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S1 Input-Species

The following species are provided as input to the model. They are necessary to produce all
biomass metabolites

D-glucose, ammonium, nitrate, sulfate, Fe2+, Fe3+, CO2, H+, potassium, calcium, cobalt, molyb-
date, sodium, phosphate, oxygen, water, chloride, Cu2+, Mg2+, Mn2+ and Zn2+

S2 Abbreviations

Table 1: List of abbreviated species names.

Abbreviation Species

2-H3OP 2-hydroxy 3-oxopropanoate

2-PG D-glycerate 2-phosphate

2,3-G6P 2-dehydro 3-deoxy-D-gluconate 6-phosphate

3PG 3-phospho-D-glycerate

5-Aizc 5-amino 1,5-phospho-D-ribosyl-imidazole 4-carboxylate

6-Pgc 6-phospho-D-gluconate

Ac acetate

AcCoA acetyl-CoA

Aicar 5-Amino 1,5-Phospho-D-ribosyl-imidazole 4-carboxamide

Aics S-2,5-amino 1,5-phospho-D-ribosyl-imidazole 4-carboxamidosuccinate

Ala L-alanine

Arg L-arginine

Asp L-aspartate

Cit citrate

CoA coenzyme A

Cys cysteine

DHAP dihydroxyacetone phosphate

FDP D-fructose 1,6-bisphosphate

Fum fumarate

G3P glyceraldehyde 3-phosphate

G6P D-glucose 6-phosphate

GABA 4-Aminobutanoate

Gl glycerol

Glc D-glucose

Glcn Gluconate

Glu L-glutamate

Glx glyoxylate
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Abbreviation Species

Glyc R-Glycerate

H20 water

His Histidine

Hpyr Hydroxypyruvate

IMP inosine monophosphate

ICit isocitrate

Mal L-malate

MmCoA R-methylmalonyl-CoA

NH4 ammonium

OAA oxaloacetate

OG 2-oxoglutarate

PEP phosphoenolpyruvate

Prpp 5-phospho-alpha-D-ribose 1-diphosphate

Pyr pyruvate

R5P α-D-ribose 5-phosphate

Ru5P D-ribulose 5-phosphate

Sl2a6o N-succinyl 2-L-amino 6-oxoheptanedioate

SO4 sulfate

SucArg N2-succinyl-L-arginine

Succ succinate

SucCoa succinyl-CoA

Suchms O-succinyl-L-homoserine

Sucsal succinic-semialdehyde

Thdp 2,3,4,5-tetrahydrodipicolinate

Urdglyc ureidoglycolate

X5P D-xylulose 5-phosphate

S3 Enzyme names

Table 2: List of abbreviated enzyme names.

Abbreviation Species

AceB/GlcB malate synthase

AceEF pyruvate dehdrogenase

Acn aconitase

AllA ureidoglycolate hydrolase

AspA aspartate ammonia-lyase
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Abbreviation Species

AspC aspartate aminotransferase

Eda 2-keto-3-deoxy-6-phosphogluconate aldolase

Edd 6-phosphogluconate dehydratase

Eno enolase

Fum fumarase

GabD succinate-semialdehyde dehydrogenase

GarK glycerate kinase I

GarR/GlxR tartronate semialdehyde reductase

Gcd/YliI glucose dehydrogenase / aldose sugar dehydrogenase

Gcl glyoxylate carboligase

Gdh glutamate dehydrogenase

GltA citrate synthase

GlxK glycerate kinase II

Hyi hydroxypyruvate isomerase

Icd isocitrate dehydrogenase

Icl isocitrate lyase

IdnK/GntK D-gluconate kinase

Mdh malate dehydrogenase

Mqo malate dehydrogenase

Pck phosphoenolpyruvate carboxykinase

Ppc phosphoenolpyruvate carboxylase

Pps phosphoenolpyruvate synthase

PurB adenylosuccinate lyase

PurC phosphoribosyaminoimidazole-succinocarboxamide synthetase

PuuE/GabT 4-aminobutyrate aminotransferase

Pyk pyruvate kinase

Sdh/Frd succinate dehydrogenase / fumarate reductase

SucAB/LpdA a-ketoglutarate dehydrogenase / dihydrolipoamide dehydrogenase

SucCD succinyl-CoA synthetase

S4 Runtime complexity of the computation of elementary

flux patterns

For the analysis of the runtime complexity of the algorithm for the computation of elementary
flux patterns it is necessary to take a closer look on the mixed-integer linear program (MILP)
used for the computation of elementary flux patterns. The MILP contains twice the number of
reactions as integer variables. It has been shown by Lenstra (1983) that the runtime of solving
a MILP is exponential in the number of integer variables and polynomial in the number of real
variables. We have to solve the MILP as many times as there are elementary flux patterns. A
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trivial upper boundary of the number of flux patterns is 2k which is also an upper boundary
for the number of elementary flux patterns. Multiplying two exponential functions yields another
exponential function. Hence, the upper boundary for the running time of the presented algorithm is
exponential in the number of reactions in the subsystem and polynomial in the number of reactions
of the entire system.

S5 Relationship between elementary modes and elementary

flux patterns

Here, we want to examine the properties of a flux vector v ∈ Rn fulfilling the flux pattern condition
for a certain elementary flux pattern sv in more detail. Thus, we first examine the special case
in which a subsystem encompasses the entire system. Second, we show that each elementary flux
pattern is part of at least one elementary mode in the entire system. Third, we demonstrate how
such an elementary mode can be found. Forth, we outline a linear program that allows to determine
whether an elementary mode of the subsystem is part of a steady-state flux of the entire system.
We will use the same notation as in the main document. Thus, for a metabolic network with n
reactions among m metabolites or species M defines the m×n stoichiometric matrix of which the
first k columns, i.e., reactions, are assumed to belong to the subsystem.

S5.1 A subsystem encompassing the entire system

If the subnetwork encompasses the entire network (k = n), each elementary flux pattern corre-
sponds to an elementary mode of the network. This can be shown through the definition of a flux
pattern. Given a flux v in such a system that obeys the condition Mv ≥ 0 and v ≥ 0 (i.e., it is
a steady state flux), we identify r as the set of reactions having a non-zero flux in v. As it can
be easily seen, r fulfills the flux pattern condition (conditions 3-6 of the main document) since
the subsystem encompasses the whole system. Hence, we can find a flux pattern to each steady
state flux of the network. Each steady state can be written as a positive linear combination of
elementary modes and each flux pattern as a set-union of elementary flux patterns. Thus, each
elementary flux pattern s uniquely corresponds to the non-zero indices of an elementary mode e

and e is a flux-vector fulfilling the flux pattern condition for s.

S5.2 Elementary modes associated to elementary flux patterns

Since v fulfills the steady-state condition, it can be written as a positive linear combination of
a set of h elementary modes e1,...,eh. Each of these elementary modes can be assigned to one
corresponding flux pattern in the subsystem se1

,..., seh
by identifying those reactions of the ele-

mentary mode having a non-zero flux in the subsystem. If some elementary mode does not use any
reaction of the subsystem, the corresponding flux pattern might be equal to the empty set. Since
se1

∪ · · · ∪ seh
= sv and sv fulfills the elementarity condition, at least one se∗ ∈ {se1

· · · seh
} needs

to be equal to sv. Consequently, for each elementary flux pattern there is at least one elementary
mode e∗ in the complete system, being a solution vector of the flux pattern condition. Thus, each
elementary flux pattern is part of at least one global flux corresponding to an elementary mode
of the complete system. This elementary mode can be computed using an approach outlined in
Section S5.3. Therefore, elementary flux patterns can also be used to study elementary modes in
genome-scale metabolic networks using routes through the predefined subsystem.
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S5.3 Finding elementary modes containing an elementary flux pattern

Next, we will outline how an elementary mode fulfilling the flux pattern condition for an elementary
flux pattern s can be found.

As outlined in Section 2.3 we can start with a flux vector v that fulfills the flux pattern condition
for s, i.e., a vector v that is a feasible solution of the linear program outlined in the Appendix.
It is necessary to decompose v into elementary modes in order to obtain an elementary mode e∗
containing exactly the reactions of s in the subsystem. Thus, we want v already to use as few
reactions as possible and, hence, to be the linear combination of only few elementary modes. This
can be achieved by adding an objective function to the linear program used to check whether a
reaction set is a flux pattern (see the Appendix for more details).
We obtain an initial v by solving the linear program

min
n∑

i=1

vi

subject to

(1) M · v = 0

(2) v ≥ 0

(3) ∀i ∈ s : vi ≥ 1

(4) ∀j ∈ {1, .., k} \ s : vj = 0

Hence, we find a v that fulfills the flux pattern condition for s and has the least overall flux, if a
minimal flux of 1 for the reactions of the flux pattern is required. This approach is similar to flux-
minimization as described in Holzhütter (2004). Practical experience shows that the solution of
this linear program often returns an elementary mode immediately. However, this is not necessarily
the case. Thus, we need to decompose v into the set of elementary modes of which it is a positive
linear combination. This can be done by computing the elementary modes of the system just made
up by the reactions having a non-zero flux in v. Note that this approach might also find additional
elementary modes that are not necessary to decompose v. In this case we just need to identify an
elementary mode e∗ corresponding to a flux vector fulfilling the flux pattern condition for s. This
flux pattern is necessarily contained within the set of elementary modes we obtain (cf. Section 2.3
of the main document). Doing this we can even analyze elementary modes of the complete system,
i.e., “genome-scale” elementary modes using reactions from the subsystem.

S5.4 Checking the feasibility of elementary modes

In order to check whether an elementary mode e of the subsystem is a part of a steady-state flux
in the entire system we need to check if there exists a steady-state flux v in the complete system
such that the flux ratios of v in the subsystem are a multiple of e.

First, we have to derive e′ from e by removing indices corresponding to exchange reactions
that have been added to the subsystem for elementary mode analysis. Next, we check whether the
following condition is fulfilled

∃v ∈ R
n, c > 0 : v ≥ 0 and M · v = 0 and ∀i ∈ {1..k} : vi = c · e′i

This can be easily transformed into a linear program almost identical to the one used to
determine whether a set of reactions fulfills the flux pattern condition (see the Appendix for more
details).
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S6 Complete MILP and proof of elementarity of the com-

puted flux pattern

Given the stoichiometric matrix M of which the first k columns correspond to the subsystem and
the set of previously found elementary flux patterns S, the MILP reads

min
k∑

i=1

bi

subject to

(LP 1) M · v = 0

(MILP 1) ∀i ∈ {1, .., k} : bi ≤ vi ≤ c · bi

(MILP 2) ∀i ∈ {1, .., k} : bi − hi ≥ 0

(MILP 3) ∀s′ ∈ S :
∑

i∈s′

bi + hi ≤ |s′|

(MILP 4)
k∑

i=1

hi ≥ 1

(LP 2) v ≥ 0

(MILP 5) b,h ∈ {0, 1}k

with the real variables v and the binary variables b and h.
By minimizing the number of elements of Θ(b) in the objective function, we achieve that we

find an elementary flux pattern. If Θ(b) is not elementary it can be written as a union of a set of
elementary flux patterns S′ (Θ(b) /∈ S′) that contain at least one element Θ(t) that has not been
found by the previous iterations. Else b could not be part of a feasible solution of the MILP and
constraints (2) to (4) would be violated. Furthermore, Θ(t) is, by definition, a proper subset of

Θ(b) and hence
k∑

i=1

ti <
k∑

i=1

bi. Thus, the objective function is not minimal. Hence, Θ(b) has to

be an elementary flux pattern.

S7 Relationship between flux coupling analysis and elemen-

tary flux pattern analysis

Next, we want to outline how the coupling of reactions as determined in flux coupling analysis (Bur-
gard et al. 2004) can be derived from calculating elementary flux patterns. Given two reactions i
and j flux coupling analysis consists of determining the relationships between the fluxes through
both reaction in a steady-state flux. There are three types of coupling (Burgard et al. 2004).
First, i is called directionally coupled to j if a non-zero flux in i implies a non-zero flux in j, but not
necessarily the reverse. That is, reaction i requires a non-zero flux in j to appear in a steady-state
flux. Second, i and j are called partially coupled if a non-zero flux in i implies a non-zero flux in
j and vice versa. In such a case, i is directionally coupled to j and j is directionally coupled to i.
Third, i and j are called fully coupled if a non-zero flux in i implies a specific flux in j. That is,
vi

vj
= const. for every steady-state flux v ∈ R

n.

In this context we can compute the coupling between two reactions by defining the reactions i
and j as the subsystem. Assuming that i and j can appear in a steady-state flux, we obtain one
of the following sets of flux patterns S

1. S = {{i}, {j}}: in this case both reactions can have a non-zero flux independent from each
other. Hence, they are not coupled.
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2. S = {{i}, {i, j}}: in this case reaction j can only have a non-zero flux if reaction i has a
non-zero flux. Thus, j is directionally coupled to i.

3. S = {{i, j}, {j}}: similar to 2., Here, i is directionally coupled to j.

4. S = {{i, j}}: in this case, j can only have a non-zero flux if reaction i has a non-zero flux
and vice versa. Thus, both reactions are partially coupled.
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