption of parametric regression
models that errors be normally distributed and homogeneous among samples (Sokal and
Rohlf 1995). We therefore use age-rank-based estimates when testing for age-effects. For
comparison between two species, we use the logy-age scale, unless otherwise indicated.
The choice of age scale does not qualitatively affect our results regarding development-

aging reversal or regulation (data now shown).

Variance explained by age and other factors.

For calculating the average expression variance explained by age, we followed (Somel et
al. 2009). Briefly, per gene, we fit the following formula:

Y = Poi + Pri Aj + Pai A + Bai A + &, (1)
where Yjj is the expression level for gene i and subject j, Aj is the age of the subject j

(transformed to ranks; see above and Figure S14) and ¢;j is the error term. The sum of
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squared errors in this model are compared to the null model, Yj; = Boi + €ij.

For the mRNA microarray datasets, the test was performed on each batch separately. We
estimated the significance of the proportion of variance explained by age by randomly
permuting ages of the subjects and repeating the calculation 300 times.

Using the same scheme, the proportion of expression variance explained by sex, PMI or
RIN was calculated as approximately 8%, 30% and 30%, respectively. However, these
proportions were not significantly different from random (permutation test [PT] p>0.05).
In contrast, age explains 65% and 61% of variance in both batches, while 25% and 27%
are expected by chance (PT p<0.01). Note that neither sex, PMI nor RIN are correlated

with individual age.

Comparing human and macaque. To estimate conservation of age-related expression
change trends in the two species, we calculated Pearson correlations between expression
profiles of orthologs. The genes were chosen to show significant expression change with
age, based on the human dataset (4,084 mRNA and 115 miRNA, at FDR<0.1%). The
correlations were based on interpolated points from spline curves that describe expression
change with age (degrees of freedom=3), estimated for each gene in each pair of datasets

and calculated for the overlapping age window in both datasets.

Clustering genes in groups.

We grouped age-related genes into 8 co-expressed groups using the human mRNA
dataset of age-related genes (4,084 X 23) using k-means clustering. Before clustering,
each gene was standardized to mean=0 and standard deviation=1. Because k-means is a

heuristic algorithm, we repeated the procedure 10,000 times to determine the most
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frequent constellation (which was 28%, while the next most frequent constellation was
10%), and used this clustering in downstream analyses. We also performed clustering
with 12 groups, and repeated the downstream analyses in order to identify the extent our
results are affected by the initial choice of k (Figure S3). By plotting individual genes’
expression profiles, and by calculating the correlation between each group’s average
profile and member genes’ profiles, we confirmed that the group averages are

representative of their members (Figure S2).

Transition point analysis.

We used the following procedure, based on segmental linear regression, to estimate the
age when early- and late-life expression change trends intersect:

(i) Fit spline curves to the expression data to describe change with age (with variable
degrees of freedom, as described in (Somel et al. 2009)).

(ii) Interpolate 25 points along the age range. Interpolation is done because our sample’s
ages are not uniform along the age-range, and interpolating renders transition point
prediction immune to such irregularities.

(iii) Divide the age-range into two sections at each subpoint within this range (excluding
the most extreme ones).

(iv) For the two sections separately, construct two linear regression functions describing
expression change with age (see Figure 3B).

(v) Among all subpoints, choose the one at which the two functions explain maximum
variance as the putative “transition point”.

(vi) On the original (not interpolated) data, test if fitting two regression models, compared

to fitting a single linear regression model, is significantly better. The comparison is done
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with the F-test.

(vii) Choose “transition genes” that are both age-related (using the age-test described
above), to which a polynomial regression model fits at least as good as a linear regression
model, and which show significant (F-test p<0.05) support for a transition point [as
described in (vi)].

The whole procedure was performed using a log transformed age scale to identify
transition points in the early developmental period (e.g. Figure 3B), as well as using the
linear age scale to identify transition points in the post-developmental period. Figure 3A
represents both estimates. The proportions of age-related genes/proteins chosen as
“transition genes” range from 25% in the human protein dataset to 89% in the human
mRNA dataset (Table S3). See below for a more information on the age range in

transition point analysis.

Age ranges in transition point analysis.

Note that, in order to estimate a transition point accurately, we need sufficient
information about expression change both before and after the candidate point. Therefore,
it is advisable to limit a search to a range with sufficient numbers of data for earlier and
older ages. Thus we did not interpolate the whole age-range in the datasets, but started
from 2 months (the range of the spline curves in Figure 3B), and ended at 70 years.

In the analysis shown in Figure 3, for macaque, we used the same scale as human. On the
other hand, in Figure S12, we compared macaque and human, while correcting for life-
history differences between the species. For this, we first calculated the regression
between time of first and last deciduous tooth eruption, first and last permanent tooth

eruption, female sexual maturation, first reproduction, and maximum lifespan in human
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and rhesus macaque, using a number of resources (Smith et al. 1994; Walker et al. 2006a;
Walker et al. 2006b; de Magalhdes and Costa 2009). This yielded the following formula:
agChuman = 2.257 + 2.953*agemacaque- We then repeated the transition point identification

procedure after transforming macaque ages based on this formula.

MiRNA/TF binding site estimation.

For estimating conserved miRNA target sites, we used the Conserved Site Context Score
Table from TargetScan5.0 (Lewis et al. 2005). The EntrezGene IDs were mapped to
Ensembl gene IDs using the Ensembl database. For estimating conserved TF binding
sites (TFBS), we used the Ensembl database for gene annotation, and extracted 2,000 bp
+/- around the transcription start site (TSS) for each gene. We ran the Match™ algorithm,
which uses the TRANSFAC® database (Kel et al. 2003), on the extracted proximal
promoter regions, using the input files matrix TFP112.lib and
vertebrate non redundant minFP.prf. We then calculated average Phastcons
(conservation) scores, using the UCSC Genome Browser 17-way vertebrate Conserved
Element Table (Siepel et al. 2005), on each predicted TFBS site. For each candidate
TFBS, we required that >80% of nucleotides have Phastcons score and an average score
>0.6.

TFBS names were mapped to transcription factors using two paths: (a) we used HGNC
symbols parsed from the Transfac® Matrix Table (v. 11.2). These were mapped to
Ensembl genes using the HGNC database (www.genenames.org/data/gdlw_index.html).
(b) We used the UCSC Genome Browser HMR Conserved Transcription Factors Table,
which contains Transfac TFBS IDs and corresponding SwissProt IDs; the latter were

mapped to Ensembl genes using the Ensembl database. The genes lists from the two
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paths were combined, which resulted in 426 TFBS mapped to >1 Ensembl gene that were

also annotated with “transcription factor activity” (GO:0003700) in Ensembl.

Regulator miRNA/TF identification — detailed description.

In order to restrict the false discovery rate of regulator-target identification, we limited
the target predictions to genes showing age-related change at F-test p=4*10° (the
Bonferroni correction cutoff). For miRNA/TF, we required evidence for age-related
change at p<1*10~ (a more relaxed cutoff was chosen due to the smaller number of
miRNA/TF, compared to all expressed genes).

For the identification of miRNA regulators of brain development/aging, we required two
conditions: (1) Enrichment of targets in one of the 8 co-expressed age-related gene
groups. For this, we tested if a miRNA’s targets are enriched among genes in a gene
group using the HT, compared to other miRNAs and all other gene groups (including
only genes with >1 target site). To avoid the influence of miRNA gene families, we
restricted this comparison to a single test per unique miRNA seed. These results were
compared to results obtained using randomized gene groups generated by 1,000
permutations of genes among 8 co-expressed clusters. If a miRNA’s targets were enriched
in a cluster at HT p<0.05, we considered that miRNA “specific” to that gene group. All
other miRNA-targets pairs (at p>0.05) were considered “non-specific.” (2) Negative
correlation with targets in a specific gene group. For this, we calculated correlations
between the miRNA and its targets. The correlations were separately calculated for
development and aging periods (with 20 and 5 years as borderline for human and
macaque, respectively, representing approximate times of age at first reproduction

(Walker et al. 2006a; Walker et al. 2006b)). For both periods we use data from similar

51



numbers of individuals. Using these correlations, for each miRNA, for each gene group,
we determined the proportion of negatively correlated miRNA-target pairs in that gene
group (at correlation cutoff Pearson r<-0.75, p<0.05). Next, for each miRNA that showed
excess of targets in a particular gene group (as described above), we compared the
proportion of its negatively correlated targets in that gene group, with the mean
proportion among all miRNAs that did not show enrichment in that gene group (which
represents the random background). The proportions were compared using binomial tests
(BT).

A putative regulatory miRNA was defined as one that had both a significant excess of
targets in a gene group (at one-sided HT p<0.05) and a significant excess of negative

correlation with its targets in that group (at one-sided BT p<0.05) (Figure S15).

Testing predicted regulators — age-independent effects.

We calculated gene expression profiles using miRNA and mRNA expression levels
predicted from spline models of expression change with age (degrees of freedom=3),
instead of the original expression levels. The models were calculated using log and linear
age scales for estimating developmental and aging-related effects, respectively. If the
miRNA-mRNA covariance is due to a factor independent of age, we expect to find no
correlation in this case. Instead, the excess of negative correlations among specific
miRNA-mRNA pairs became even more prominent (Figure S8A), which indicates that

the correlations mainly reflect age-related changes.

Testing predicted regulators — conservation in rhesus macaque.

To identify regulators in rhesus macaque conserved between macaques and humans, we
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pre-selected miRNA showing the same direction of expression change with age (in either
the development or aging periods) as in human (67 and 66 miRNAs, respectively, out of
98 age-related miRNA with macaque orthologs). We then separated these miRNA-gene
group pairs into “enriched” and “non-enriched” classes, and compared the correlations
between the two groups, as described above. Note that regulator identification may be
less precise in the rhesus macaque analysis, as it is based on target enrichment in human
clusters. Furthermore, the rhesus macaque data, presumably due to its shorter age-range,
shows less age-related change than human (both in development and aging, and both in
miRNA and mRNA). There were 10 regulator-target gene group pairs identified for
development, and 5 identified for aging (Figure 5A). In addition, we checked if putative
regulator miRNA identified in human show tendency for excess negative correlations

(mean r<0) with their targets in macaque (Table S5).

Testing predicted regulators — coordinated divergence.

Here, we tested whether miRNA expression differences between humans and macaques
would be reflected in expression of their putative target genes. For instance, if a miRNA
expression change occurs at a later age in humans compared to macaques, would the
target genes' expression profiles be similarly shifted (Figure S8C)? We first interpolated
the human and macaque expression-age curves at 25 points along each species’ lifespans,
for both the miRNA and mRNA datasets. Next, for each orthologous miRNA/mRNA, we
calculated human-macaque expression level divergence, and standardized these to
mean=0 and standard deviation=1, per gene. We then calculated the correlations between
human-macaque miRNA divergence and target mRNA divergence across the 25

interpolated points. Divergence correlations at r<-0.95 (p<1*10°) were considered
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“coordinated” (a stringent cutoff was chosen, as we are using interpolated data here). For
putative regulatory miRNAs, which are enriched in a gene group and which are
negatively correlated with their targets in human (see above), we expected to observe
coordinated divergence between human-macaque. In contrast, we did not expect
coordinated divergence for background miRNA-target pairs. Indeed, the proportion of
coordinated divergence among putative regulator miRNA-target pairs is higher than the
same proportion among miRNA not enriched for target sites in the same gene group
(Figure S8D). The significance of the difference was calculated using the hypergeometric

test (HT).

Testing predicted regulators — target site mutation test.

In another approach, we took advantage of the fact miRNA-based regulation requires
perfect base-pairing between a 6 to 7 nucleotide stretch in miRNA 5’ end, the “seed”
region, and gene’s 3’ UTR. Due to sequence differences between the human and the
rhesus macaque genomes, some of the miRNA binding sites predicted in humans are
disrupted in macaques. If our predictions are correct, loss of the target sites should disrupt
miRNA-target relationship, which should be reflected in lack of negative correlation
between miRNA expression and expression of its target genes, or dysregulation, in rhesus
macaques. We calculated the number of mutations in the macaque orthologs of human
miRNA target sites. To define human miRNA target sites, we used the Conserved Site
Context Score Table from TargetScan5.0 (Lewis et al. 2005). We then extracted the
corresponding orthologous seed sequences in rhesus macaque from the TargetScan5.0 23-
way UTR sequence alignment table. Next, we divided each seed sequence pair between

human and macaque into 3 categories based on sequence similarity: (a) containing at
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least one mutation (among 7,331 miRNA-target pairs, 298 (4.1%) contained at least one
mutation), (b) exactly the same, (c) uncertain, if a human microRNA target site is missing
in macaque. Using this data, we calculated the proportion of miRNA-target pairs that
show negative correlation in human at a certain correlation cutoff, but show weaker
negative correlation in macaque, which we refer to as dysregulated miRNA-target pairs.
Next, using the HT, we compared the proportion of dysregulated cases among miRNA-
target pairs with a mutation in macaque, with the proportion of dysregulated cases among
miRNA-target pairs devoid of mutation (Figure S8E). In this test we only used miRNAs
that show significant enrichment in the gene groups (see section “Regulator miRNA/TF
identification”). The proportion of dysregulated pairs was calculated at different cutoffs.
Disrupted target sites was found to lead to decreased correlation among specific miRNA-
target pairs in macaque: the effect is significant for gene expression changes taking place
in development (HT p<0.01), although appears only as a tendency for the regulators
identified for aging (Figure S8E, note the small numbers of mutated miRNA binding
sites). Hence, a loss of conserved binding sites leads to a loss of regulation, as predicted

by the consensus model of miRNA function.

Testing predicted regulators — comparison with experimentally verified targets.

We compared miRNA-target gene pairs estimated in our study with four experimentally

verified miRNA target gene sets. We used two databases, Tarbase

(http://diana.cslab.ece.ntua.gr/tarbase/tarbase_download.php) (Papadopoulos et al. 2009)

and Mirwalk (http://www.ma.uni-heidelberg.de/apps/zmf/mirwalk/contact.html,

unpublished); we also used a recently published study by Khan et al. (Khan et al. 2009),

which collected results from multiple experiments, and results from Baek et al. (Baek et
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al. 2008) on mRNA regulation by overexpression of miR-181. All gene sets were
converted to human Ensembl gene IDs using Ensembl Biomart. Table S6 lists miRNA-
target gene pairs predicted in our study (based on the target site enrichment and
correlation tests, shown in Table S5) that overlap with each of these four datasets. The
significance of each overlap was estimated by a randomization test. For this, we used all
1,771 potential age-related target genes (based on TargetScan (Lewis et al. 2005)).
Among these genes, we randomly chose and assigned pseudotargets to each miRNA; the
same number as predicted targets. We then tested the overlaps between the random sets of
targets, with targets in each database. This was repeated 1,000 times, per database. The p-
value was calculated as the number of times we find an as large or larger overlap between
pseudotarget sets and the database, as originally observed. The random expectation was
calculated as the median number of overlapping target-gene pairs in the permutations.
Note these datasets partially overlap; also, most experiments involve over-expression of a
miRNA in cell lines (e.g. HeLa cells) and thus represent a quite distinct environment
compared to the brain. Therefore, finding only limited overlap with these experiments is

not unexpected.

FDR of regulator prediction.
We estimated the false discovery rate (FDR) in the binding site enrichment test and the

regulator-target correlation test using permutation. In the binding site enrichment test, we
find a total of 90 miRNAs showing enrichment in gene groups (note that one miRNA
may target multiple groups, and the 90 consists of 80 unique miRNAs). Eighty-three (83)
of these are enriched in 1, 4, and 6. For FDR estimation, we randomly assigned age-

related genes to gene groups, and calculated the number of regulators with enriched
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binding sites in these random groups, 1,000 times. Using the median number of miRNAs
found across the permutations, we estimated an FDR of 24.6%. In the binomial test for
higher negative correlations between miRNAs and their targets in a gene group, we find
22 miRNA-target pairs (16 in development, 6 in aging; only using age-related miRNAs).
Per gene group, we then randomly chose age-related miRNAs without enriched binding
sites in that group, the same number as age-related miRNAs with enriched binding sites.
Next we applied the binomial test for higher negative correlations. This was repeated
1,000 times and yielded a FDR estimate of 52.3%. Note that these could be overestimates,
as any non-identified regulators in our dataset should have an inflating effect on these

figures.

Functional analysis.

We used the func hyper (Priifer et al. 2007) program to test for enrichment of gene
groups in Gene Ontology (GO) categories (Ashburner et al. 2000). In addition to using
the HT, func_hyper runs a permutation test to determine if the number of significant HT
results is higher than expected by chance, given multiple testing. It thus calculates a
“global enrichment p-value”. We used the same strategy to test for enrichment among
KEGG pathways (Kanehisa et al. 2008), using in-house code. The Ensembl gene-GO data
were downloaded from the Ensembl database and Ensembl gene-KEGG data from the
KEGG database.

For identifying cell type-specific expression, we used expression levels measured from
purified mouse neurons, astrocytes and oligodendrocytes (Cahoy et al. 2008). From this
dataset, for each mouse-human ortholog, we calculated the effect size of each size cell

type, and assigned genes with effect size >2 as specific to that cell type (this cutoff
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ensured no overlap between cell type specific gene groups). This procedure yielded 1116,
965, and 991 human genes specific to neurons, astrocytes and oligodendrocytes,
respectively.

For putative targets of miRNAs/TFs identified in this study, we conducted secondary tests
for functional enrichment. Here we only used the GO/KEGG groups that were previously
identified as enriched in the respective gene group. This is because the gene numbers are
too small to pass correction for multiple testing among all GO/KEGG categories. We
used two backgrounds in these tests: (1) all age-related genes targeted by an age-related
regulator, (2) all genes in that gene group targeted by an age-related regulator. Test type
(1) is biased, because we pre-select categories found to be significantly enriched in this
cluster compared to other age-related genes, and the targets belong to the same cluster.

For test type (2), we expect no such bias.

Evolutionary conservation analysis.

We used the PhastCons 18-way Placental Mammal Conservation Track (a subset of the
28-way Placental Track) from the UCSC Genome Browser to calculate non-coding
sequence conservation measures (Siepel et al. 2005), and the Ensembl database for gene
coordinates. For each human gene, we computed mean sequence conservation for (a) 3’
UTR, and (b) the proximal promoter, defined as 2,000 bp +/- around the transcription
start site (TSS) (Xie et al. 2005). For genes with multiple transcripts, we chose the one
with the largest number of exons. To estimate the basal mutation rate per gene, we used
intronic conservation (excluding first introns, excluding 100 bp around each splice site,
and considering only 2,500 bp at each end inside an intron, as used by (Haygood et al.

2007)). For estimating protein conservation, we used negative dN/dS ratios calculated for
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mouse-human (hsa-mmus) and macaque-human (hsa-rhemac), downloaded from the
Ensembl database (v. 55) (Hubbard et al. 2007). Notably, sequence conservation on
protein-coding regions is the strongest among genes in co-expression groups 4, 5, and 8§,
which are enriched in neuron-specific genes (Figure 6F and Figure S11). Sequence
conservation on regulatory regions, however, is the strongest amongst genes in groups 1,

4,5, and 6 (Figure S11).

Stabilizing Selection Score.

This score is calculated as the Pearson correlation coefficient between the standardized
expression levels of an individual, and sequence conservation levels (corrected for
variation in mutation rate) among the 4,084 age-related genes in the human dataset. Note
that all four types of conservation values are positively correlated with mean expression
levels (Spearman rank correlation p<0.05). However, the Stabilizing Selection Score
(SSS) is calculated between expression levels standardized across the 23 human
individuals per gene. We also tested whether change in SSS is driven by particular gene
groups under positive selection. We identified 507 genes potentially under positive
selection, involved in immune and stress response, involved in reproduction, or with the
ratio of non-synonymous to synonymous substitution rates (dN/dS)>1 (between human
and macaque, or human and mouse), using the Ensembl and Gene Ontology databases
(6,955 such genes in total). Excluding these genes does not affect the decrease in SSS
with age (Figure 7B). Similarly, restricting the analysis to 935 age-related genes with
enriched in neuronal expression profiles (i.e. with higher expression in neurons compared
to glia, based on (Cahoy et al. 2008); 2,500 such genes in total), yields the same result

(Figure 7C). Finally, we analyzed three potential confounding factors across age-related
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genes: number of protein-protein interaction partners (based on the Human Protein
Reference Database (Keshava Prasad et al. 2009)) and the number of tissues or cell types
a gene is expressed in (i.e. expression breath; based on the GNF dataset which was
downloaded from the Ensembl database, v.54). All three measures were positively
correlated with conservation scores across genes, as expected (Duret and Mouchiroud
2000) (data not shown). However, none of these three measures showed decreasing

correlation with expression levels with age (Figure 7D), in contrast to decreasing SSS.
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