

1 **SUPPLEMENTARY MATERIAL**

2 **SNP discovery and Genotyping**

3 A detailed description of SNP discovery and genotyping is provided elsewhere
4 (Stapley et al. 2008). In brief, the SNPs were identified using the QualitySNP
5 software pipeline (Tang et al. 2006) from normalised cDNA sequences deposited in
6 Genbank. We used the Illumina (San Diego) Golden Gate platform to genotype 354
7 individuals at 876 SNPs (Stapley et al. 2008). SNP physical positions were obtained
8 using BLAST (v2.7.1) (Altschul et al. 1997) to compare sequence containing the SNP
9 (50-121 bp) against the zebra finch genome sequence
10 (http://genome.wustl.edu/pub/organism/Other_Vertebrates/Taeniopygia_guttata/assembly/Taeniopygia_guttata-3.2.4/). Stand-alone BLASTn was used with default
11 parameter settings, except the expectation value (-e) was set to 1e-10 and the word
12 size length (-W) was set to 25. In the few cases where SNP sequences had multiple
13 hits, the best hit (lowest expectation value) was chosen provided the predicted
14 location was consistent with the linkage map. SNPs that hit to unassembled contigs
15 (denoted by “_random” or ChrUn) were not included in the analysis.

17

18 ***Haplotype Inference***

19 There is general agreement that it is more accurate to employ a statistical procedure to
20 infer haplotype phase when estimating LD from genotypic data (Weir 1979; Stephens
21 et al. 2001; Slatkin 2008). There are two ways this can be done, with pedigree
22 information or from population data (unrelated individuals). Although there are very
23 good methods for estimating phase from population data, it is more accurate and
24 efficient to use pedigrees (Stephens et al. 2001; Becker and Knapp 2002; Li and Jiang
25 2005; Slatkin 2008). In addition, haplotypes inferred from population data are least

26 accurate when sample sizes are modest, as is the case in our study (Becker and Knapp
27 2002). For this reason we chose to use a pedigree based estimate.

28

29 Phase can be inferred with pedigree information using statistical and rule based
30 methods (e.g. Minimum Recombinant Haplotype Configuration, MRHC). Statistical
31 methods perform very well and we chose to use SimWalk2, a Maximum Likelihood
32 (ML) method. SimWalk is a well respected and well-used ML based statistical
33 program and performs as well as more recently developed programs based on MRHC
34 (Li and Jiang 2005). The main disadvantage of statistical procedures is that they are
35 time consuming to run because of the large number of possible haplotype
36 configurations that need to be considered. One way to reduce the time required is to
37 split the pedigree into smaller sub families. Splitting the pedigree also helps to deal
38 with marriage loops, which are present in our pedigree. Splitting the pedigree and
39 duplicating individuals to create unrelated families is a common procedure employed
40 in several programs (e.g. LINKAGE, FASTLINK, PedPhase). To split the pedigree
41 into separate unrelated families we used CRIGEN implemented in CriMap.

42

43 CRIGEN includes some individuals in more than one family, artificially inflating the
44 size of the pedigree to 468 individuals and 153 founders compared to the true
45 pedigree of 354 individuals and 60 founders. To ensure that this inflation did not bias
46 the results, estimates of LD obtained from the phased haplotypes with 153 founders
47 were compared to those obtained from the unphased genotypes using the founders of
48 the original pedigree (n=60). The correlation coefficient for pair wise r^2 calculated
49 from the two approaches was high ($r = 0.95$, Fig S1). LDmaps built using founder

50 diplotype data are also in close agreement with the LDmaps constructed from phased
51 haplotypes (Fig S2).

52

53 **Modelling Linkage Disequilibrium**

54 Calculation, representation and interpretation of LD is a complex topic, which has
55 been reviewed elsewhere (Devlin and Risch 1995; Pritchard and Przeworski 2001;
56 Ardlie et al. 2002; Zhang et al. 2002; Zhao et al. 2007; Slatkin 2008). We have
57 adopted an approach to modelling LD that will facilitate comparison with previous
58 studies and make useful comparison between chromosomes within the zebra finch
59 genome. To model the decline in LD, pair wise estimates of LD such as r^2 and D' are
60 commonly used. In this study we avoid the use of D' because this is sensitive to small
61 sample sizes and r^2 is generally considered the best statistic for SNP data (Pritchard
62 and Przeworski 2001; Ardlie et al. 2002; Weiss and Clark 2002). The r^2 statistic is the
63 most useful in the context of mapping studies and it can be used to calculate the extent
64 of useful LD to detect an association (Ardlie et al. 2002). The decline of r^2 was
65 modelled using Sved's equation as described in the body of the manuscript.

66

67 Despite the usefulness of the r^2 statistic in the context of mapping, pair wise estimates
68 of LD have some shortcomings. First, pair wise estimates between all markers are not
69 independent, and as a result it is unclear how to combine these in a meaningful way
70 and make inference (Pritchard and Przeworski 2001). Second, all pair wise metrics
71 are, to varying degrees, confounded by either allele frequencies or the difference in
72 allele frequencies between two markers (Hill and Robertson 1968) and/or differences
73 in sample size (Slate and Pemberton 2007). This introduces potential problems when
74 making comparisons between studies or between genomic regions. Therefore, in

75 addition to presenting analysis of r^2 , LD was modelled using population genetics
76 theory (Morton et al. 2001), and the Malécot equation (Malécot 1948).

77

78 **Estimation of Heterozygosity, GC content and Number of Genes**

79 Total LDU, number of genes, GC content and mean heterozygosity was calculated per
80 megabase (Mb). The number of genes, their start stop positions and the GC content
81 were obtained from Ensembl BioMart

82 (<http://www.ensembl.org/biomart/martview/fd0d38a6a0dcc351ca2e08912f50fbc8>)

83 using database Ensembl 56, dataset *Taeniopygia guttata* genes (taeGut3.2.4).

84 SNP heterozygosity (h_i) was calculated for autosomal markers using

85
$$h_i = Nh_i/N_i$$

86 where Nh_i is the number of founder individuals that were heterozygous at ith loci and

87 N_i is the number of individuals typed at that loci.

88

89 **CpG Motifs**

90 Previous studies have identified that particular sequence motifs (CCTCCT,
91 CTCTCCC, CCCCCC, CTCF Consensus - CCNCCNGGNGG) are correlated with
92 recombination rate (Shifman et al. 2006; Groenen et al. 2009). The position of each
93 motif was estimated using EMBOSS (Rice et al. 2000) and the number of motifs per
94 megabase was calculated. These measures are highly correlated with GC content (Fig
95 S3) so for simplicity we only used GC content in the analysis.

96 **References:**

97 Altschul S, Madden T, Schaffer A, Zhang JH, Zhang Z, Miller W, Lipman D. 1997.
98 Gapped BLAST and PSI-BLAST: A new generation of protein database
99 search programs. *Nucl. Acids Res.* **25**: 3389-3402.
100 Ardlie KG, Kruglyak L, Seielstad M. 2002. Patterns of linkage disequilibrium in the
101 human genome. *Nat. Rev. Genet.* **3**: 299-309.

102 Becker T, Knapp M. 2002. Efficiency of haplotype frequency estimation when
103 nuclear family information is included. *Hum. Hered.* **54**: 45-53.

104 Devlin B, Risch N. 1995. A comparison of linkage disequilibrium measures for fine-
105 scale mapping. *Genomics* **29**: 311-322.

106 Groenen MAM, Wahlberg P, Foglio M, Cheng HH, Megens H-J, Crooijmans RPMA,
107 Besnier F, Lathrop M, Muir WM, Wong GK-S et al. 2009. A high-density
108 SNP-based linkage map of the chicken genome reveals sequence features
109 correlated with recombination rate. *Genome Res.* **19**: 510-519.

110 Hill WG, Robertson A. 1968. Linkage disequilibrium in finite populations.
111 *Theoretical and Applied Genetics* **38**: 226-231.

112 Li J, Jiang T. 2005. Computing the Minimum Recombinant Haplotype Configuration
113 from incomplete genotype data on a pedigree by integer linear programming. .
114 *J. Comput. Biol.* **12**: 719-739.

115 Malécot G. 1948. Les Mathématiques de l'Hérédité. *Maison et Cie, Paris*.

116 Morton NE, Zhang W, Taillon-Miller P, Ennis S, Kwok PY, Collins A. 2001. The
117 optimal measure of allelic association. *Proc. Natl. Acad. Sci. USA* **98**: 5217 -
118 5221.

119 Pritchard JK, Przeworski M. 2001. Linkage disequilibrium in humans: Models and
120 data. *Am. J. Hum. Genet.* **69**: 1-14.

121 Rice P, Longden I, Bleasby A. 2000. EMBOSS: The European Molecular Biology
122 Open Software Suite. *Trends Genet.* **16**: 276-277.

123 Shifman S, Bell JT, Copley RR, Taylor MS, Williams RW, Mott R, Flint J. 2006. A
124 high-resolution single nucleotide polymorphism genetic map of the mouse
125 genome. *PLoS Biology* **4**: e395.

126 Slate J, Pemberton JM. 2007. Admixture and patterns of linkage disequilibrium in a
127 free-living vertebrate population. *J. Evol. Biol.* **20**: 1415-1427.

128 Slatkin M. 2008. Linkage disequilibrium understanding the evolutionary past and
129 mapping the medical future. *Nat. Rev. Genet.* **9**: 477-485.

130 Stapley J, Birkhead TR, Burke T, Slate J. 2008. A linkage map of the Zebra Finch
131 *Taeniopygia guttata* provides new insights into avian genome evolution.
132 *Genetics* **179**: 651-667.

133 Stephens M, Smith NJ, Donnelly P. 2001. A new statistical method for haplotype
134 reconstruction from population data. *Am. J. Hum. Genet.* **68**: 978-989.

135 Tang JF, Vosman B, Voorrips RE, Van der Linden CG, Leunissen JAM. 2006.
136 QualitySNP: a pipeline for detecting single nucleotide polymorphisms and
137 insertions/deletions in EST data from diploid and polyploid species. *BMC
138 Bioinformatics* **7**.

139 Weir BS. 1979. Inferences about Linkage Disequilibrium. *Biometrics* **35**: 235-254.

140 Weiss KM, Clark AG. 2002. Linkage disequilibrium and the mapping of complex
141 human traits. *Trends Genet.* **18**: 19-24.

142 Zhang W, Collins A, Maniatis N, Tapper W, Morton NE. 2002. Properties of linkage
143 disequilibrium (LD) maps. *Proc. Natl. Acad. Sci. USA* **99**: 17004-17007.

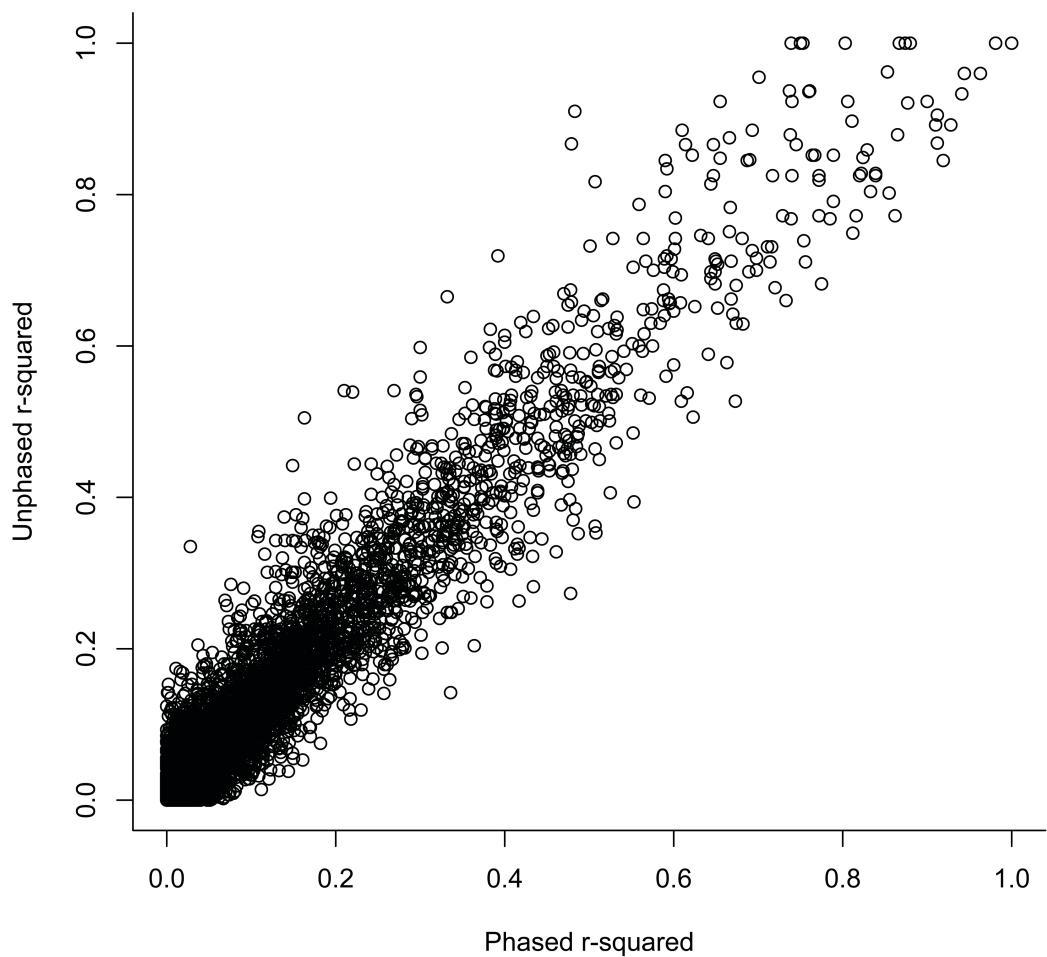
144 Zhao H, Nettleton D, Dekkers JCM. 2007. Evaluation of linkage disequilibrium
145 measures between multi-allelic markers as predictors of linkage disequilibrium
146 between single nucleotide polymorphisms. *Genet. Res.* **89**: 1-6.

147

148

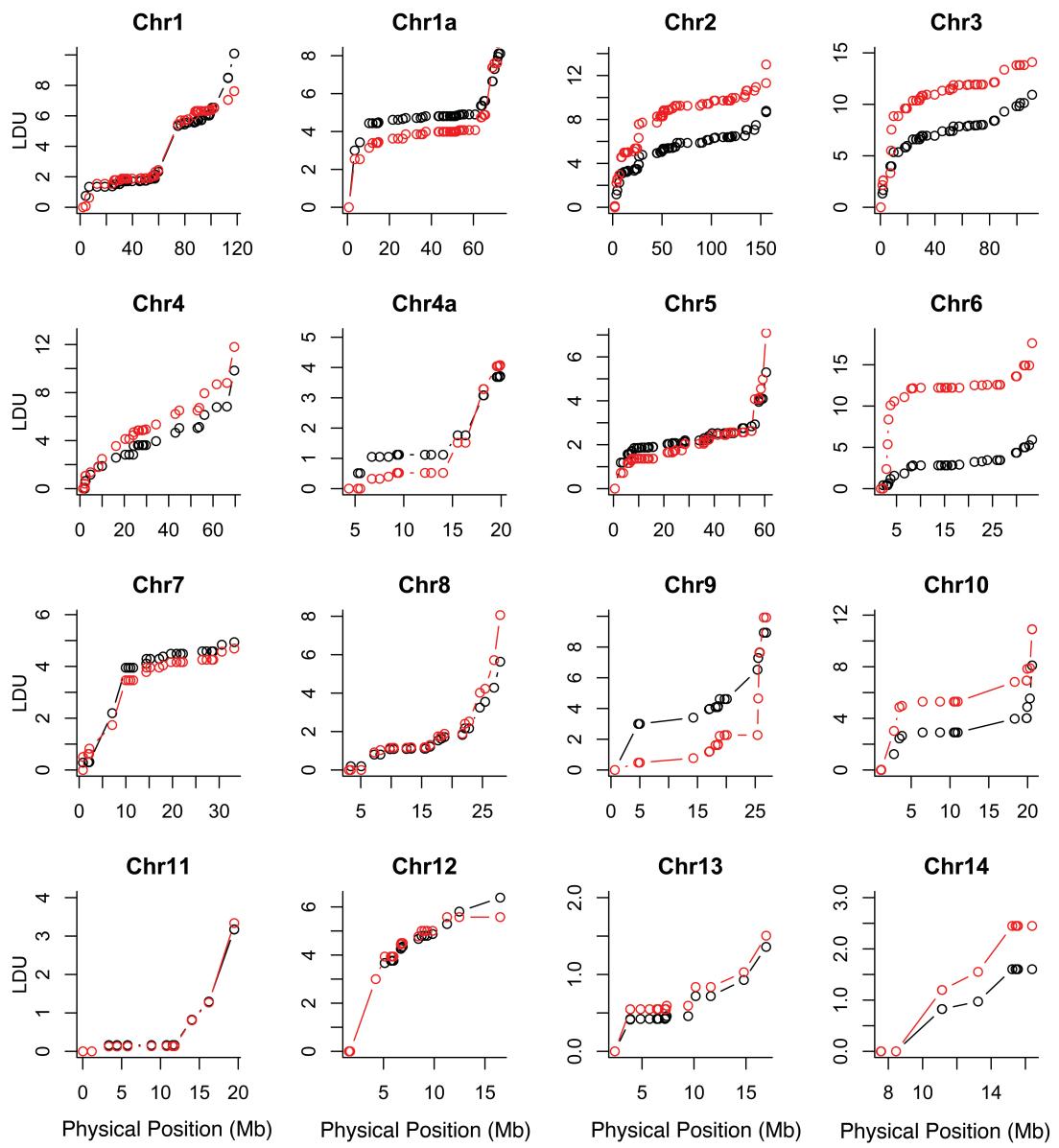
149

149 **Figure S1.** Pair wise LD (r^2) estimated from phased haplotype data and unphased
150 diplotype data (correlation coefficient = 0.95).
151



152

153 **Figure S2.1.** LDmaps for chromosomes constructed using phased haplotypes (black
154 and unphased genotypes (red).



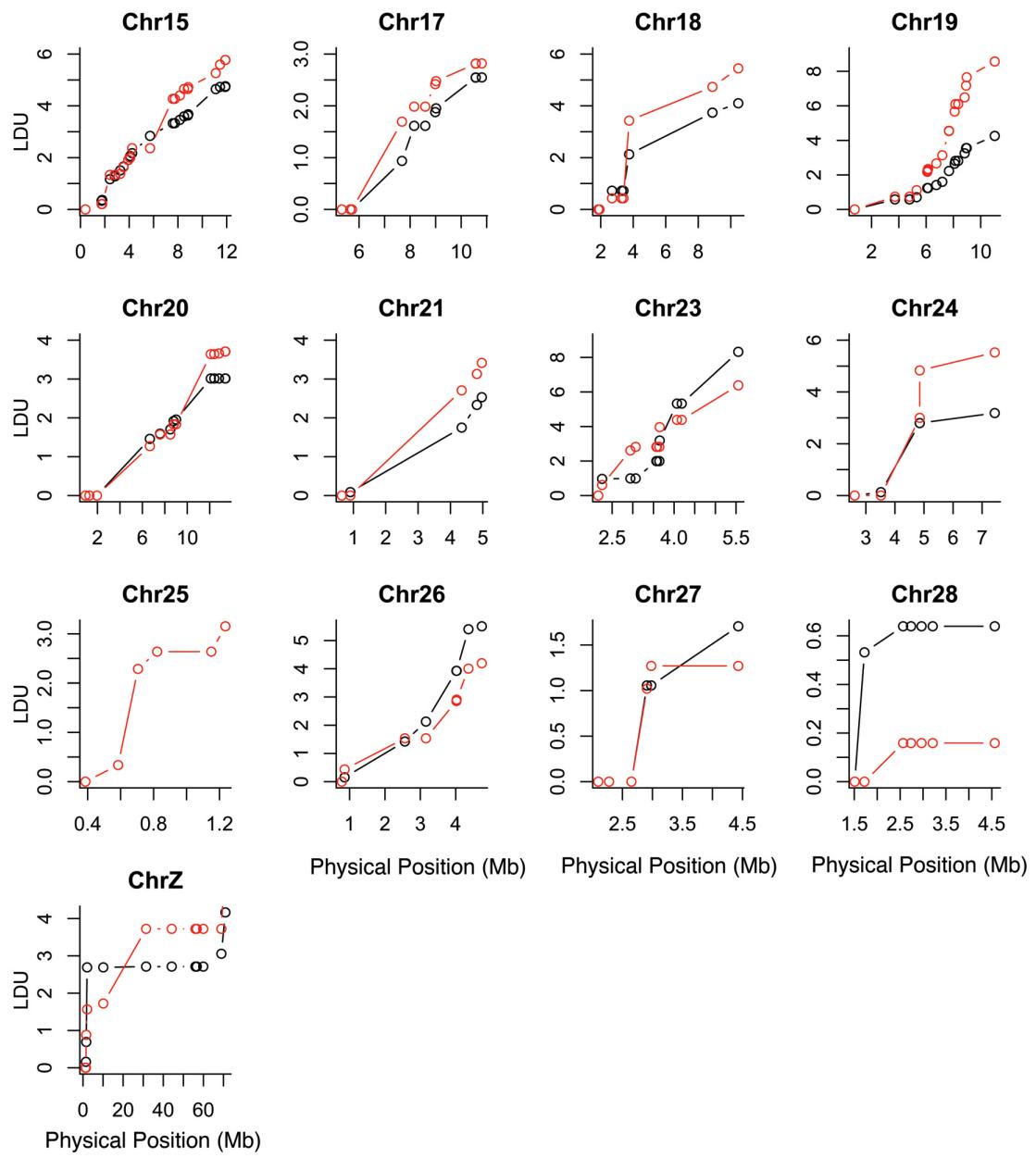
155

156

157

157 **Figure S2.2.** LDmaps for chromosomes constructed using phased haplotypes (black
158 and unphased genotypes (red).

159



160

161

162

163

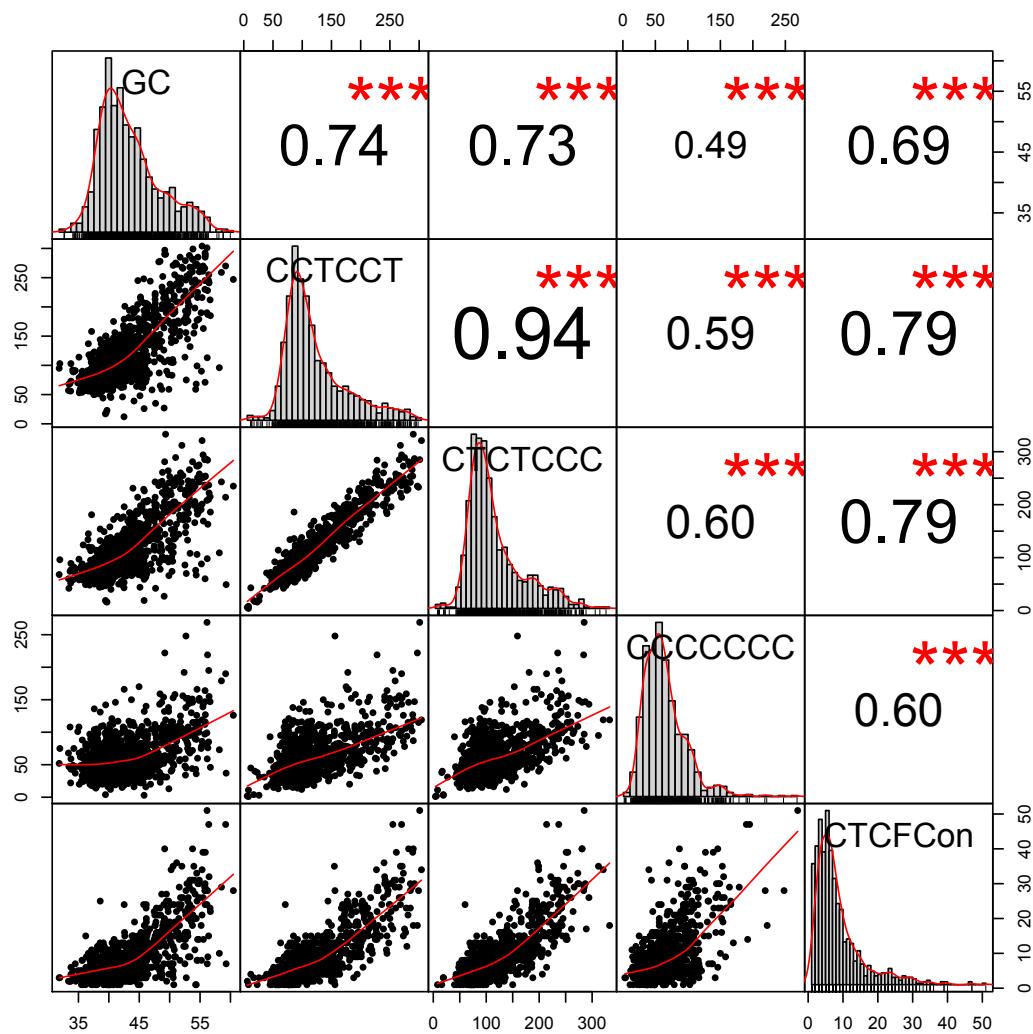
164

165

165

166 **Figure S3.** Correlation matrix of GC content and GC sequence motifs (CCTCCT, 167 CTCTCCC, CCCCCCCC, CTCF Con (CCNCCNGGNGG). Upper triangle of the 168 matrix gives correlation coefficient and significance level (0 *** <0.001 ** <0.05 *), 169 on the diagonal is histograms of data and scatter plots on the lower triangle. All data 170 are log transformed.

171



172

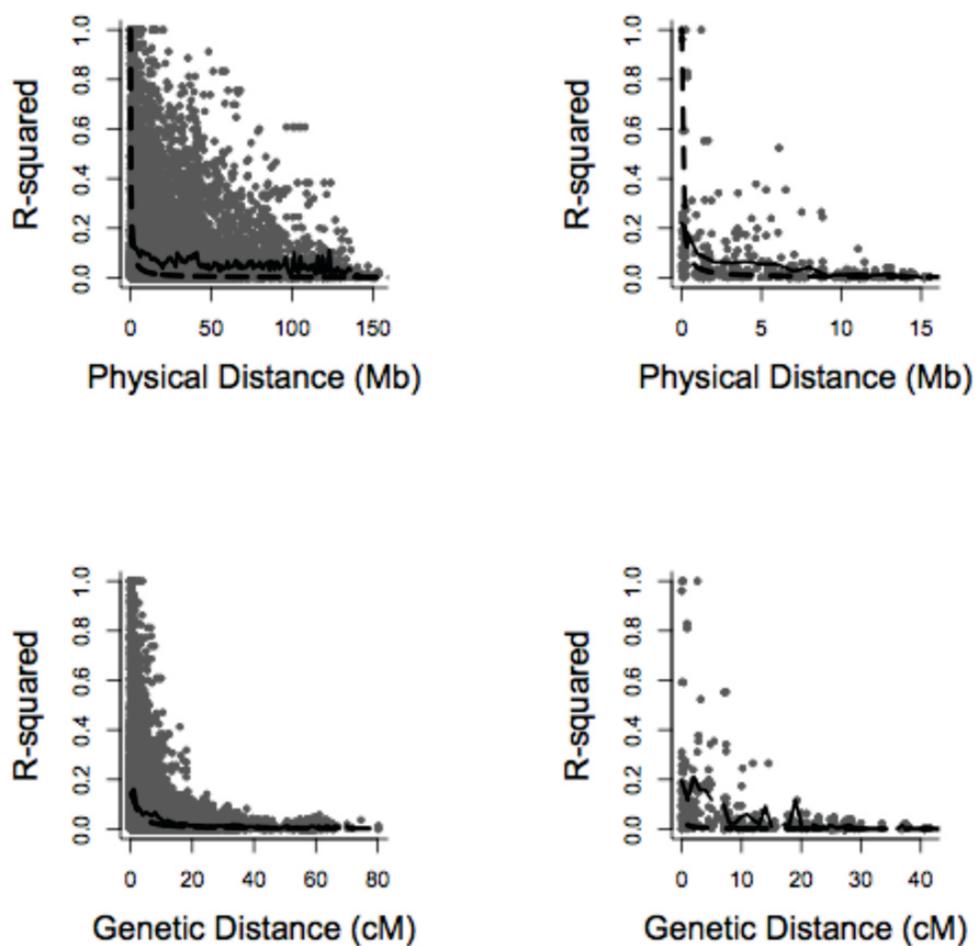
173

174

175

175 **Figure S4.** Linkage disequilibrium (r^2) between syntenic pairs of SNPs plotted
176 against: a) physical distance (Mb), solid line represents mean r^2 for 1Mb bins, dashed
177 line is the Sved's equation, for all the macrochromosome (left) and
178 microchromosomes (right); b) genetic distance (cM), solid line represents mean r^2 for
179 1cM bins, dashed line is the Sved's equation, for all the macrochromosome (left) and
180 microchromosomes (right).

181



182

183

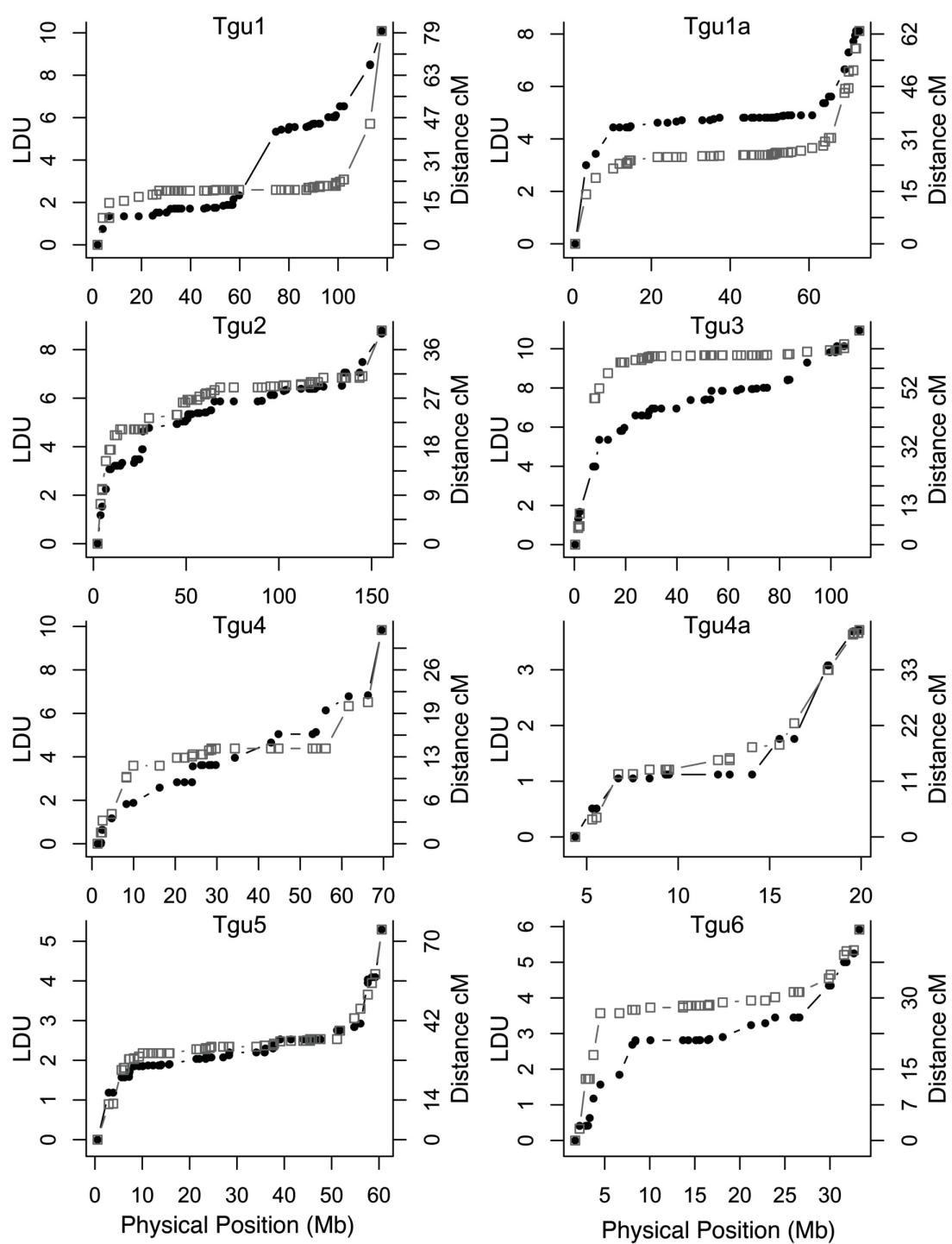
184

185

186

187

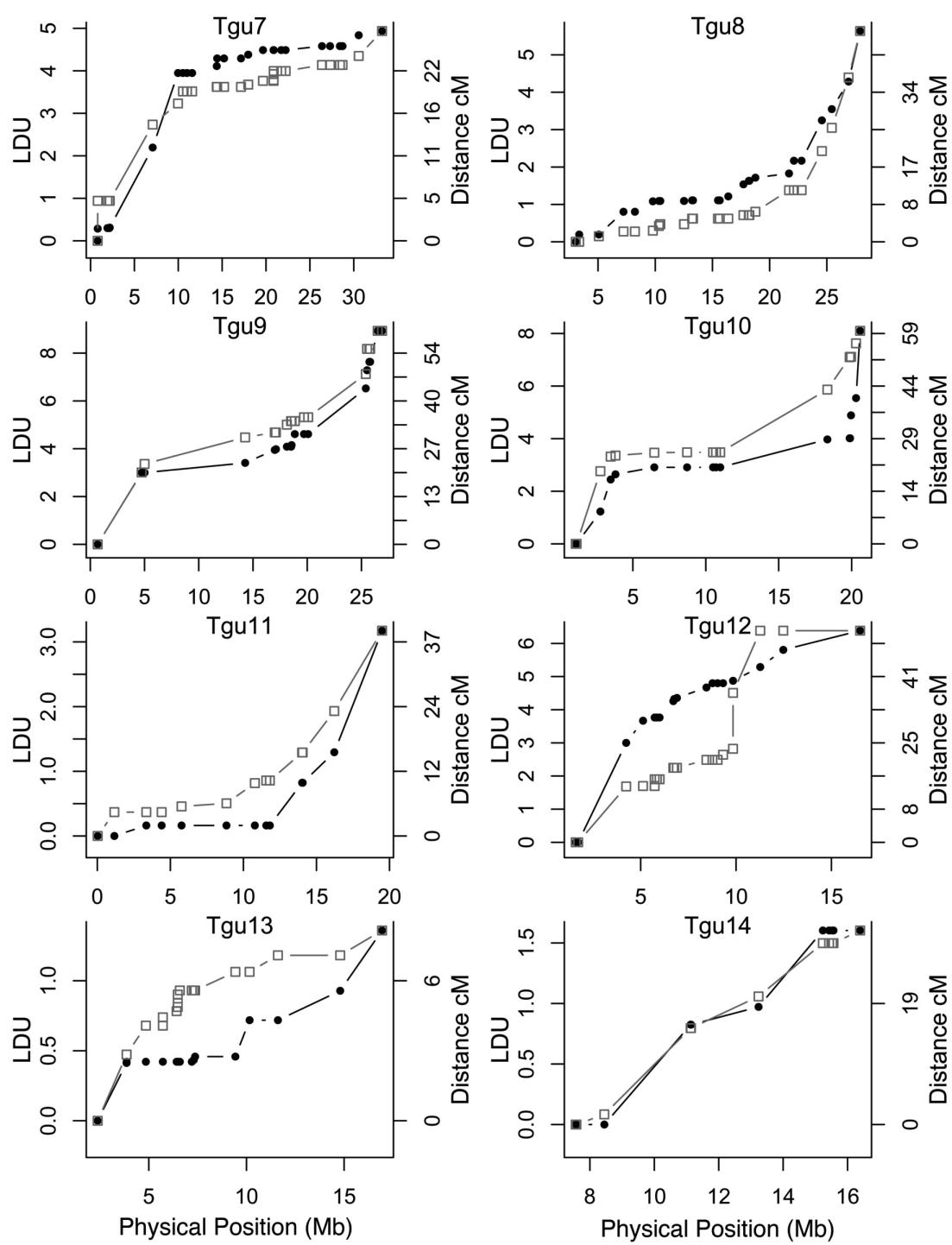
188
189 **Figure S5.1.** LD maps (LDU) and genetic maps (cM) plotted against physical
190 distance along each chromosome. Solid circles and black line indicate LD map and
191 open red squares and red line indicate genetic map.



192
193
194

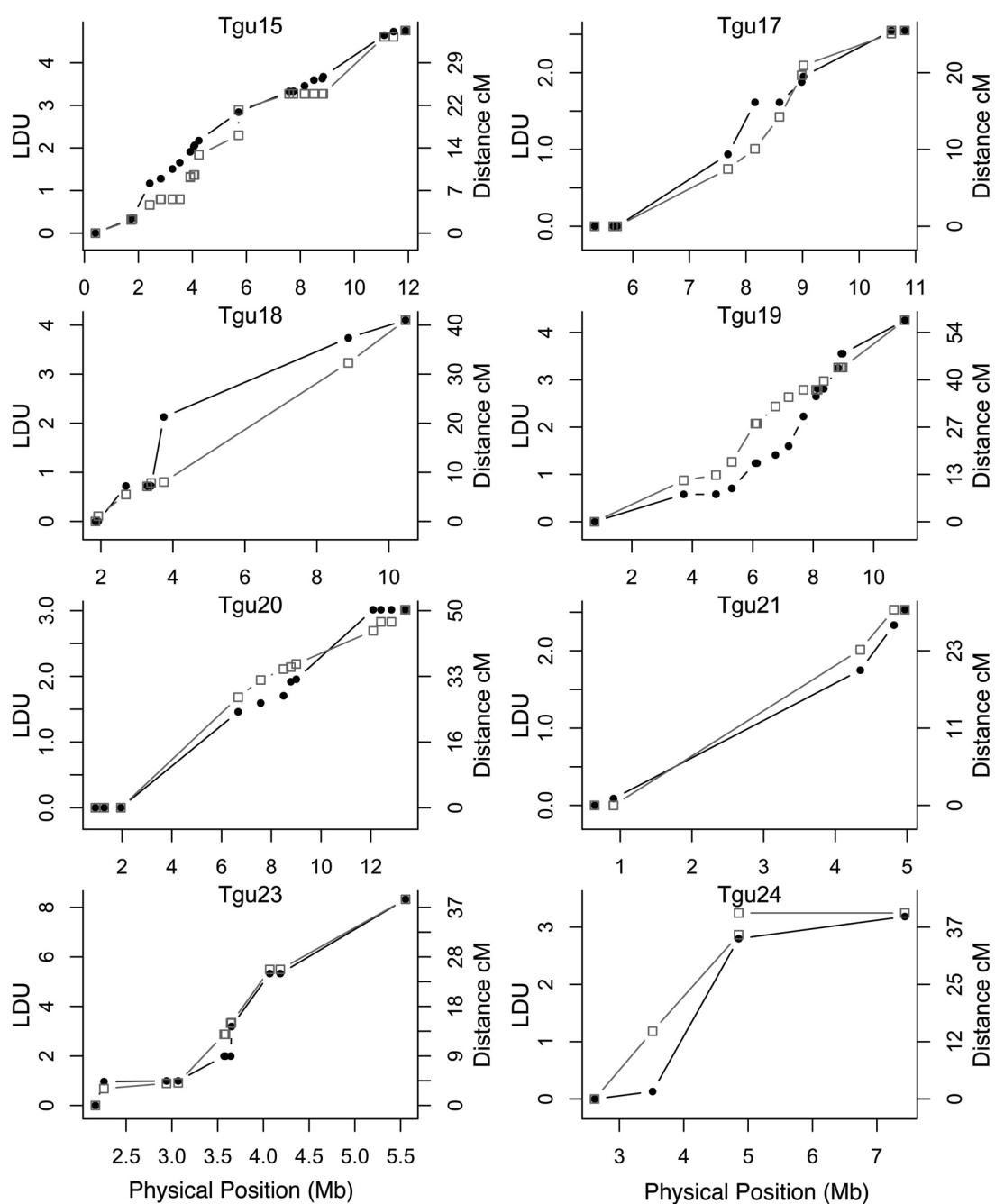
195

196 **Figure S5.2.** LD maps (LDU) and genetic maps (cM) plotted against physical
197 distance along each chromosome. Solid circles and black line indicate LD map and
198 open red squares and red line indicate genetic map.
199



200
201
202
203
204
205

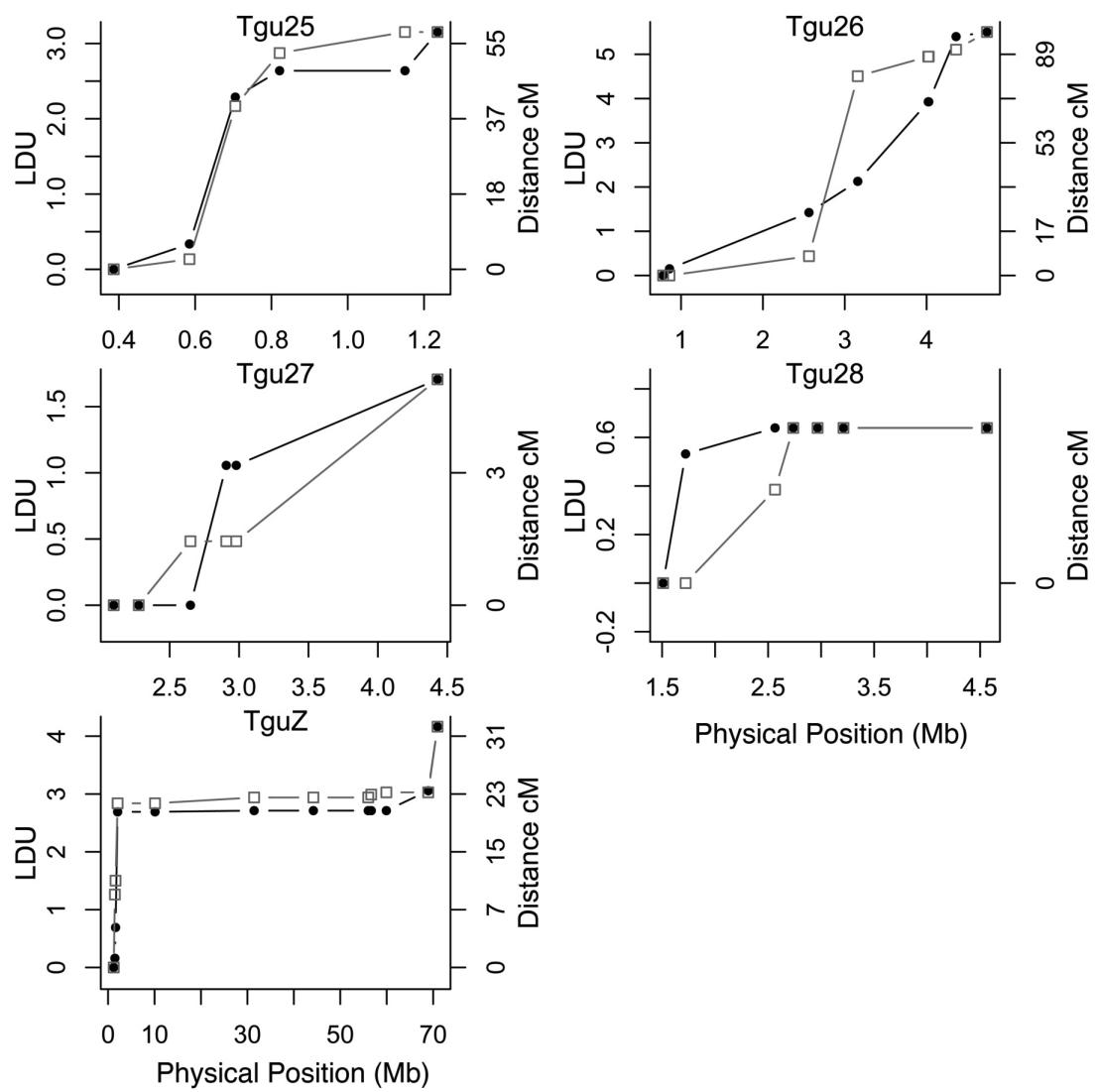
206 **Figure S5.3.** LD maps (LDU) and genetic maps (cM) plotted against physical
207 distance along each chromosome. Solid circles and black line indicate LD map and
208 open red squares and red line indicate genetic map.
209



210
211
212
213

214
215
216

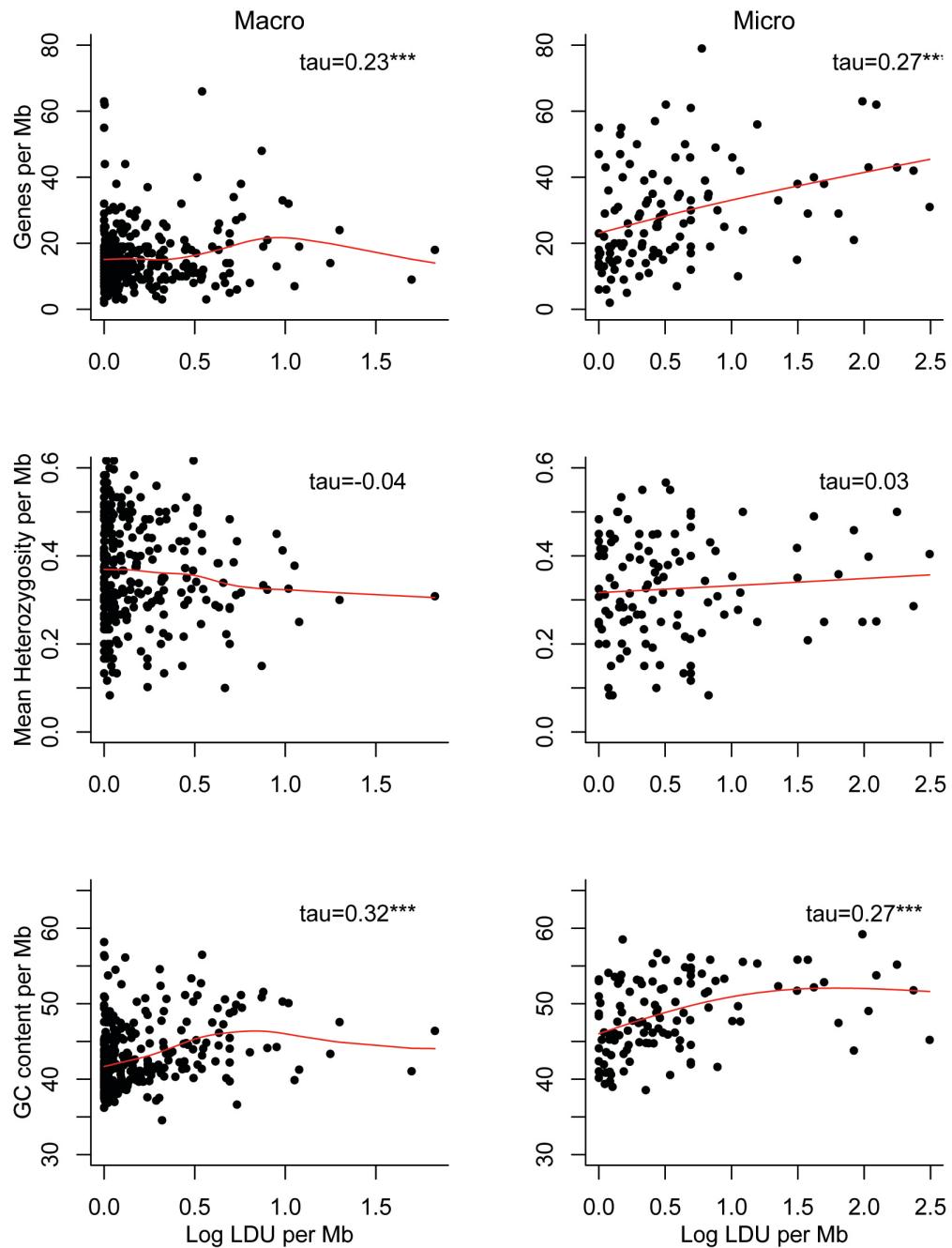
217 **Figure S5.4.** LD maps (LDU) and genetic maps (cM) plotted against physical
218 distance along each chromosome. Solid circles and black line indicate LD map and
219 open red squares and red line indicate genetic map.
220



221
222
223
224
225
226

227
228
229
230

Figure S6. Relationship between sequence features per Megabase (Mb) (number of genes, GC content, heterozygosity) and log LDU per Mb. Correlation estimates based on Kendall's τ , *** denotes p -value <0.001). Red lines are smoothed splines.



231
232

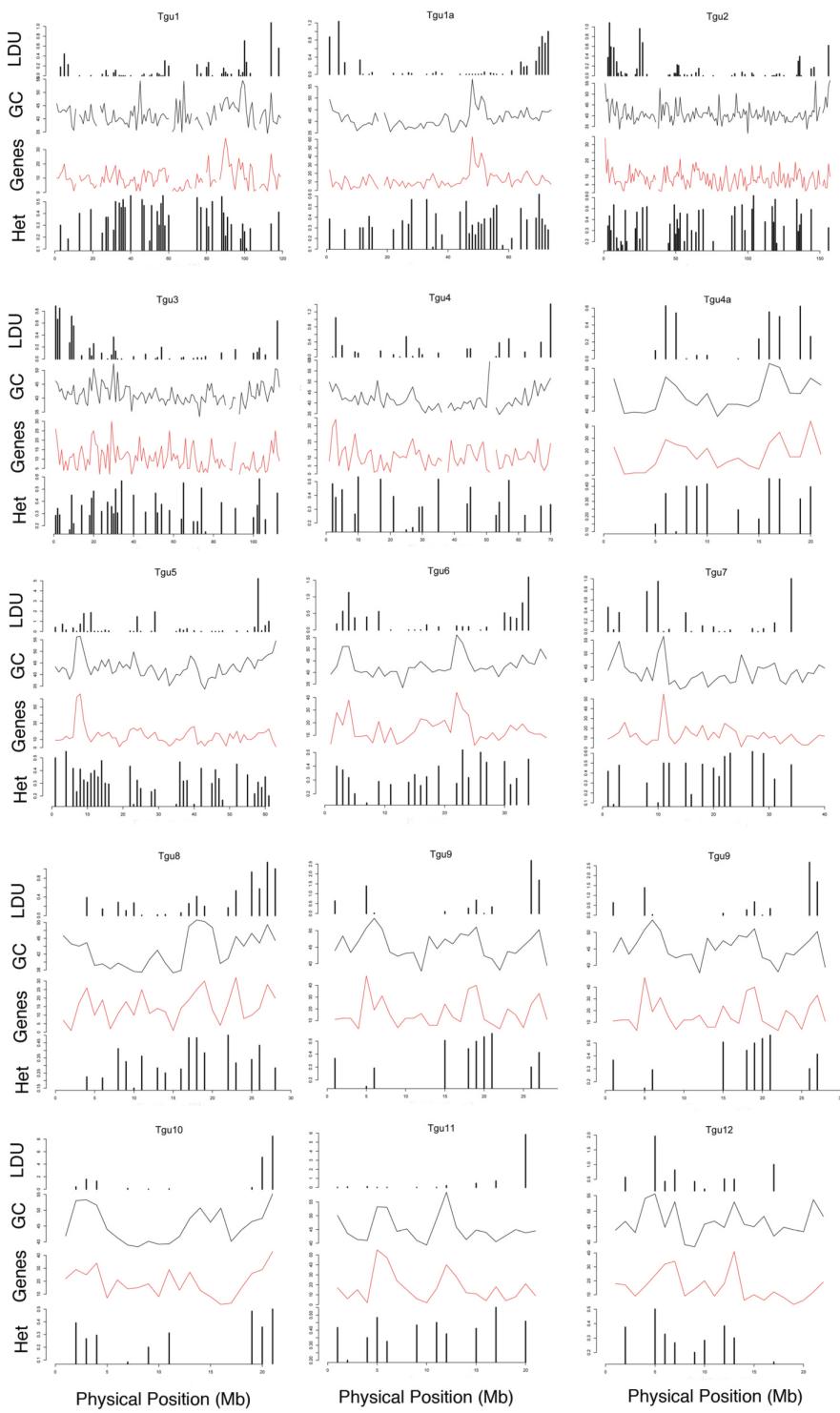
233

234

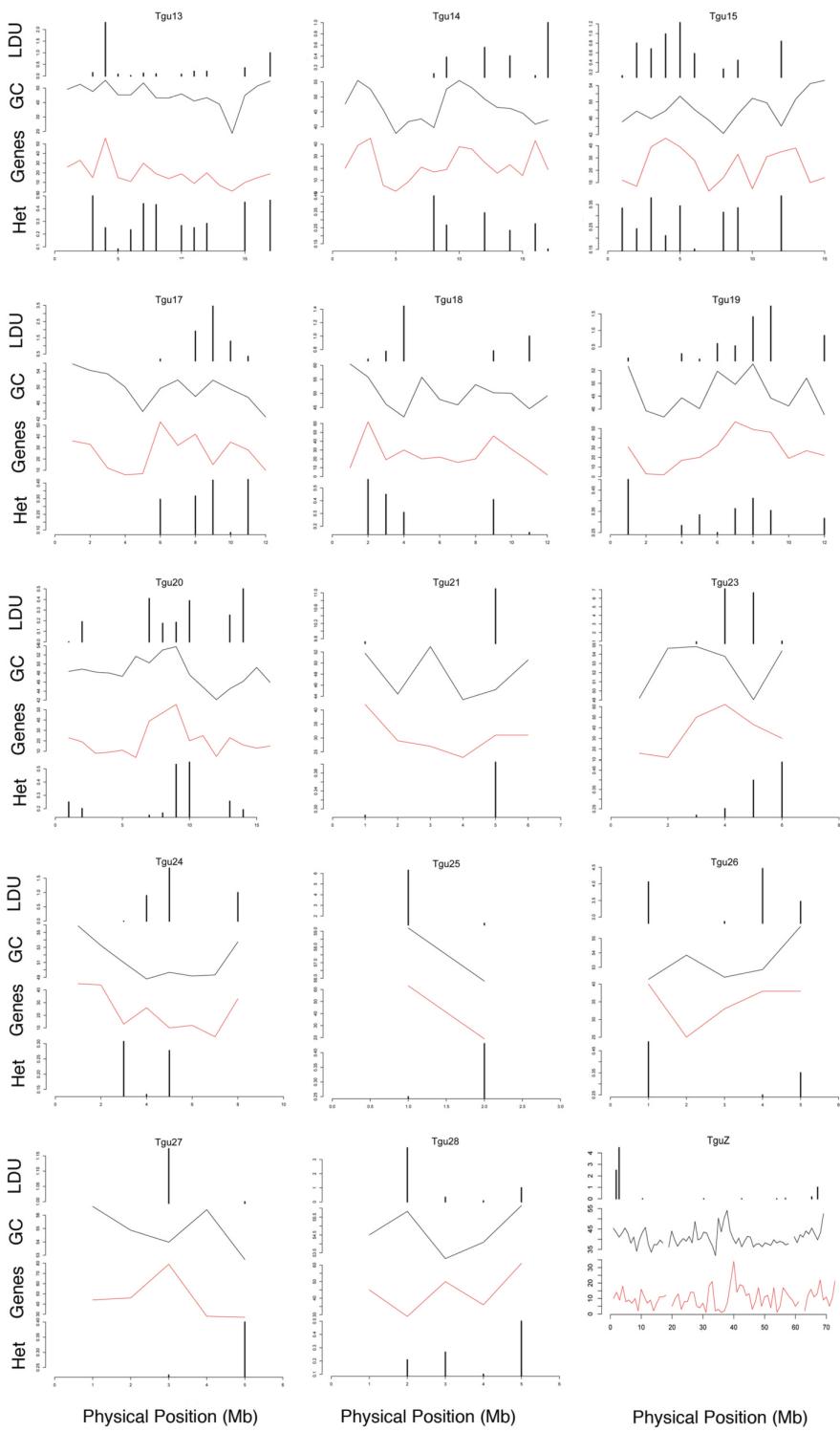
235

236

237 **Figure S7.1.** The total number of linkage disequilibrium units (LDU), GC content
 238 (GC), number of genes (Genes) and mean heterozygosity (Het) per megabase (Mb)
 239 along zebra finch chromosomes.



242 **Figure S7.2.** The total number of linkage disequilibrium units (LDU), GC content
 243 (GC), number of genes (Genes) and mean heterozygosity (Het) per megabase (Mb)
 244 along zebra finch chromosomes.
 245



246

247