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Supplementary Methods 
 

Generation of Illumina paired-end sequence data  
Strains. We obtained one female mouse each from the C57BL/6J (B6) and DBA/2J (DBA) inbred 

strains (Jackson Laboratory, Bar Harbor, ME). The B6 individual was obtained in January, 2006. This 

mouse was a retired foundation stock breeder (F226), and is thus derived from the colony nucleus and 

should be minimally diverged from the reference genome (Waterston et al. 2002). The DBA mouse was 

obtained in December, 2004. This mouse was ordered through the standard mechanism and is not 

pedigreed. These are precisely the same samples analyzed in our previous aCGH study (Egan et al. 

2007).  

 

DNA preparation. DNA was isolated using the Puregene Kit (Gentra Systems), with the following 

modifications. Livers were flash frozen in liquid nitrogen, ground with mortar and pestle, and dounce-

homogenized in 20 ml cell lysis solution. After isolation of crude DNA from liver and tail, further 

extractions were performed with phenol/chloroform/isoamyl alcohol, and chloroform/isoamyl alcohol, 

and DNA was precipitated with 2 volumes isopropanol and 1/10 volume sodium acetate.  

 

Paired-end sequencing. We constructed paired-end sequencing libraries according to the 

manufacturers protocols, as described (Bentley et al. 2008). For each strain we constructed 5-8 

independent libraries. Libraries were sequenced on the Illumina GA2 housed in the University of 

Virginia School of Medicine core facility. Read lengths ranged from 31-44bp with a mean of 39bp (Table 

1). 

 

Paired-end sequence alignment and classification 
Removal of low-quality and low-complexity paired-end reads. Prior to aligning paired-end Illumina reads 

(matepairs), we first excluded all matepairs that did not pass Illumina’s quality threshold. We further 

enforced that all remaining matepairs have no more than three Ns on either end. Lastly, we required 

that on both ends of the matepair, a single base (including Ns) does not comprise more than 80% of the 

sequence. These restrictions resulted in a total of 130.2 and 74.7 million DBA and B6 matepairs, 

respectively (see Fig. S3 for further details). 

 

Sequence alignment with BWA. We aligned all matepairs that passed our quality and complexity filters 

with the BWA (Li and Durbin 2009) (version 0.4.4) alignment algorithm. We found that BWA provides 

reasonable alignment sensitivity while using minimal computer memory and disk space. We use BWA 

as a preliminary screen for matepairs that are concordant with the mm9 reference sequence. BWA 
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aligns each end of each pair separately and then uses a “pairing” process to find concordant matepairs 

among the alignments for each end. We sought to find a substantial fraction of the concordant 

matepairs with BWA and, as such, we used rather sensitive alignment parameters to the detriment of 

alignment speed. 

 During the alignment phase, we used an alignment seed size of 20 (“-l 20”), and allowed for up to 

two differences within the seed (“-k 2”) and up to 8 differences in each end of each read (“-n 8”). We 

permitted up to 3 gaps to be opened in the alignment (“-o 3”) and up to 3 gap extensions (“-e 3”). We 

also forced BWA to continue searching for suboptimal alignments, even in cases where the best 

alignment was to a repetitive sequence (“-R”). 

 In the alignment pairing phase, we specified that the maximal expected insert size (“-a”) should 

be equivalent to the median fragment size plus 10 times the median absolute deviation of the DNA 

fragment library. In contrast to measures based on standard deviation, this measure of DNA fragment 

variation is less susceptible to gross over-estimation of variability owing to large outliers. We also 

allowed up to 10 million possible mapping locations (“-o 10000000”) for each end in order to prevent 

missing concordant matepairs for highly-repetitive sequences. 

 After the alignments were paired by BWA, we set aside all concordant matepairs for CNV 

detection via depth of coverage (DOC) analyses (see below). BWA is amenable to such analyses as it 

chooses a random mapping location for matepairs that map concordantly to multiple locations in the 

genome, thus minimizing systematic coverage distribution biases. 

 

Sequence alignment with NOVOALIGN. All remaining matepairs that were either discordant with or did 

not align to the reference genome were subsequently re-aligned with NOVOALIGN (C. Hercus, 

unpublished: http://www.novocraft.com/products.html#novoalign). We found NOVOALIGN (version 

1.05.01) to be a more sensitive aligner (data not shown) and therefore used it as a secondary screen 

for additional concordant matepairs that were missed by BWA. We separately aligned each end of each 

remaining pair with sensitive settings (word size of 14, step size of 1, -g 0, -x 30, -r E, -t 90, -e 5000000) 

and recorded all possible mapping locations for each end of each pair. Using our custom software 

(REFMAPPER), we paired the NOVOALIGN alignments for each end of each pair and screened for 

combinations that proved to be concordant with the reference genome. For those matepairs that were 

still found to be discordant, we computed all possible mapping combinations (e.g. if end 1 and end 2 

each have 10 mappings, there are 100 total mapping combinations). The discordant mapping 

combinations for all discordant matepairs were then screened for sequencing artifacts, fragment 

redundancy, and low-complexity sequence (e.g. SSRs) (see below). All remaining discordant mappings 

were used to find structural variations with HYDRA. 
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Alignment of matepairs forming SVs with MEGABLAST. As a final means to eliminate false positive SV 

calls that arose because both BWA and NOVOALIGN failed to find matepairs that were in fact 

concordant, we used MEGABLAST (Zhang et al. 2000) to re-align all putatively-discordant matepairs 

that comprised HYDRA SV calls. We found MEGABLAST to be the only aligner tested to have the 

required sensitivity and speed to find concordant mappings for putative SV calls in a reasonable 

timeframe. We aligned (word size of 8, -G 8, -E 2, -a 6, -F F, -q -2, -r 2, -D 3) each discordant read-pair 

from each putative SV call with MEGABLAST and asked if any of the matepairs in an SV call were 

found to be concordant. If so, we classified the SV call as a low-confidence variant owing to the 

possibility that it was observed merely because of a lack of alignment sensitivity. SV calls where no 

matepairs were found to be concordant were classified as high-confidence variants.  

 

Removal of sequencing artifacts and low complexity sequence. 
Removal of redundant sequence fragments. In order to minimize false positive SV calls, we sought to 

exclude all “redundant” matepairs that arise from sequencing the same molecule more than once. 

Otherwise, redundant matepairs would be falsely interpreted as independent measurements and would 

lead to false positive variant calls. We examined all mappings for all of the discordant matepairs and 

searched for two or more matepairs that shared the same alignment start and end coordinates (+/- 

2bp). In such cases, we retained the matepair with the least edit distance relative to the reference 

genome and excluded all of the mappings from the other matepairs from our analysis. Interestingly, we 

observed that the majority of redundant matepairs can be traced to nearby coordinates on the Illumina 

flow-cell. This suggests that the source of most redundancy is independent base-calling of sub-clusters 

formed during the bridge PCR step on the flowcell. We have found that this effect is inversely 

proportional to cluster density on the flow-cell and can be partially mitigated by loading flow-cells with a 

higher than normal concentration of DNA. 

 

Removal of other sequencing artifacts. We have also observed cases where the same end of the read-

pair was sequenced twice (and consequently had a mapping distance of 0 or 1bp between the two 

ends). This artifact presumably arises from self-priming events during PCR. We excluded such 

matepairs from our analysis. Additionally, our DNA libraries often had a second minor peak around 100-

200bp. This is an unintended artifact of library preparation. We therefore excluded all discordant 

mappings that were in F/R orientation and had a mapping distance <= 500bp. Consequently, we are 

unable to detect small insertions of novel sequence in this study. Lastly, we excluded all matepairs 

where both ends mapped within annotated SSR repeats. This minimizes false positives due to 

polymorphic SSRs, and reduces the number of mappings that must be examined. 
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Structural variation discovery with HYDRA 
We developed HYDRA, a novel SV discovery algorithm, to identify SV in both unique and repetitive 

regions of mammalian genomes. Unlike most extant SV discovery algorithms (Chen et al. 2009; Korbel 

et al. 2009; Sindi et al. 2009), HYDRA compares multiple mappings from discordant matepairs to one 

another, and identifies putative SVs as those having a minimal number (two or more in this study) of 

matepairs with corroborating genomic positions, sizes and read orientations. A fundamental advantage 

of utilizing multiple mappings is that it permits the discovery SV in duplicated genomic regions such as 

segmental duplications (also known as low-copy repeats, or LCRs) as well as novel insertions of 

repetitive DNA (e.g. transposable elements, or TEs). Another less appreciated advantage of this 

approach is that the discovery of repeat insertions is not dependent on genome annotations.  

 HYDRA is written in C++ and uses data structures and algorithms from the Standard Template 

Library (STL). HYDRA identified SV among the 34.5 million discordant mappings (519,000 discordant 

matepairs) from the DBA individual in less than 5 minutes on a single processor while consuming less 

than 2GB RAM. 

 

Preliminary screening for putative SV. HYDRA’s speed comes largely by performing an efficient initial 

screen of all discordant mappings in search of evidence for potential SV. The four primary steps in this 

screening process are as follows: 

 

a. We first determine which discordant mappings from each matepair should be retained for further SV 

discovery. Hydra allows one to retain: 1) the mappings with the least edit distance (termed “best” 

mappings), 2) all mappings within a user-defined edit distance of the “best” mappings, or 3) all 

mappings regardless of edit distance. In this study, we retained only the “best” mappings. 

b. We then group all remaining discordant mappings where the ends of the matepairs are aligned to the 

same chromosome(s) and in the same orientation(s). This preliminary screen segregates similar 

discordant mappings that together would corroborate a potential SV, thereby greatly reducing the 

number of mappings that must be directly compared to one another in order to detect an SV 

“cluster”. 

c. We then sort each group of mappings from step (b) by the mapping distance between each end of 

the mapping (i.e., the mapping “length”). Once the mappings are sorted by length, we collect 

mappings whose lengths differ by no more than a user-specified “length deviation” (termed 

“maxLengthDev”) parameter, which is based on the insert size variation of the sequencing library. 

Specifically, for any two mappings i and j, we require: 

 

€ 

abs(length(i) − length( j)) ≤ maxLengthDev  
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All mappings whose lengths meet this restriction are grouped into putative SV clusters. At the end of 

this step, Hydra has constructed clusters of mappings whose chromosome(s), orientation(s) and 

mapping lengths suggest potential SV. In the present study, the maxLengthDev parameter used was 

2696bp, which represents 10 times the median absolute deviation (MAD) of the fragment lengths 

observed in our most variable DNA library. 

d. The mappings within each putative cluster created in step (c) are then sorted by their genomic 

coordinates. This step further refines putative clusters by requiring that discordant mappings localize 

to the same genomic region(s) and thus support the same putative SV breakpoint. Once mappings in 

each cluster are sorted by their genomic coordinates, Hydra refines putative clusters by screening for 

mappings that span a common genomic interval and do not exceed a user-specified “non-overlap” 

(termed “maxNonOverlap”) parameter, which is based on the insert size variation of the sequencing 

library. Specifically, for any two mappings i and j in a putative cluster, we require: 

 

€ 

abs(i.leftStart − j.leftStart) + abs(i.rightEnd − j.rightEnd)( ) ≤ maxNonOverlap  

 

where leftStart is the leftmost coordinate of each mapping and rightEnd is the rightmost coordinate of 

each mapping. As illustrated in Fig. S9, this restriction is designed to prevent the clustering of 

discordant mappings that have similar lengths yet do not support the same SV breakpoint.  At the 

end of this step, Hydra has identified putative SV clusters from mappings that have similar lengths 

and orientations and support the same potential SV. In the present study, the maxNonOverlap 

parameter used was 2070bp.  This is based on the fragment size variability observed in our most 

variable DNA library and represents 2 times its median fragment length plus 10 times its MAD. 

 

While the current version does not yet account for multiple DNA sequencing libraries, this framework 

can easily be extended to multiple samples and libraries. Such an extension can be used to mix 

differing fragment sizes to increase breakpoint resolution. Moreover, it would enable multiple individuals 

and libraries to be combined for greater detection and genotyping sensitivity. 

 

Refining SV breakpoints. After the preliminary screening for putative SV, clusters having a sufficient 

number of supporting matepairs (in this study a minimum of two matepairs) are further processed in an 

effort to choose the best set of mappings with which to describe the SV breakpoint. First, HYDRA 

compares each mapping (i) in each cluster to all the other mappings (j) in that cluster and tabulates 

how many other mappings meet both the maxLengthDev and maxNonOverlap restrictions with respect 

to the ith mapping. Mappings that meet both restrictions with respect to i are classified as “supporting” 

the ith mapping. The pseudocode below details this comparison: 
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for each mapping i in cluster:	
   
 i_support = 0 

 for each mapping j in cluster: 

  if (i <> j): 

   if (passesLengthDev(i,j) and passesNonOverlap(i,j)): 

    i_support = i_support + 1 

   end_if 

  end_if 

 end_for 

 update support for i to i_support  

end_for 

choose mapping with max(i_support) as seed 

 

Hydra chooses the mapping that has the most “support” from the other mappings in the cluster as the 

“seed” mapping for the variant. Proper seed mapping selection maximizes the resolution of the putative 

breakpoint by incorporating the most supporting mappings. The variant is refined by iteratively adding 

the mapping with the next most support until we encounter a mapping that does not support all of the 

previously-added mappings. We are ultimately left with a set of discordant mappings that mutually 

corroborate the same SV and whose mappings collectively define the breakpoint of the variant. 

 

Resolving ambiguities arising from multiple mappings. Since HYDRA may interrogate multiple 

mappings per discordant matepair, there are cases where one or more of the mappings for a given 

discordant pair support multiple structural variants. In such cases, we select the SV call that is 

supported by the most discordant mappings. In cases where multiple competing SV calls have the 

same level of mapping support, we select the variant with the least number of mismatches and gaps 

among all of the supporting mappings. In cases of a tie, a variant mapping location is selected 

randomly. Thus the final set of putative variants are those with the strongest support from the 

discordant mappings. Importantly, we also report those variants whose supporting mappings were 

redistributed to other more well-supported variants so that inter-sample variant comparisons can be 

made. 

 

Excluding SVs that arose because of assembly errors in the reference genome. A primary concern for 

all current studies investigating SV via paired-end mapping approaches is false variant discovery owing 

to reference genome assembly errors. In this study, we had the advantage of sequencing a B6 mouse 

that is at most 30 generations separated from the mice sequenced to create the reference genome. 

Therefore, we were immediately suspicious of any putative SV that was observed in the B6 individual. 

Such events are most likely indicative of systematic alignment artifacts caused by misassembly. 
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Therefore, we excluded all putative SV in the DBA individual that were corroborated by at least one 

discordant mapping (i.e. identical orientation, and approximately the same mapping distance) in the B6 

individual. The remaining set of variants were observed only in the DBA strain, and are therefore 

cleansed for assembly artifacts as much as possible given the data available.  

 
Annotating HYDRA structural variant calls 
Merging HYDRA breakpoint calls into non-redundant SV calls. To create a non-redundant set of SV 

calls, we combined HYDRA breakpoint calls that were within 4766bp (i.e., 2*(median fragment length + 

10*MAD) for the most variable DNA fragment library) of one another and mutually supported the same 

class of mutation (e.g. inversion). 

 

Intersecting SV with known genome features. We have developed a new software suite (BEDTools: 

http://code.google.com/p/bedtools) (Quinlan and Hall 2010) to facilitate the annotation and functional 

characterization of the SVs discovered in this study with respect to genome annotations in the UCSC 

Genome Browser’s BED format (Kent et al. 2002). We created our own tools for such analyses 

because existing methods such as Galaxy (Giardine et al. 2005) and the UCSC Genome Browser were 

not amenable to our large datasets nor to complex queries involving several annotations. Notably, 

BEDTools includes a novel utility for screening for overlaps between SVs found via paired-end 

sequences and genome annotations in BED format. 

 

Segmental duplication annotations. Segmental duplications (SD) in the mouse genome (She et al. 

2008) were converted from mm8 (build 36) to mm9 (build 37) coordinates using the “liftover” utility 

provided by the UCSC Genome Browser. SV were declared to overlap with SD if at least 50% of the 

length of the variant overlapped with a SD or if either of the two ends of the variant overlapped with SD. 

 

Definition of “recent” transposons. Annotated transposons for the mm9 build of the mouse genome 

were obtained from the UCSC Genome Browser’s RepeatMasker (Smit et al. 1996-2004) table. Recent 

transposons were defined as those transposons that were less than 20% divergent (i.e. milliDiv <= 200) 

from the canonical transposon sequence for each class. Recent transposon insertions in the B6 lineage 

were defined as putative HYDRA deletions where at least 50% of the genomic span was comprised of 

a single recent transposon class (e.g. LINE1, or L1). Transposon insertions in the DBA lineage were 

defined as distant insertions where one end of the HYDRA variant overlapped with a recent transposon 

annotation. Cases where both ends overlapped with a recent annotation or one end overlapped with 

multiple recent annotations were classified as ambiguous.  
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Simple repeat annotations. We defined simple sequence repeats (SSRs) to be the union of the 

RepeatMasker track’s “Simple_repeat” entries, the UCSC “Simple Repeats” track and the UCSC 

“Microsatellites” track. 

 

Genes, exons, promoters. Gene and exon annotations were obtained from the UCSC RefSeq track. 

Promoter regions were defined from the RefSeq annotations by adding 1kb upstream of the 

transcription start site. Genes with known phenotypes were obtained from the UCSC “MGI Phenotypes” 

track. SV were declared to overlap with genes, exons, promoters or known phenotypes if the length of 

the variant shared at least one common base pair with a given annotation. 

 

Calculation of SV enrichment in existing annotations. We classified SV as overlapping with genome 

features if they intersected by at least one base on either strand. Enrichment in segmental duplications 

was determined using a permutation experiment whereby segmental duplications were randomly 

shuffled among the genome (more specifically, the autosomes plus chromosome X) while their original 

sizes were maintained. We performed 1,000 such permutations and compared the mean number of 

SVs that overlapped with segmental duplications (by the method described above) in the permutation 

experiments to the observed number of overlaps with the true segmental duplication annotations. The 

P-values for enrichment reflect the fraction of permutations having more than the observed overlaps 

with segmental duplications. 

 

Comparison to CNVs. We use the UCSC lift-over tool to convert published CNVs from the mm8 to the 

mm9 assembly. We classified a HYDRA variant as agreeing with a CNV reported by a previous aCGH 

study (She et al. 2008; Cahan et al. 2009) or depth of coverage (DOC) analysis (this study) if their 

genomic coordinates overlapped by more 10% with each other. This definition requires reciprocal 

overlap, such the shared interval comprises at least 10% of both the HYDRA variant and the CNV. We 

decided upon this lenient measure of overlap based upon the known imprecision of aCGH/DOC. CNV 

coordinates reported by aCGH depend heavily on the positions and local density of probes, and CNV 

coordinates reported by DOC depend upon the positions of non-overlapping 5kb windows. We noticed 

many cases where HYDRA variants and aCGH/DOC appeared to detect the same underlying variant, 

but showed relatively little overlap based upon the reported genomic coordinates. We performed this 

analysis using our final high-confidence dataset, as well as the complete dataset including low-

confidence variants and alternative mappings for variants called at non-unique genomic regions. This 

latter comparison is crucial because often the genomic coordinates reported in multi-copy sequence 

can vary merely due to methodological differences in how variants are reported. 

 
 



Supplementary Methods                                                                                                              Quinlan et al. 

	
   9 

WGS “long-read” sequence alignment 
Obtaining sequence data. We obtained 38,151,082 and 7,998,826 whole-genome shotgun (WGS) 

traces from the NCBI Trace Archive for the B6 and DBA strains, respectively. While there is no single 

accession number for these data, they can be retrieved using the following query: species_code='MUS 

MUSCULUS' and strain='C57BL/6J' and trace_type_code='WGS' and load_date <= '09/01/2009'. The 

DBA data can be retrieved using the same query substituting “DBA/2J” for “C57BL/6J”.   

 

Vector and quality trimming. We trimmed all traces prior to alignment according to the vector and 

quality trimming coordinates provided by the NCBI Trace Archive annotation files. Any sequence that 

was less than 100bp in length after quality and vector trimming was excluded from analysis. We were 

left with 34,624,688 and 7,998,824 reads for B6 and DBA, respectively. 

 

Alignment with BLAT. We aligned all trimmed WGS long-reads for DBA and B6 with BLAT (Kent 

2002)(version 32x1) using the following parameters: tileSize=12, stepSize=6, minMatch=4, 

minIdentity=90, minScore=30, extendThroughN, noTrimA, and maxIntron=100. 

 

Identifying concordant and discordant reads. Long-reads from both B6 and DBA were classified as 

either mapping concordantly or discordantly with the reference genome. In order to be classified as 

concordant, we required that a given long-read have at least one mapping where 90% of the read 

aligned in a single block (with at most a 100bp gap, hence the maxIntron=100 BLAT parameter) and 

that 90% of the bases in the aligned portion matched the bases in the reference genome. All long-reads 

that failed this check were classified as discordant. We recorded all mappings for all discordant reads. 

 

Validation of HYDRA variant calls 
HYDRA identified 15,690 SV breakpoints between the DBA and reference genomes based from 34.5 

million discordant Illumina matepair mappings. True structural differences between the DBA genome 

and the reference genome should be corroborated by the DBA long-reads but not the B6 long-reads. 

Specifically, bona fide SV in DBA should be supported by at least one DBA long-read that aligns as a 

so-called “split-read” alignment. For example, in the case of a true deletion in DBA (Fig. 2A,B), a DBA 

long-read should align such that two distinct portions of the read map to the regions of the reference 

genome that flank the deleted sequence in DBA. No such “split-read” alignment should be observed 

with the B6 long-reads. 

 We developed a pipeline to screen each putative DBA SV for supporting split-read alignments 

(split-reads) from both DBA and B6 long-reads. However, the HYDRA SV calls typically do not map to 

the exact breakpoint(s) of a given SV whereas the split-reads do. Therefore, we allowed an additional 

interval beyond the predicted HYDRA breakpoint to be examined for overlapping split-reads. 
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Specifically, for each putative SV, we computed the mean of the medians of each DNA library from 

which each supporting read-pair originated. This “mean of medians” was computed individually for each 

SV and was added to the interval that was examined in search of split-read alignments in B6 and DBA. 

We then required any observed split-read in B6 and DBA to have 90% overlap with the refined HYDRA 

SV intervals in order to be included in our SV validation scheme. 

 Using the above criteria, we classified variants where at least one DBA split-read was observed 

and no B6 split-reads were observed as confirmed. Variants where at least one B6 split-read was 

observed were classified as refuted. Owing to insufficient WGS coverage for DBA (but not B6), there 

were often cases where split-reads were not observed in either strain. Such cases were classified as 

inconclusive. These are very strict criteria for validation given that there was nearly 9-fold WGS 

coverage for the B6 strain.  

 The reader may note that there are other potential validation methods. One obvious alternative 

would be to allow concordant DBA long-reads that map to the predicted breakpoint interval to refute a 

putative SV. However, this approach suffers from one critical flaw: long-reads originating from 

duplicated or repetitive regions of the genome, which may in fact not be annotated as such due to their 

presence in the DBA genome but not the reference, can map to bona fide breakpoints in concordant 

fashion. We indeed tested a validation approach that utilized concordant long-read mappings in this 

way, and we noticed that true variants involving segmental duplications or transposons were often 

falsely refuted. We judged such variants as true based upon our ability to assemble and interpret their 

breakpoint sequences (see below). Nevertheless, even using a method that incorporates concordant 

read mappings HYDRA achieves a similar validation rate for simple SVs in unique genomic regions 

(>90%) (Fig. 2), and lower yet respectable rate for TEVs and multi-copy variants (60-80%, depending 

on the precise criteria). 

 

Breakpoint assembly 
Assembly of split-read WGS sequences that confirm HYDRA SV. The HYDRA SV calls that were 

confirmed by DBA long-reads were further characterized in an effort to identify the exact nucleotide at 

which the SV breakpoint(s) occurred. In such cases, we assembled the corroborating long-reads with 

PHRAP (Phil Green, unpublished, http://www.phrap.org/) using default parameters (Fig. 3). When a 

single WGS read confirmed the HYDRA SV, we attempted to identify the breakpoint from that single 

read. We excluded cases where PHRAP was unable to assemble supporting WGS reads into a single 

contig. 

 

Alignment of the assembled breakpoint-containing contig (breaktig) to the reference locus. The PHRAP 

contigs were then aligned to the genomic locus that HYDRA identified (adding 5kb upstream and 

downstream to include sequence flanking the putative breakpoint(s)) with MEGABLAST. We employed 
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very sensitive settings (-s 0 -G 8 -E 2 -m 8 -W 8 -F f) to ensure that all homology between the 

assembled breaktig and the reference locus would be detected.  

 

Selection of the “best” mappings. As a consequence of the sensitive alignment setting used, there are 

frequently cases where the same sections of a breaktig aligns to multiple locations within the reference 

genome locus. This occurs, for example, when a breaktig contains a common repeat. In such cases we 

retained the largest alignment for a given section of the breaktig. This served to eliminate secondary 

alignments that were not needed to characterize the SV breakpoint. 

 

Calling and annotating SV breakpoints. The best alignments between each breaktig and the reference 

locus were used to classify SV breakpoints. Transposon insertions (TEVs) were identified as cases that 

appeared to be deletions (both flanking alignments were in the correct orientation, see Fig. 3B) in DBA 

with respect to the reference genome, yet the supposedly deleted region was at least 50% comprised 

of recent TE annotations in the reference genome (see below). These cases suggest a TE insertion in 

the B6 lineage rather than a deletion in the DBA lineage. We excluded all remaining breakpoints that 

identified a variant less than 100bp in size as well as cases that were clearly caused by an expansion 

of an annotated SSR. The remaining breakpoints were classified as deletions, duplications or 

inversions (Fig. 3B). 

 For all TEV and non-TEV breakpoints, we estimated the amount of homology at the breakpoint by 

computing the degree of “overlap” between adjacent alignments. When little or no overlap was 

observed, we classified the SV as a “flush” breakpoint. When significant negative overlap (i.e. there 

was a gap in the breaktig between two adjacent alignments to the reference genome, see Fig. 3B) was 

observed, we investigated the potential that DNA was inserted in the DBA genome at the breakpoint. 

Positive overlap indicates local sequence homology at the breakpoint. Substantial (e.g. >=20bp) 

sequence homology is indicative of NAHR, while so-called microhomology (e.g. <20bp) is indicative of 

either NHEJ, target-site duplication (TSD) caused by retrotransposon insertions, or replication-based 

template switching mechanisms such as FoSTeS or MMBIR. 

 

Characterizing the origin of NAHR homology. We manually inspected those breakpoints that exhibited 

substantial homology to understand what types of sequence contribute to NAHR. In such cases, we 

required that both flanking alignments of a given breakpoint intersect with annotated segmental 

duplications, or recent LINEs, LTRs, SINEs or SSRs. Close inspection of cases where none of these 

sequence annotations were found revealed that there is in fact local homology, yet no annotated 

repeats. 
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Characterizing the origin of putative breakpoint insertions. We also inspected cases where there was 

evidence that additional sequence was inserted at the SV breakpoint in the DBA genome. For all 

predicted insertions larger than 20bp, we realigned the breaktig with both BLAT and BLAST (Altschul et 

al. 1990) and manually determined whether or not the inserted sequence was a true insertion, a 

complex rearrangement that appeared as an insertion, or whether it was merely an SSR expansion or 

alignment artifact. For all true insertions, we further determined whether the origin of inserted DNA was 

local (i.e. <10kb away), distant (i.e. >10Kb away or from a different chromosome) or foreign (i.e. no 

significant alignment was found in the mouse genome). 

  

CNV discovery by depth of coverage analysis (DOC). 
Removing GC-bias. For a given genomic interval the local depth of sequence coverage should be 

directly proportional to DNA copy number. Unfortunately, Illumina datasets suffer from GC-bias, such 

that local coverage depth is inversely related to local GC content. This source of noise can overwhelm 

the signal produced by CNV (Fig. S5). This noise can be effectively “cancelled out” by comparing 

similar datasets directly to one another, however GC bias can vary between datasets and a suitable 

control may not always be available. We therefore devised a method to compare a single dataset to the 

reference genome. Our approach is based upon the observation that, within a given GC content range 

(e.g. 40-40.5%), coverage is well approximated by a normal distribution (Fig. S5A). By dividing the 

genome up into “windows” of similar GC-content, depth of coverage can be assessed in a statistically 

straightforward manner. We first exclude reads that map to simple sequence repeats (SSRs), where 

abundant polymorphism can introduce local fluctuations in coverage. We then choose a genomic 

window size that contains an average of ~75-100 mappings (for this study 5kb) and fit a normal curve 

to the distribution of read counts in all windows within a given GC content range (0.5% intervals) using 

the MATLAB “normfit” function. To limit the effect of outliers on GC normalization, we exclude windows 

with read counts greater, or fewer, than the median read-count for that GC range plus or minus 4 

median absolute deviations, respectively. We then calculate a Z-score, which is the number of standard 

deviations from the mean coverage of all of the 5kb windows with a given GC content. We use the Z-

score for downstream analyses. We have compared the Z-score measurements to log2 ratios obtained 

by aCGH (Egan et al. 2007), and the DOC datasets are of similar if not superior quality (data not 

shown). 

 

CNV identification. We identified CNVs using the same Hidden Markov Model (HMM) segmentation 

algorithm that we used previously for aCGH data (Egan et al. 2007). This model is designed to detect 

relative differences in DNA copy number between two genomes, in this case an Illumina-sequenced 

genome and the reference genome, when a copy number difference affects multiple adjacent 

measurements (i.e., oligonucleotide probes or windows of sequence coverage). Briefly, the model has 
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3 states: duplicated (“up”), equivalent (“ground”), and deleted (“down”). We assume that the Z-score of 

each 5kb window is generated from one of three Gaussian distributions Nu, Ng and Nd representing up, 

ground and down respectively. We take into consideration two sources of noise. A window could be 

part of a CNV while its Z-score belongs to the ground distribution. This can occur due to small-scale 

sequence variations that perturb matepair alignment, or to random noise. Similarly, the Z-score of a 

window in the ground state can belong to the distribution of a polymorphic state, perhaps due to 

mapping “pile-ups” at unannotated SSRs. Each state of the HMM therefore represents a Gaussian 

mixture of Nu, Ng and Nd with different mixture proportions for each state.  

 To obtain prior probabilities for the HMM we used a simple sliding window segmentation scheme. 

We first identify individual windows whose P-value for being in either the “up” or “down” state is beneath 

a given threshold, Tseed. We then explore adjacent windows by extending outward from the “seed”, and 

continue to extend the segment so long as the P-value of two adjacent segments do not both exceed a 

second threshold (Textend). Textend is obtained by multiplying Tscale by the number of adjacent windows 

involved in a segment. By scaling Textend to segment length it is possible to identify large CNVs with 

relatively subtle copy number differences (e.g., a 5/4 ratio). For our study we used Tseed =0.002 and 

Tscale=0.01.  

 We used the Vitterbi algorithm on the HMM to obtain the most probable state path. This path 

classifies genomic intervals as polymorphic (up or down) or not (ground). The segmentation was robust 

to small changes in the HMM parameters and the final set of CNVs were not very different to those 

obtained from the sliding window scheme. The HMM identified 178 segments in the B6 strain and 420 

segments in the DBA strain.  

 

CNV filtering. Since CNV discovery by DOC was not the main focus of our study, we sought to 

minimize false positives at the expense of false negatives. We therefore employed a strict CNV filtering 

scheme based upon the following confidence score:  

  

€ 

score = (abs(Zcnv) × ln(N)) − S  

  where: 

  Zcnv = median Z-score of the identified CNV 

  N = number of consecutive windows that identify the CNV 

  S = standard deviation of the Z-scores among the windows of the identified segment.  

We required that “up” CNVs had a confidence score greater than 4 and “down” CNVs greater than 3. 

We used these asymmetric thresholds due to the effects of poorly-annotated SSRs, which can cause 

local increases in sequence coverage. This filtering scheme removed 206 of the 598 (34%) CNVs 

identified by the HMM. 

 We also removed several classes of CNVs that appeared to be enriched for false positives. First, 

coverage depth at AT-rich regions of the genome can be inadequate for robust CNV discovery. We 
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thus removed 7 CNVs that had a mean GC content less than 35% and a mean read mapping count of 

less than 30 per 5kb window. We also discovered an interesting artifact related to the genomic 

distribution of repeats. We used the BWA mapping algorithm, which chooses a single mapping position 

randomly when multiple high-quality mappings are present. However, there exist a small number of loci 

that are so remarkably devoid of high-copy repeats that they are depleted in coverage and identified as 

“losses” relative to the reference genome. These loci have been previously described precisely for their 

exceptional lack of repeats (Prohaska et al. 2007). We thus manually inspected all CNV calls and 

removed the 10 that corresponded to such regions. These include the Hox gene clusters as well as a 

few other highly conserved loci. The HOX gene artifact is presumably the consequence of a reasonably 

large pool of retrotransposons copies that are not present in the reference genome assembly. 

 Finally, for the analyses discussed in the main text we did not include CNVs mapping to unplaced 

contigs (“random” chromosomes) since these are known to be misassembled, and since the sequences 

present in random chromosomes are generally also present at other genomic locations.  

 

Genotyping. Since HMM segmentation is prone to false negatives we used more sensitive criteria to 

obtain “genotypes”. For each CNV that was identified by the HMM and passed the above quality filters, 

but was only identified in one of the two strains, we examined the median Z-score of that interval for 

evidence of CNV in the other strain. If the median Z-score of a genomic interval exceeded 50% of the 

median Z-score of the CNV identified by the HMM, we scored it as a CNV. Of the 76 segments 

identified as different in both strains (relative to the reference genome) only 14 were identified by this 

genotyping criteria rather than the HMM. In addition, we only report “misassembled” loci at which the 

HMM called a variant in B6.  

 

CNV validation by quantitative PCR  
We randomly selected 5 HMM calls in the DBA strain that identified novel CNVs not reported by one of 

the two most comprehensive aCGH studies (She et al. 2008; Cahan et al. 2009). Primers for qPCR 

were generated using Primer3 (Rozen and Skaletsky 2000) under the conditions that the primer pair 

had a Tm of 58-60°C, runs of consecutive nucleotides were avoided, and the five nucleotides on the 3’ 

end of the primer contained no more than 3 G/C bases. Primers were also analyzed for hetero- and 

homo-dimerization on the website of Integrative DNA Technologies. The amplicon size range was 

typically 50-150bp, and all primers were tested for specificity by amplification and gel electrophoresis 

preceding qPCR. Quantitative PCR was carried out in an Applied Biosystems 7300 Real Time PCR 

System. The 25µl reactions were composed of Applied Biosystems SYBR Green PCR Master Mix, 

12.5ng of template DNA and 0.3µM of each primer. For each primer pair a reaction was set up for the 

query DNA, the reference DNA, and a control lacking DNA. All reactions were performed in 4 to 9 

replicates. Each qPCR plate included a primer pair corresponding to a control locus known to be at 
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equivalent copy number in the query and reference DNA. We calculated the fold enrichment of the 

query DNA vs. the reference DNA at the locus of interest relative to the control locus with the following 

formula:   

   

€ 

A 2
(NTC −Ctquery )

2(NTC −Ctref )
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

B 2
(NTC −Ctquery )

2(NTC −Ctref )
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

 

           where: 

  A = Primer pair within the CNV.  

   B =  Control primer pair in a region of equivalent copy number between reference  and  

  query DNA.  

           Ct = The threshold cycle value (a statistically significant increase in fluorescence).  

           NTC = No template control value.  

This formula was applied separately to each reaction for a given primer pair in both the query and 

reference (ref) strains, in the order that the reactions were set up. The mean and standard error were 

calculated to generate Fig. S10.  

 
Comparison of Hydra to VariationHunter-SC. 
To assess the accuracy and sensitivity of Hydra’s calls, we compared Hydra SV calls to those made by 

version 0.02 (October 19, 2009 release; downloaded from http://compbio.cs.sfu.ca/strvar.htm) of 

VariationHunter-SC (VH).  

 

Creating an input file for VH. We developed a custom script to convert the discordant mappings used 

by Hydra to the input format required by VH. Since this version of VH does not call tandem duplications 

or inter-chromosomal events, we culled the entire file of 34.5 million discordant mappings to the 

1,571,157 intra-chromosomal mappings that would suggest either deletions or inversions based on 

their mapping distance and orientations. This facilitated a direct comparison of deletion and inversion 

calls made by the two algorithms. 

 

Parameters used for VH.   To ensure that VH produced the most sensitive set of calls possible for this 

comparison, we required the “minimum weighted support for a cluster” parameter to be 1 and the “pre-

processing mapping prune probability” parameter to be 0. These parameters allowed VH to call variants 

that are supported by 2 discordant mappings, yet have a “weighted” support less than 2 (personal 

communication, F. Hormozdiari). We then created a final set of VH calls consisting of all deletion (SV 

Type = 2) and inversion calls (SV Type = 3,4, or 5) that had mappings from 2 or more matepairs.  In 
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total, VH called 6366 deletions and 525 inversions based on these criteria and ran in 4 minutes and 17 

seconds. 

 

Comparison to Hydra calls. We compared 6331 deletion and 495 inversion (all calls <= 1Mb in size) 

calls made by Hydra to the analogous calls made by VH. For this comparison, the Hydra deletions 

represent all intrachromosomal calls where the size and orientation suggest a deletion; therefore, these 

calls include events that we later annotated as transposon insertions in the reference genome.  This 

was required for a direct comparison since VH did not further classify its deletion calls. When 

comparing Hydra and VH, we classified a variant as being called by both algorithms if there was at 

least 50% reciprocal overlap between the respective calls. 

 We compared Hydra’s runtime on the same dataset (1,571,157 discordant mappings) as VH and 

found that Hydra ran ~13 times faster (19 second run time). 
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