
SUPPLEMENTARY MATERIAL  1 

SNP discovery and Genotyping 2 

A detailed description of SNP discovery and genotyping is provided elsewhere 3 

(Stapley et al. 2008). In brief, the SNPs were identified using the QualitySNP 4 

software pipeline (Tang et al. 2006) from normalised cDNA sequences deposited in 5 

Genbank. We used the Illumina (San Diego) Golden Gate platform to genotype 354 6 

individuals at 876 SNPs (Stapley et al. 2008). SNP physical positions were obtained 7 

using BLAST (v2.7.1) (Altschul et al. 1997) to compare sequence containing the SNP 8 

(50-121 bp) against the zebra finch genome sequence 9 

(http://genome.wustl.edu/pub/organism/Other_Vertebrates/Taeniopygia_guttata/asse10 

mbly/Taeniopygia_guttata-3.2.4/). Stand-alone BLASTn was used with default 11 

parameter settings, except the expectation value (-e) was set to 1e-10 and the word 12 

size length (-W) was set to 25. In the few cases where SNP sequences had multiple 13 

hits, the best hit (lowest expectation value) was chosen provided the predicted 14 

location was consistent with the linkage map. SNPs that hit to unassembled contigs 15 

(denoted by “_random” or ChrUn) were not included in the analysis.  16 

 17 

Haplotype Inference 18 

There is general agreement that it is more accurate to employ a statistical procedure to 19 

infer haplotype phase when estimating LD from genotypic data (Weir 1979; Stephens 20 

et al. 2001; Slatkin 2008). There are two ways this can be done, with pedigree 21 

information or from population data (unrelated individuals). Although there are very 22 

good methods for estimating phase from population data, it is more accurate and 23 

efficient to use pedigrees (Stephens et al. 2001; Becker and Knapp 2002; Li and Jiang 24 

2005; Slatkin 2008). In addition, haplotypes inferred from population data are least 25 



accurate when sample sizes are modest, as is the case in our study (Becker and Knapp 26 

2002). For this reason we chose to use a pedigree based estimate.  27 

 28 

Phase can be inferred with pedigree information using statistical and rule based 29 

methods (e.g. Minimum Recombinant Haplotype Configuration, MRHC). Statistical 30 

methods perform very well and we chose to use SimWalk2, a Maximum Likelihood 31 

(ML) method. SimWalk is a well respected and well-used ML based statistical 32 

program and performs as well as more recently developed programs based on MRHC 33 

(Li and Jiang 2005). The main disadvantage of statistical procedures is that they are 34 

time consuming to run because of the large number of possible haplotype 35 

configurations that need to be considered. One way to reduce the time required is to 36 

split the pedigree into smaller sub families. Splitting the pedigree also helps to deal 37 

with marriage loops, which are present in our pedigree. Splitting the pedigree and 38 

duplicating individuals to create unrelated families is a common procedure employed 39 

in several programs (e.g. LINKAGE, FASTLINK, PedPhase). To split the pedigree 40 

into separate unrelated families we used CRIGEN implemented in CriMap.  41 

 42 

CRIGEN includes some individuals in more than one family, artificially inflating the 43 

size of the pedigree to 468 individuals and 153 founders compared to the true 44 

pedigree of 354 individuals and 60 founders. To ensure that this inflation did not bias 45 

the results, estimates of LD obtained from the phased haplotypes with 153 founders 46 

were compared to those obtained from the unphased genotypes using the founders of 47 

the original pedigree (n=60). The correlation coefficient for pair wise r2 calculated 48 

from the two approaches was high (r  = 0.95, Fig S1). LDmaps built using founder 49 



diplotype data are also in close agreement with the LDmaps constructed from phased 50 

haplotypes (Fig S2).  51 

 52 

Modelling Linkage Disequilibrium 53 

Calculation, representation and interpretation of LD is a complex topic, which has 54 

been reviewed elsewhere (Devlin and Risch 1995; Pritchard and Przeworski 2001; 55 

Ardlie et al. 2002; Zhang et al. 2002; Zhao et al. 2007; Slatkin 2008). We have 56 

adopted an approach to modelling LD that will facilitate comparison with previous 57 

studies and make useful comparison between chromosomes within the zebra finch 58 

genome. To model the decline in LD, pair wise estimates of LD such as r2 and D΄ are 59 

commonly used. In this study we avoid the use of D΄ because this is sensitive to small 60 

sample sizes and r2 is generally considered the best statistic for SNP data (Pritchard 61 

and Przeworski 2001; Ardlie et al. 2002; Weiss and Clark 2002). The r2 statistic is the 62 

most useful in the context of mapping studies and it can be used to calculate the extent 63 

of useful LD to detect an association (Ardlie et al. 2002). The decline of r2 was 64 

modelled using Sved’s equation as described in the body of the manuscript. 65 

 66 

Despite the usefulness of the r2 statistic in the context of mapping, pair wise estimates 67 

of LD have some shortcomings. First, pair wise estimates between all markers are not 68 

independent, and as a result it is unclear how to combine these in a meaningful way 69 

and make inference (Pritchard and Przeworski 2001). Second, all pair wise metrics 70 

are, to varying degrees, confounded by either allele frequencies or the difference in 71 

allele frequencies between two markers (Hill and Robertson 1968) and/or differences 72 

in sample size (Slate and Pemberton 2007). This introduces potential problems when 73 

making comparisons between studies or between genomic regions. Therefore, in 74 



addition to presenting analysis of r2, LD was modelled using population genetics 75 

theory (Morton et al. 2001), and the Malécot equation (Malécot 1948). 76 

 77 

Estimation of Heterozygosity, GC content and Number of Genes 78 

Total LDU, number of genes, GC content and mean heterozygosity was calculated per 79 

megabase (Mb). The number of genes, their start stop positions and the GC content 80 

were obtained from Ensembl BioMart 81 

(http://www.ensembl.org/biomart/martview/fd0d38a6a0dcc351ca2e08912f50fbc8) 82 

using database Ensembl 56, dataset Taeniopygia guttata genes (taeGut3.2.4).  83 

SNP heterozygosity (hi) was calculated for autosomal markers using 84 

hi = Nhi/Ni 85 

where Nhi is the number of founder individuals that were heterozygous at ith loci and 86 

Ni is the number of individuals typed at that loci. 87 

 88 

CpG Motifs  89 

Previous studies have identified that particular sequence motifs (CCTCCT, 90 

CTCTCCC, CCCCCCC, CTCF Consensus - CCNCCNGGNGG) are correlated with 91 

recombination rate (Shifman et al. 2006; Groenen et al. 2009). The position of each 92 

motif was estimated using EMBOSS (Rice et al. 2000) and the number of motifs per 93 

megabase was calculated. These measures are highly correlated with GC content (Fig 94 

S3) so for simplicity we only used GC content in the analysis. 95 
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Figure S1. Pair wise LD (r2) estimated from phased haplotype data and unphased 149 
diplotype data (correlation coefficient = 0.95).  150 
 151 

152 



Figure S2.1. LDmaps for chromosomes constructed using phased haplotypes (black 153 
and unphased genotypes (red). 154 
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 165 
Figure S3. Correlation matrix of GC content and GC sequence motifs (CCTCCT , 166 
CTCTCCC, CCCCCCC, CTCF Con (CCNCCNGGNGG). Upper triangle of the 167 
matrix gives correlation coefficient and significance level (0 ***, <0.001 **, <0.05 *), 168 
on the diagonal is histograms of data and scatter plots on the lower triangle. All data 169 
are log transformed. 170 
 171 
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