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Supplementary Methods

Generation of lllumina paired-end sequence data

Strains. We obtained one female mouse each from the C57BL/6J (B6) and DBA/2J (DBA) inbred
strains (Jackson Laboratory, Bar Harbor, ME). The B6 individual was obtained in January, 2006. This
mouse was a retired foundation stock breeder (F226), and is thus derived from the colony nucleus and
should be minimally diverged from the reference genome (Waterston et al. 2002). The DBA mouse was
obtained in December, 2004. This mouse was ordered through the standard mechanism and is not
pedigreed. These are precisely the same samples analyzed in our previous aCGH study (Egan et al.
2007).

DNA preparation. DNA was isolated using the Puregene Kit (Gentra Systems), with the following

modifications. Livers were flash frozen in liquid nitrogen, ground with mortar and pestle, and dounce-
homogenized in 20 ml cell lysis solution. After isolation of crude DNA from liver and tail, further
extractions were performed with phenol/chloroform/isoamyl alcohol, and chloroform/isoamyl alcohol,

and DNA was precipitated with 2 volumes isopropanol and 1/10 volume sodium acetate.

Paired-end sequencing. We constructed paired-end sequencing libraries according to the

manufacturers protocols, as described (Bentley et al. 2008). For each strain we constructed 5-8
independent libraries. Libraries were sequenced on the lllumina GA2 housed in the University of

Virginia School of Medicine core facility. Read lengths ranged from 31-44bp with a mean of 39bp (Table
1).

Paired-end sequence alignment and classification

Removal of low-quality and low-complexity paired-end reads. Prior to aligning paired-end lllumina reads

(matepairs), we first excluded all matepairs that did not pass lllumina’s quality threshold. We further
enforced that all remaining matepairs have no more than three Ns on either end. Lastly, we required
that on both ends of the matepair, a single base (including Ns) does not comprise more than 80% of the
sequence. These restrictions resulted in a total of 130.2 and 74.7 million DBA and B6 matepairs,

respectively (see Fig. S3 for further details).

Sequence alignment with BWA. We aligned all matepairs that passed our quality and complexity filters
with the BWA (Li and Durbin 2009) (version 0.4.4) alignment algorithm. We found that BWA provides

reasonable alignment sensitivity while using minimal computer memory and disk space. We use BWA

as a preliminary screen for matepairs that are concordant with the mm9 reference sequence. BWA
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aligns each end of each pair separately and then uses a “pairing” process to find concordant matepairs
among the alignments for each end. We sought to find a substantial fraction of the concordant
matepairs with BWA and, as such, we used rather sensitive alignment parameters to the detriment of
alignment speed.

During the alignment phase, we used an alignment seed size of 20 (“-I 20”), and allowed for up to
two differences within the seed (“-k 2”) and up to 8 differences in each end of each read (“-n 8”). We
permitted up to 3 gaps to be opened in the alignment (“-o 3”) and up to 3 gap extensions (“-e 3”). We
also forced BWA to continue searching for suboptimal alignments, even in cases where the best
alignment was to a repetitive sequence (“-R”).

In the alignment pairing phase, we specified that the maximal expected insert size (“-a”) should
be equivalent to the median fragment size plus 10 times the median absolute deviation of the DNA
fragment library. In contrast to measures based on standard deviation, this measure of DNA fragment
variation is less susceptible to gross over-estimation of variability owing to large outliers. We also
allowed up to 10 million possible mapping locations (“-0 10000000”) for each end in order to prevent
missing concordant matepairs for highly-repetitive sequences.

After the alignments were paired by BWA, we set aside all concordant matepairs for CNV
detection via depth of coverage (DOC) analyses (see below). BWA is amenable to such analyses as it
chooses a random mapping location for matepairs that map concordantly to multiple locations in the

genome, thus minimizing systematic coverage distribution biases.

Sequence alignment with NOVOALIGN. All remaining matepairs that were either discordant with or did

not align to the reference genome were subsequently re-aligned with NOVOALIGN (C. Hercus,
unpublished: http://www.novocraft.com/products.html#novoalign). We found NOVOALIGN (version
1.05.01) to be a more sensitive aligner (data not shown) and therefore used it as a secondary screen
for additional concordant matepairs that were missed by BWA. We separately aligned each end of each
remaining pair with sensitive settings (word size of 14, step size of 1, -g 0, -x 30, -r E, -t 90, -e 5000000)
and recorded all possible mapping locations for each end of each pair. Using our custom software
(REFMAPPER), we paired the NOVOALIGN alignments for each end of each pair and screened for
combinations that proved to be concordant with the reference genome. For those matepairs that were
still found to be discordant, we computed all possible mapping combinations (e.g. if end 1 and end 2
each have 10 mappings, there are 100 total mapping combinations). The discordant mapping
combinations for all discordant matepairs were then screened for sequencing artifacts, fragment
redundancy, and low-complexity sequence (e.g. SSRs) (see below). All remaining discordant mappings

were used to find structural variations with HYDRA.
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Alignment of matepairs forming SVs with MEGABLAST. As a final means to eliminate false positive SV
calls that arose because both BWA and NOVOALIGN failed to find matepairs that were in fact
concordant, we used MEGABLAST (Zhang et al. 2000) to re-align all putatively-discordant matepairs
that comprised HYDRA SV calls. We found MEGABLAST to be the only aligner tested to have the

required sensitivity and speed to find concordant mappings for putative SV calls in a reasonable

timeframe. We aligned (word size of 8, -G 8, -E 2, -a 6, -F F, -q -2, -r 2, -D 3) each discordant read-pair
from each putative SV call with MEGABLAST and asked if any of the matepairs in an SV call were
found to be concordant. If so, we classified the SV call as a low-confidence variant owing to the
possibility that it was observed merely because of a lack of alignment sensitivity. SV calls where no

matepairs were found to be concordant were classified as high-confidence variants.

Removal of sequencing artifacts and low complexity sequence.

Removal of redundant sequence fragments. In order to minimize false positive SV calls, we sought to

exclude all “redundant” matepairs that arise from sequencing the same molecule more than once.
Otherwise, redundant matepairs would be falsely interpreted as independent measurements and would
lead to false positive variant calls. We examined all mappings for all of the discordant matepairs and
searched for two or more matepairs that shared the same alignment start and end coordinates (+/-
2bp). In such cases, we retained the matepair with the least edit distance relative to the reference
genome and excluded all of the mappings from the other matepairs from our analysis. Interestingly, we
observed that the majority of redundant matepairs can be traced to nearby coordinates on the lllumina
flow-cell. This suggests that the source of most redundancy is independent base-calling of sub-clusters
formed during the bridge PCR step on the flowcell. We have found that this effect is inversely
proportional to cluster density on the flow-cell and can be partially mitigated by loading flow-cells with a

higher than normal concentration of DNA.

Removal of other sequencing artifacts. We have also observed cases where the same end of the read-

pair was sequenced twice (and consequently had a mapping distance of 0 or 1bp between the two
ends). This artifact presumably arises from self-priming events during PCR. We excluded such
matepairs from our analysis. Additionally, our DNA libraries often had a second minor peak around 100-
200bp. This is an unintended artifact of library preparation. We therefore excluded all discordant
mappings that were in F/R orientation and had a mapping distance <= 500bp. Consequently, we are
unable to detect small insertions of novel sequence in this study. Lastly, we excluded all matepairs
where both ends mapped within annotated SSR repeats. This minimizes false positives due to

polymorphic SSRs, and reduces the number of mappings that must be examined.
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Structural variation discovery with HYDRA

We developed HYDRA, a novel SV discovery algorithm, to identify SV in both unique and repetitive
regions of mammalian genomes. Unlike most extant SV discovery algorithms (Chen et al. 2009; Korbel
et al. 2009; Sindi et al. 2009), HYDRA compares multiple mappings from discordant matepairs to one
another, and identifies putative SVs as those having a minimal number (two or more in this study) of
matepairs with corroborating genomic positions, sizes and read orientations. A fundamental advantage
of utilizing multiple mappings is that it permits the discovery SV in duplicated genomic regions such as
segmental duplications (also known as low-copy repeats, or LCRs) as well as novel insertions of
repetitive DNA (e.g. transposable elements, or TEs). Another less appreciated advantage of this
approach is that the discovery of repeat insertions is not dependent on genome annotations.

HYDRA is written in C++ and uses data structures and algorithms from the Standard Template
Library (STL). HYDRA identified SV among the 34.5 million discordant mappings (519,000 discordant
matepairs) from the DBA individual in less than 5 minutes on a single processor while consuming less
than 2GB RAM.

Preliminary screening for putative SV. HYDRA’s speed comes largely by performing an efficient initial

screen of all discordant mappings in search of evidence for potential SV. The four primary steps in this

screening process are as follows:

a. We first determine which discordant mappings from each matepair should be retained for further SV
discovery. Hydra allows one to retain: 1) the mappings with the least edit distance (termed “best”
mappings), 2) all mappings within a user-defined edit distance of the “best” mappings, or 3) all
mappings regardless of edit distance. In this study, we retained only the “best” mappings.

b. We then group all remaining discordant mappings where the ends of the matepairs are aligned to the
same chromosome(s) and in the same orientation(s). This preliminary screen segregates similar
discordant mappings that together would corroborate a potential SV, thereby greatly reducing the
number of mappings that must be directly compared to one another in order to detect an SV
“cluster”.

c. We then sort each group of mappings from step (b) by the mapping distance between each end of
the mapping (i.e., the mapping “length”). Once the mappings are sorted by length, we collect
mappings whose lengths differ by no more than a user-specified “length deviation” (termed
“maxLengthDev’) parameter, which is based on the insert size variation of the sequencing library.

Specifically, for any two mappings i and j, we require:

abs(length(i) — length(j)) < maxLengthDev
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All mappings whose lengths meet this restriction are grouped into putative SV clusters. At the end of
this step, Hydra has constructed clusters of mappings whose chromosome(s), orientation(s) and
mapping lengths suggest potential SV. In the present study, the maxLengthDev parameter used was
2696bp, which represents 10 times the median absolute deviation (MAD) of the fragment lengths
observed in our most variable DNA library.

d. The mappings within each putative cluster created in step (c) are then sorted by their genomic
coordinates. This step further refines putative clusters by requiring that discordant mappings localize
to the same genomic region(s) and thus support the same putative SV breakpoint. Once mappings in
each cluster are sorted by their genomic coordinates, Hydra refines putative clusters by screening for
mappings that span a common genomic interval and do not exceed a user-specified “non-overlap”
(termed “maxNonOverlap”) parameter, which is based on the insert size variation of the sequencing

library. Specifically, for any two mappings / and j in a putative cluster, we require:
(abs(i leftStart — j leftStart) + abs(i rightEnd — j.rightEnd)) < maxNonOverlap

where leftStart is the leftmost coordinate of each mapping and rightEnd is the rightmost coordinate of
each mapping. As illustrated in Fig. S9, this restriction is designed to prevent the clustering of
discordant mappings that have similar lengths yet do not support the same SV breakpoint. At the
end of this step, Hydra has identified putative SV clusters from mappings that have similar lengths
and orientations and support the same potential SV. In the present study, the maxNonOverlap
parameter used was 2070bp. This is based on the fragment size variability observed in our most

variable DNA library and represents 2 times its median fragment length plus 10 times its MAD.

While the current version does not yet account for multiple DNA sequencing libraries, this framework
can easily be extended to multiple samples and libraries. Such an extension can be used to mix
differing fragment sizes to increase breakpoint resolution. Moreover, it would enable multiple individuals

and libraries to be combined for greater detection and genotyping sensitivity.

Refining SV breakpoints. After the preliminary screening for putative SV, clusters having a sufficient

number of supporting matepairs (in this study a minimum of two matepairs) are further processed in an
effort to choose the best set of mappings with which to describe the SV breakpoint. First, HYDRA
compares each mapping (i) in each cluster to all the other mappings (j) in that cluster and tabulates
how many other mappings meet both the maxLengthDev and maxNonOverlap restrictions with respect
to the ith mapping. Mappings that meet both restrictions with respect to i/ are classified as “supporting”

the ith mapping. The pseudocode below details this comparison:
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for each mapping i in cluster:
i support = 0
for each mapping j in cluster:
if (1 <> J):
if (passesLengthDev(i,j) and passesNonOverlap(i,j)):
i support = i support + 1
end if
end if
end for
update support for i to i support
end for

choose mapping with max (i support) as seed

Hydra chooses the mapping that has the most “support” from the other mappings in the cluster as the
“seed” mapping for the variant. Proper seed mapping selection maximizes the resolution of the putative
breakpoint by incorporating the most supporting mappings. The variant is refined by iteratively adding
the mapping with the next most support until we encounter a mapping that does not support all of the
previously-added mappings. We are ultimately left with a set of discordant mappings that mutually

corroborate the same SV and whose mappings collectively define the breakpoint of the variant.

Resolving ambiguities arising from multiple mappings. Since HYDRA may interrogate multiple

mappings per discordant matepair, there are cases where one or more of the mappings for a given
discordant pair support multiple structural variants. In such cases, we select the SV call that is
supported by the most discordant mappings. In cases where multiple competing SV calls have the
same level of mapping support, we select the variant with the least number of mismatches and gaps
among all of the supporting mappings. In cases of a tie, a variant mapping location is selected
randomly. Thus the final set of putative variants are those with the strongest support from the
discordant mappings. Importantly, we also report those variants whose supporting mappings were
redistributed to other more well-supported variants so that inter-sample variant comparisons can be

made.

Excluding SVs that arose because of assembly errors in the reference genome. A primary concern for

all current studies investigating SV via paired-end mapping approaches is false variant discovery owing
to reference genome assembly errors. In this study, we had the advantage of sequencing a B6 mouse
that is at most 30 generations separated from the mice sequenced to create the reference genome.
Therefore, we were immediately suspicious of any putative SV that was observed in the B6 individual.

Such events are most likely indicative of systematic alignment artifacts caused by misassembly.
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Therefore, we excluded all putative SV in the DBA individual that were corroborated by at least one
discordant mapping (i.e. identical orientation, and approximately the same mapping distance) in the B6
individual. The remaining set of variants were observed only in the DBA strain, and are therefore

cleansed for assembly artifacts as much as possible given the data available.

Annotating HYDRA structural variant calls

Merging HYDRA breakpoint calls into non-redundant SV calls. To create a non-redundant set of SV

calls, we combined HYDRA breakpoint calls that were within 4766bp (i.e., 2*(median fragment length +
10*MAD) for the most variable DNA fragment library) of one another and mutually supported the same

class of mutation (e.g. inversion).

Intersecting SV with known genome features. We have developed a new software suite (BEDTools:

http://code.google.com/p/bedtools) (Quinlan and Hall 2010) to facilitate the annotation and functional

characterization of the SVs discovered in this study with respect to genome annotations in the UCSC
Genome Browser's BED format (Kent et al. 2002). We created our own tools for such analyses
because existing methods such as Galaxy (Giardine et al. 2005) and the UCSC Genome Browser were
not amenable to our large datasets nor to complex queries involving several annotations. Notably,
BEDTools includes a novel utility for screening for overlaps between SVs found via paired-end

sequences and genome annotations in BED format.

Segmental duplication annotations. Segmental duplications (SD) in the mouse genome (She et al.

2008) were converted from mm8 (build 36) to mm9 (build 37) coordinates using the “liftover” utility
provided by the UCSC Genome Browser. SV were declared to overlap with SD if at least 50% of the

length of the variant overlapped with a SD or if either of the two ends of the variant overlapped with SD.

Definition of “recent” transposons. Annotated transposons for the mm9 build of the mouse genome

were obtained from the UCSC Genome Browser's RepeatMasker (Smit et al. 1996-2004) table. Recent
transposons were defined as those transposons that were less than 20% divergent (i.e. milliDiv <= 200)
from the canonical transposon sequence for each class. Recent transposon insertions in the B6 lineage
were defined as putative HYDRA deletions where at least 50% of the genomic span was comprised of
a single recent transposon class (e.g. LINE1, or L1). Transposon insertions in the DBA lineage were
defined as distant insertions where one end of the HYDRA variant overlapped with a recent transposon
annotation. Cases where both ends overlapped with a recent annotation or one end overlapped with

multiple recent annotations were classified as ambiguous.



Supplementary Methods Quinlan et al.

Simple repeat annotations. We defined simple sequence repeats (SSRs) to be the union of the

RepeatMasker track’s “Simple_repeat”’ entries, the UCSC “Simple Repeats” track and the UCSC

“Microsatellites” track.

Genes, exons, promoters. Gene and exon annotations were obtained from the UCSC RefSeq track.

Promoter regions were defined from the RefSeq annotations by adding 1kb upstream of the
transcription start site. Genes with known phenotypes were obtained from the UCSC “MGI Phenotypes”
track. SV were declared to overlap with genes, exons, promoters or known phenotypes if the length of

the variant shared at least one common base pair with a given annotation.

Calculation of SV enrichment in existing annotations. We classified SV as overlapping with genome

features if they intersected by at least one base on either strand. Enrichment in segmental duplications
was determined using a permutation experiment whereby segmental duplications were randomly
shuffled among the genome (more specifically, the autosomes plus chromosome X) while their original
sizes were maintained. We performed 1,000 such permutations and compared the mean number of
SVs that overlapped with segmental duplications (by the method described above) in the permutation
experiments to the observed number of overlaps with the true segmental duplication annotations. The
P-values for enrichment reflect the fraction of permutations having more than the observed overlaps

with segmental duplications.

Comparison to CNVs. We use the UCSC lift-over tool to convert published CNVs from the mm8 to the

mm9 assembly. We classified a HYDRA variant as agreeing with a CNV reported by a previous aCGH
study (She et al. 2008; Cahan et al. 2009) or depth of coverage (DOC) analysis (this study) if their
genomic coordinates overlapped by more 10% with each other. This definition requires reciprocal
overlap, such the shared interval comprises at least 10% of both the HYDRA variant and the CNV. We
decided upon this lenient measure of overlap based upon the known imprecision of aCGH/DOC. CNV
coordinates reported by aCGH depend heavily on the positions and local density of probes, and CNV
coordinates reported by DOC depend upon the positions of non-overlapping 5kb windows. We noticed
many cases where HYDRA variants and aCGH/DOC appeared to detect the same underlying variant,
but showed relatively little overlap based upon the reported genomic coordinates. We performed this
analysis using our final high-confidence dataset, as well as the complete dataset including low-
confidence variants and alternative mappings for variants called at non-unique genomic regions. This
latter comparison is crucial because often the genomic coordinates reported in multi-copy sequence

can vary merely due to methodological differences in how variants are reported.
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WGS “long-read” sequence alignment
Obtaining sequence data. We obtained 38,151,082 and 7,998,826 whole-genome shotgun (WGS)

traces from the NCBI Trace Archive for the B6 and DBA strains, respectively. While there is no single

accession number for these data, they can be retrieved using the following query: species_code="MUS
MUSCULUS' and strain="C57BL/6J' and trace_type code="WGS' and load_date <= '09/01/2009'. The
DBA data can be retrieved using the same query substituting “DBA/2J” for “C57BL/6J".

Vector and quality trimming. We trimmed all traces prior to alignment according to the vector and

quality trimming coordinates provided by the NCBI Trace Archive annotation files. Any sequence that
was less than 100bp in length after quality and vector trimming was excluded from analysis. We were
left with 34,624,688 and 7,998,824 reads for B6 and DBA, respectively.

Alignment with BLAT. We aligned all trimmed WGS long-reads for DBA and B6 with BLAT (Kent

2002)(version 32x1) wusing the following parameters: tileSize=12, stepSize=6, minMatch=4,

minldentity=90, minScore=30, extendThroughN, noTrimA, and maxIntron=100.

Identifying concordant and discordant reads. Long-reads from both B6 and DBA were classified as

either mapping concordantly or discordantly with the reference genome. In order to be classified as
concordant, we required that a given long-read have at least one mapping where 90% of the read
aligned in a single block (with at most a 100bp gap, hence the maxintron=100 BLAT parameter) and
that 90% of the bases in the aligned portion matched the bases in the reference genome. All long-reads

that failed this check were classified as discordant. We recorded all mappings for all discordant reads.

Validation of HYDRA variant calls
HYDRA identified 15,690 SV breakpoints between the DBA and reference genomes based from 34.5
million discordant lllumina matepair mappings. True structural differences between the DBA genome
and the reference genome should be corroborated by the DBA long-reads but not the B6 long-reads.
Specifically, bona fide SV in DBA should be supported by at least one DBA long-read that aligns as a
so-called “split-read” alignment. For example, in the case of a true deletion in DBA (Fig. 2A,B), a DBA
long-read should align such that two distinct portions of the read map to the regions of the reference
genome that flank the deleted sequence in DBA. No such “split-read” alignment should be observed
with the B6 long-reads.

We developed a pipeline to screen each putative DBA SV for supporting split-read alignments
(split-reads) from both DBA and B6 long-reads. However, the HYDRA SV calls typically do not map to
the exact breakpoint(s) of a given SV whereas the split-reads do. Therefore, we allowed an additional

interval beyond the predicted HYDRA breakpoint to be examined for overlapping split-reads.

9
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Specifically, for each putative SV, we computed the mean of the medians of each DNA library from
which each supporting read-pair originated. This “mean of medians” was computed individually for each
SV and was added to the interval that was examined in search of split-read alignments in B6 and DBA.
We then required any observed split-read in B6 and DBA to have 90% overlap with the refined HYDRA
SV intervals in order to be included in our SV validation scheme.

Using the above criteria, we classified variants where at least one DBA split-read was observed
and no B6 split-reads were observed as confirmed. Variants where at least one B6 split-read was
observed were classified as refuted. Owing to insufficient WGS coverage for DBA (but not B6), there
were often cases where split-reads were not observed in either strain. Such cases were classified as
inconclusive. These are very strict criteria for validation given that there was nearly 9-fold WGS
coverage for the B6 strain.

The reader may note that there are other potential validation methods. One obvious alternative
would be to allow concordant DBA long-reads that map to the predicted breakpoint interval to refute a
putative SV. However, this approach suffers from one critical flaw: long-reads originating from
duplicated or repetitive regions of the genome, which may in fact not be annotated as such due to their
presence in the DBA genome but not the reference, can map to bona fide breakpoints in concordant
fashion. We indeed tested a validation approach that utilized concordant long-read mappings in this
way, and we noticed that true variants involving segmental duplications or transposons were often
falsely refuted. We judged such variants as true based upon our ability to assemble and interpret their
breakpoint sequences (see below). Nevertheless, even using a method that incorporates concordant
read mappings HYDRA achieves a similar validation rate for simple SVs in unique genomic regions
(>90%) (Fig. 2), and lower yet respectable rate for TEVs and multi-copy variants (60-80%, depending

on the precise criteria).

Breakpoint assembly
Assembly of split-read WGS sequences that confirm HYDRA SV. The HYDRA SV calls that were

confirmed by DBA long-reads were further characterized in an effort to identify the exact nucleotide at

which the SV breakpoint(s) occurred. In such cases, we assembled the corroborating long-reads with
PHRAP (Phil Green, unpublished, http://www.phrap.org/) using default parameters (Fig. 3). When a
single WGS read confirmed the HYDRA SV, we attempted to identify the breakpoint from that single
read. We excluded cases where PHRAP was unable to assemble supporting WGS reads into a single

contig.

Alignment of the assembled breakpoint-containing contig (breaktig) to the reference locus. The PHRAP

contigs were then aligned to the genomic locus that HYDRA identified (adding 5kb upstream and

downstream to include sequence flanking the putative breakpoint(s)) with MEGABLAST. We employed

10
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very sensitive settings (-s 0 -G 8 -E 2 -m 8 -W 8 -F f) to ensure that all homology between the

assembled breaktig and the reference locus would be detected.

Selection of the “best” mappings. As a consequence of the sensitive alignment setting used, there are

frequently cases where the same sections of a breaktig aligns to multiple locations within the reference
genome locus. This occurs, for example, when a breaktig contains a common repeat. In such cases we
retained the largest alignment for a given section of the breaktig. This served to eliminate secondary

alignments that were not needed to characterize the SV breakpoint.

Calling and annotating SV breakpoints. The best alignments between each breaktig and the reference

locus were used to classify SV breakpoints. Transposon insertions (TEVs) were identified as cases that
appeared to be deletions (both flanking alignments were in the correct orientation, see Fig. 3B) in DBA
with respect to the reference genome, yet the supposedly deleted region was at least 50% comprised
of recent TE annotations in the reference genome (see below). These cases suggest a TE insertion in
the B6 lineage rather than a deletion in the DBA lineage. We excluded all remaining breakpoints that
identified a variant less than 100bp in size as well as cases that were clearly caused by an expansion
of an annotated SSR. The remaining breakpoints were classified as deletions, duplications or
inversions (Fig. 3B).

For all TEV and non-TEV breakpoints, we estimated the amount of homology at the breakpoint by
computing the degree of “overlap” between adjacent alignments. When little or no overlap was
observed, we classified the SV as a “flush” breakpoint. When significant negative overlap (i.e. there
was a gap in the breaktig between two adjacent alignments to the reference genome, see Fig. 3B) was
observed, we investigated the potential that DNA was inserted in the DBA genome at the breakpoint.
Positive overlap indicates local sequence homology at the breakpoint. Substantial (e.g. >=20bp)
sequence homology is indicative of NAHR, while so-called microhomology (e.g. <20bp) is indicative of
either NHEJ, target-site duplication (TSD) caused by retrotransposon insertions, or replication-based

template switching mechanisms such as FoSTeS or MMBIR.

Characterizing the origin of NAHR homology. We manually inspected those breakpoints that exhibited

substantial homology to understand what types of sequence contribute to NAHR. In such cases, we
required that both flanking alignments of a given breakpoint intersect with annotated segmental
duplications, or recent LINEs, LTRs, SINEs or SSRs. Close inspection of cases where none of these
sequence annotations were found revealed that there is in fact local homology, yet no annotated

repeats.

11
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Characterizing the origin of putative breakpoint insertions. We also inspected cases where there was

evidence that additional sequence was inserted at the SV breakpoint in the DBA genome. For all
predicted insertions larger than 20bp, we realigned the breaktig with both BLAT and BLAST (Altschul et
al. 1990) and manually determined whether or not the inserted sequence was a true insertion, a
complex rearrangement that appeared as an insertion, or whether it was merely an SSR expansion or
alignment artifact. For all true insertions, we further determined whether the origin of inserted DNA was
local (i.e. <10kb away), distant (i.e. >10Kb away or from a different chromosome) or foreign (i.e. no

significant alignment was found in the mouse genome).

CNV discovery by depth of coverage analysis (DOC).

Removing GC-bias. For a given genomic interval the local depth of sequence coverage should be

directly proportional to DNA copy number. Unfortunately, lllumina datasets suffer from GC-bias, such
that local coverage depth is inversely related to local GC content. This source of noise can overwhelm
the signal produced by CNV (Fig. S5). This noise can be effectively “cancelled out” by comparing
similar datasets directly to one another, however GC bias can vary between datasets and a suitable
control may not always be available. We therefore devised a method to compare a single dataset to the
reference genome. Our approach is based upon the observation that, within a given GC content range
(e.g. 40-40.5%), coverage is well approximated by a normal distribution (Fig. S5A). By dividing the
genome up into “windows” of similar GC-content, depth of coverage can be assessed in a statistically
straightforward manner. We first exclude reads that map to simple sequence repeats (SSRs), where
abundant polymorphism can introduce local fluctuations in coverage. We then choose a genomic
window size that contains an average of ~75-100 mappings (for this study 5kb) and fit a normal curve
to the distribution of read counts in all windows within a given GC content range (0.5% intervals) using
the MATLAB “normfit” function. To limit the effect of outliers on GC normalization, we exclude windows
with read counts greater, or fewer, than the median read-count for that GC range plus or minus 4
median absolute deviations, respectively. We then calculate a Z-score, which is the number of standard
deviations from the mean coverage of all of the 5kb windows with a given GC content. We use the Z-
score for downstream analyses. We have compared the Z-score measurements to log, ratios obtained
by aCGH (Egan et al. 2007), and the DOC datasets are of similar if not superior quality (data not

shown).

CNV identification. We identified CNVs using the same Hidden Markov Model (HMM) segmentation
algorithm that we used previously for aCGH data (Egan et al. 2007). This model is designed to detect

relative differences in DNA copy number between two genomes, in this case an lllumina-sequenced
genome and the reference genome, when a copy number difference affects multiple adjacent

measurements (i.e., oligonucleotide probes or windows of sequence coverage). Briefly, the model has

12
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3 states: duplicated (“‘up”), equivalent (“ground”), and deleted (“down”). We assume that the Z-score of
each 5kb window is generated from one of three Gaussian distributions N,, N, and N, representing up,
ground and down respectively. We take into consideration two sources of noise. A window could be
part of a CNV while its Z-score belongs to the ground distribution. This can occur due to small-scale
sequence variations that perturb matepair alignment, or to random noise. Similarly, the Z-score of a
window in the ground state can belong to the distribution of a polymorphic state, perhaps due to
mapping “pile-ups” at unannotated SSRs. Each state of the HMM therefore represents a Gaussian
mixture of N,, N, and N, with different mixture proportions for each state.

To obtain prior probabilities for the HMM we used a simple sliding window segmentation scheme.
We first identify individual windows whose P-value for being in either the “up” or “down” state is beneath
a given threshold, T..... We then explore adjacent windows by extending outward from the “seed”, and
continue to extend the segment so long as the P-value of two adjacent segments do not both exceed a
second threshold (T...). T.... is Obtained by multiplying T... by the number of adjacent windows
involved in a segment. By scaling T.... to segment length it is possible to identify large CNVs with
relatively subtle copy number differences (e.g., a 5/4 ratio). For our study we used T..,=0.002 and
T....=0.01.

We used the Vitterbi algorithm on the HMM to obtain the most probable state path. This path
classifies genomic intervals as polymorphic (up or down) or not (ground). The segmentation was robust
to small changes in the HMM parameters and the final set of CNVs were not very different to those
obtained from the sliding window scheme. The HMM identified 178 segments in the B6 strain and 420

segments in the DBA strain.

CNV filtering. Since CNV discovery by DOC was not the main focus of our study, we sought to
minimize false positives at the expense of false negatives. We therefore employed a strict CNV filtering
scheme based upon the following confidence score:

score = (abs(Zew) x In(N)) — S

where:

Z,,., = median Z-score of the identified CNV

N = number of consecutive windows that identify the CNV

S = standard deviation of the Z-scores among the windows of the identified segment.
We required that “up” CNVs had a confidence score greater than 4 and “down” CNVs greater than 3.
We used these asymmetric thresholds due to the effects of poorly-annotated SSRs, which can cause
local increases in sequence coverage. This filtering scheme removed 206 of the 598 (34%) CNVs
identified by the HMM.

We also removed several classes of CNVs that appeared to be enriched for false positives. First,

coverage depth at AT-rich regions of the genome can be inadequate for robust CNV discovery. We
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thus removed 7 CNVs that had a mean GC content less than 35% and a mean read mapping count of
less than 30 per 5kb window. We also discovered an interesting artifact related to the genomic
distribution of repeats. We used the BWA mapping algorithm, which chooses a single mapping position
randomly when multiple high-quality mappings are present. However, there exist a small number of loci
that are so remarkably devoid of high-copy repeats that they are depleted in coverage and identified as
“losses” relative to the reference genome. These loci have been previously described precisely for their
exceptional lack of repeats (Prohaska et al. 2007). We thus manually inspected all CNV calls and
removed the 10 that corresponded to such regions. These include the Hox gene clusters as well as a
few other highly conserved loci. The HOX gene artifact is presumably the consequence of a reasonably
large pool of retrotransposons copies that are not present in the reference genome assembly.

Finally, for the analyses discussed in the main text we did not include CNVs mapping to unplaced
contigs (“‘random” chromosomes) since these are known to be misassembled, and since the sequences

present in random chromosomes are generally also present at other genomic locations.

Genotyping. Since HMM segmentation is prone to false negatives we used more sensitive criteria to
obtain “genotypes”. For each CNV that was identified by the HMM and passed the above quality filters,
but was only identified in one of the two strains, we examined the median Z-score of that interval for
evidence of CNV in the other strain. If the median Z-score of a genomic interval exceeded 50% of the
median Z-score of the CNV identified by the HMM, we scored it as a CNV. Of the 76 segments
identified as different in both strains (relative to the reference genome) only 14 were identified by this
genotyping criteria rather than the HMM. In addition, we only report “misassembled” loci at which the
HMM called a variant in B6.

CNV validation by quantitative PCR

We randomly selected 5 HMM calls in the DBA strain that identified novel CNVs not reported by one of
the two most comprehensive aCGH studies (She et al. 2008; Cahan et al. 2009). Primers for gPCR
were generated using Primer3 (Rozen and Skaletsky 2000) under the conditions that the primer pair
had a Tm of 58-60°C, runs of consecutive nucleotides were avoided, and the five nucleotides on the 3’
end of the primer contained no more than 3 G/C bases. Primers were also analyzed for hetero- and
homo-dimerization on the website of Integrative DNA Technologies. The amplicon size range was
typically 50-150bp, and all primers were tested for specificity by amplification and gel electrophoresis
preceding qPCR. Quantitative PCR was carried out in an Applied Biosystems 7300 Real Time PCR
System. The 25ul reactions were composed of Applied Biosystems SYBR Green PCR Master Mix,
12.5ng of template DNA and 0.3uM of each primer. For each primer pair a reaction was set up for the
query DNA, the reference DNA, and a control lacking DNA. All reactions were performed in 4 to 9

replicates. Each qPCR plate included a primer pair corresponding to a control locus known to be at
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equivalent copy number in the query and reference DNA. We calculated the fold enrichment of the

query DNA vs. the reference DNA at the locus of interest relative to the control locus with the following

formula:
A 2(NTC “Clry)
2(NTC ~Ct,,,y
2(NTC —thum)
B 2(NTC _Ctr('f)
where:

A = Primer pair within the CNV.
B = Control primer pair in a region of equivalent copy number between reference and
query DNA.
Ct = The threshold cycle value (a statistically significant increase in fluorescence).
NTC = No template control value.
This formula was applied separately to each reaction for a given primer pair in both the query and
reference (ref) strains, in the order that the reactions were set up. The mean and standard error were

calculated to generate Fig. S10.

Comparison of Hydra to VariationHunter-SC.
To assess the accuracy and sensitivity of Hydra’s calls, we compared Hydra SV calls to those made by

version 0.02 (October 19, 2009 release; downloaded from http://compbio.cs.sfu.ca/strvar.htm) of
VariationHunter-SC (VH).

Creating an input file for VH. We developed a custom script to convert the discordant mappings used

by Hydra to the input format required by VH. Since this version of VH does not call tandem duplications
or inter-chromosomal events, we culled the entire file of 34.5 million discordant mappings to the
1,571,157 intra-chromosomal mappings that would suggest either deletions or inversions based on
their mapping distance and orientations. This facilitated a direct comparison of deletion and inversion

calls made by the two algorithms.

Parameters used for VH. To ensure that VH produced the most sensitive set of calls possible for this

comparison, we required the “minimum weighted support for a cluster” parameter to be 1 and the “pre-
processing mapping prune probability” parameter to be 0. These parameters allowed VH to call variants
that are supported by 2 discordant mappings, yet have a “weighted” support less than 2 (personal
communication, F. Hormozdiari). We then created a final set of VH calls consisting of all deletion (SV

Type = 2) and inversion calls (SV Type = 3,4, or 5) that had mappings from 2 or more matepairs. In
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total, VH called 6366 deletions and 525 inversions based on these criteria and ran in 4 minutes and 17

seconds.

Comparison to Hydra calls. We compared 6331 deletion and 495 inversion (all calls <= 1Mb in size)

calls made by Hydra to the analogous calls made by VH. For this comparison, the Hydra deletions
represent all intrachromosomal calls where the size and orientation suggest a deletion; therefore, these
calls include events that we later annotated as transposon insertions in the reference genome. This
was required for a direct comparison since VH did not further classify its deletion calls. When
comparing Hydra and VH, we classified a variant as being called by both algorithms if there was at
least 50% reciprocal overlap between the respective calls.

We compared Hydra’s runtime on the same dataset (1,571,157 discordant mappings) as VH and

found that Hydra ran ~13 times faster (19 second run time).
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