

1 **Supplemental Figure S1. Newly identified Prophages.**

2 The gene organization of the three newly identified prophages is shown. For
3 comparison, the three prophages are shown with similar known phages or prophages.
4 Protein-coding sequences (CDSs) are colored according to their assigned functional
5 categories, as shown in the box. For each phage pair, homologous CDSs have the same
6 number. The amino acid sequence identities between homologous CDSs are shown
7 below the CDSs in the reference phages. The integration sites of the three prophages are
8 also shown. A) Prophage Sp7 of O157 Sakai and a prophage (PPO157_s3) identified in
9 segment 167/168 of strain #3. B) The CPZ-55 prophage of K-12 (GenBank accession
10 number U00096) and a prophage or prophage-like integrative element (PPO157_s2)
11 identified in segment 256/257 of strain #2. C) Phage P4 (GenBank accession number
12 X51522) and a P4-like prophage (PPO157_s4) identified in segment 448/448.1 of strain
13 #4.

14

15 **Supplemental Figure S2. Curlin production in the nine O157 strains.**

16 Each O157 strain was aerobically grown in Luria-Bertani (LB) medium
17 overnight at 37°C, and 20 µl of each overnight culture was inoculated into 1 ml of fresh
18 LB medium. After incubation for 3 hrs at 37°C, the cultures were diluted with fresh LB
19 medium, spread onto “Congo red indicator plates” containing 10 g/liter Casamino acids
20 (NIHON PHARMACEUTICAL CO., LTD., Tokyo, Japan), 1 g/liter yeast extract
21 (Difco Laboratories, Sparks, MD, USA), 15 g/liter agar (KYOKUTO
22 PHARMACEUTICAL INDUSTRIAL CO., LTD, Tokyo, Japan), 20 mg/liter Congo red

1 and 10 mg/liter Coomassie brilliant blue (Sigma Aldorich Co., St..Louis, MO, USA),
2 and incubated at 28°C for 48 hrs to detect curlin production as described by Hammar,
3 M., et al. (Proc. Natl. Acad. Sci. USA, 93: 6562-6566, 1996). Because single base
4 changes in the *csgD* promoter region induce variable expression of the curlin
5 biosynthesis genes and the frequency of the base change is not high in O157 strains
6 (Uhlich G. A., et al., Appl. Environ. Microbiol., 67: 2367-2370, 2001), we analyzed
7 1,000-15,000 colonies on the Congo red indicator plates for each of the nine O157
8 strains used in this study. From O157 strains Sakai, #3, #6, #7, #8, and #9, we isolated
9 Congo red binding-positive colonies that produce curlin, although the frequencies of
10 positive colonies varied among these O157 strains. However, in strains #2, #4, and #5,
11 all of which contain IS insertions in either of the two curlin biosynthesis operons, we
12 observed no Congo red binding-positive colonies although we repeated this screening
13 many times. Note that the plates of strains Sakai, #6, and #8 contain both Congo red
14 binding-positive (indicated by black arrow heads) and negative colonies.