
SUPPORTING ONLINE MATERIAL 

Indel Detection 

Small (<=30-bp) indels occurring in the human lineage since its 

divergence from chimpanzee were identified from the human-chimpanzee-

macaque (hg18-panTro2-rheMac2) 3-way Multi-Z alignments (Blanchette et al. 

2004), following the methods described in (Kvikstad et al. 2007). Briefly, as part 

of the macaque consortium, we derived a substitution rate matrix (Chiaromonte 

et al. 2002) and determined gap penalties appropriate for the human-chimpanzee 

divergence. Resulting alignments were analyzed for accuracy using an alignment 

diagnostic termed gap attraction (Lunter et al. 2006; Lunter et al. 2008) that was 

found to be minimal (Kvikstad et al. 2007). 

Furthermore, we developed a computational pipeline employing rigorous 

filtering criteria to remove potential false positives that could be attributed to the 

alignment of draft quality sequences to the finished human genome; filtering was 

applied to gaps occurring in overlapping alignment blocks that could be due to 

duplicated regions, to gaps of unequal lengths among species that could be due 

to sequence errors and/or multiple events, and to gaps flanked (+/- 3 nucleotides) 

by low quality (Phred score <=20) nucleotides in either draft genome (Kvikstad et 

al. 2007). Additionally, indels were excluded if they occurred in microsatellite, 

simple repeat or low complexity regions (Smit et al. 1996-2004) for the sake of 

sequence, assembly, and alignment accuracy. Thus, our filtered data set likely 

represents a conservative estimate of the actual number of indel mutations that 

have accumulated in the human genome since divergence from chimpanzee. 

 

Non-coding, Non-repetitive (NCNR) Genome 

We focused our analyses on the NCNR portion of the genome for several 

reasons. First, indel rates and patterns may differ considerably between coding 

and non-coding DNA due to the influence of natural selection (e.g., Lunter et al. 

2006). Second, the detection of small sequence motifs in repetitive DNA may be 

biased due to base composition and chromosomal preferences of various 

transposable element families (Lander et al. 2001).  Yet, previously we analyzed 
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genome-wide heterogeneity in indel rates using ancestral repeats (ARs) as a 

model for neutral DNA (Kvikstad et al. 2007). Applying similar methodology, we 

observed that variation in insertion and deletion rates at the 1-Mb scale is similar 

between the AR and NCNR portions of the genome (data not shown). Thus, our 

choice to focus here on NCNR as the neutral portion of the genome is unlikely to 

introduce any significant biases in evaluating the forces that shape indel rates 

and patterns. 

Finally, we took advantage of available indel polymorphism data in order 

to conduct a direct comparison of observed vs. expected rates of insertions 

(deletions separately) in the two presumably neutral data sets. We compared the 

rates of chromosome 1 polymorphic (from Mills et al. 2006) vs. fixed insertions 

and (separately) deletions occurring in NCNR sequences (insertions: 3.3x10-5 

polymorphic, 8.4x10-5 fixed; deletions: 3.4x10-5 polymorphic, 1.8x10-4 fixed) to 

those in AR sequences (insertions: 1.8x10-5 polymorphic, 1.6x10-4 fixed; 

deletions: 1.7x10-5 polymorphic, 2.6x10-4 fixed) using a modified Hudson- 

Kreitman-Aguade test (Hudson et al. 1987). The test results were not significant 

(p>0.95 for both insertions and deletions), suggesting that indels identified in 

NCNR regions are unlikely to be strongly affected by different forces than those 

acting on AR regions, with the latter regions widely accepted as a model of 

neutral evolution (Hardison et al. 2003; Lunter et al. 2006).  

 

Wavelet Transformation Methodology 

A wavelet transform is a type of decomposition that allows for the 

localization of a signal in time (or an otherwise defined natural order) and 

variation frequency or scale (Lio 2003; Percival and Walden 2006). The input 

signal (X) is dilated over scales (j=1…J), and translated over times by inner 

product with a so-called wavelet filter (!). In the case of a discrete wavelet 

transform (DWT), the resulting wavelet coefficients (Wj) describe the signal in 

terms of changes in the averages of its values over various scales, while scaling 

coefficients (Vj) are associated with the averages themselves (Percival and 

Walden 2006). By accounting for multiple scales simultaneously, the coefficients 
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produced by a wavelet transform represent both global trends and local 

fluctuations in the original signal, which is decomposed as: 
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Wavelet coefficients are scale-specific and orthogonal across scales, thus 

enabling the decomposition of signal features (i.e. functions of the signal) across 

scales. For example, a scale-by-scale analysis of the variance of the wavelet 

coefficients decomposes the variance of the input signal into the contributions 

attributable to each scale (Percival and Walden 2006); because the coefficients 

are uncorrelated, signal variability is resolved into component changes at each 

scale, without propagation from smaller to larger scales. The same can be done 

for second moments or for cross-moments when considering more than one 

input signal. Thus, wavelet analysis provides a useful framework for the 

investigation of fluctuations in signals and patterns in data that might otherwise 

be overlooked by a priori selection of scale, a fact that is crucial to the analyses 

presented in this article. 

Wavelet techniques have been employed in several areas of biological 

research including ecological time series (e.g., Dale and Mah 1998; Keitt and 

Urban 2005; 2006), protein structure prediction (Hirakawa et al. 1999; Lio 2003), 

and amino acid substitution rate modeling (Morozov et al. 2000). Applications of 

wavelets to DNA sequence data have remained rather sparse (reviewed in Lio 

2003). Early studies utilized wavelet transformations to analyze small data sets of 

protein coding genes and discern the underlying long-range correlations in DNA 

base composition (Arneodo et al. 1995; 1998). Bacterial genomes composed of 

single chromosomes were examined for presence of novel pathogenic islands via 

patterns in GC content (Lio and Vannucci 2000). More recently, signatures of 

nucleosome positioning were revealed via comparative wavelet analyses of 

eukaryotic DNA (Audit et al. 2001; 2002; Thurman et al. 2007; Yuan and Liu 

2008). Finally, wavelets were used to investigate associations among multiple 

signals - nucleotide diversity, recombination, and other sequence features on 

human chromosome 20 (Spencer et al. 2006). Yet, wavelet analysis of the 
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human genome has remained elusive, due in part to considerable differences 

among chromosomes in many sequence characteristics, e.g., gene content 

(Lander et al. 2001) and base composition (Schmidt and Frishman 2008).  

Because spatial patterns in motif occurrences could reflect underlying 

variation in base composition and/or substitution rates across the genome (see 

above; Arneodo et al. 1995), and because the accuracy of functions computed 

on wavelet coefficients decreases at large scales (larger wavelet scales have 

fewer coefficients; Percival and Walden 2006), we therefore implemented a 

random permutation scheme to assess significance accounting for these 

compositional and accuracy effects (Dale and Mah 1998; Keitt and Fischer 

2006). For each wavelet analysis, significance was assessed computationally by 

permutation of the ordered time series in the frequency profiles prior to wavelet 

transformation and multi-scale analysis, allowing us to derive empirical p-values 

for each statistic of interest (second moments or cross-moments). Corresponding 

empirical p-values were computed for each motif, each event type (insertion, 

deletion), each flank (5’, 3’) and each scale, and adjusted for multiple testing as 

to control the false discovery rate (FDR; Benjamini and Hochberg 1995) at 5% 

(significance was reported in all cases with an adjusted p-value < 0.05). 

 

Analysis of 1-bp and Polymorphic Indels 

We further investigated any potential context biases due to heterogeneity 

in indel sizes or evolutionary times of occurrence that could affect our analysis of 

sequence motifs involved in indel formation. We used 1-bp events to study 

potential biases due to size differences, since single nucleotide insertions and 

deletions constitute ~50% of small indels (Kvikstad et al. 2007). Additionally, we 

used polymorphic indels segregating in the human population (Mills et al. 2006; 

see above) to study potential biases due to varying divergence times, since such 

indels are “young” events and less likely to have undergone millions of years of 

selection and/or drift. Here we provide a preliminary comparison of motif 

behaviors flanking each of these indel types, restricting attention to chromosome 
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1 and to one of the main analyses, namely the detection of significant spatial 

patterns (enrichment profiles).  

For each event type, indels were restricted to regions in our defined 

NCNR portion of chromosome 1 (Table S5). Chromosome 1 was chosen 

because it represents ~10% of the human genome (Lander et al. 2001). To be 

consistent with our criteria, polymorphic indels identified in (Mills et al. 2006) 

were further filtered to exclude those due to “repeat expansions” as identified by 

the authors.  For comparison, we also created a subset of our original indels 

restricted to chromosome 1. Total frequency profiles (see Methods) were 

constructed for each motif in each subgenome for each data set: chromosome 1 

1-bp indels, chromosome 1 polymorphic indels, chromosome 1 original indels. 

Control profiles were built by sampling the NCNR control subgenome in equal 

size to each insertion/deletion data set.  

Results for enrichment profiles are summarized in Tables S6, S7, S8. 

Notably, significant motifs for each data set largely represent a subset of the 

motifs found significant in the main results. For example, motifs with significant 

enrichment profiles surrounding indels restricted to chromosome 1 are mostly a 

subset of the genome-wide results (4/5 for deletions and 7/9 for insertions; Table 

S6). We detected three motifs with significant enrichment profiles on 

chromosome 1 (but not genome-wide); notably, these were significant genome-

wide before FDR correction was applied, but failed the 5% threshold after 

correction. Analysis of the 1-bp events reveals that all motifs identified flanking 

deletions were significant in the main findings, and the majority for insertions as 

well (3/5; Table S7). Finally, the results for motifs’ behavior flanking polymorphic 

indels are again largely consistent with our main findings (3/3 deletions; 5/9 

insertions, with all 4 motifs significant before FDR correction; S8).  

Thus, while results for deletions are consistent with our main findings, 

motif behaviors flanking insertions show slightly more heterogeneity depending 

on size (1 bp) or evolutionary time (polymorphic), yet these subtle differences 

consist of motifs that were detected genome-wide, although failing to pass an 

FDR cut-off of 5% -- we therefore do not consider them as novel findings. Hence, 
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we conclude that variation due to indel sizes and “ages” is not sufficient to alter 

the main findings presented here. 

  

SUPPLEMENTAL FIGURE LEGENDS 

 

Figure S1. Total frequency profiles for an example motif, topoisomerase 

cleavage site 4, in 5’ (blue) and 3’ regions (black) flanking deletions. Red bands 

correspond to the 95th percentile distribution of total frequency profiles obtained 

from permutation of the 5’ and 3’ position labels under the null hypothesis of no 

positional difference (see Methods). Flanks not significantly different from 

permutation testing are indicated in red. As expected, the null distribution shows 

remarkable symmetry irrespective of position relative to deletion mutation. Note, 

however, the significant positional difference for approximately 36% of the data 

points (Table S1) in the real total frequency profiles (blue points 5’ and black 

points 3’, respectively). P-values are provided for the flanks closest to the 

breakpoint that show extreme behavior for this motif and roughly 25% of the 

motifs analyzed (Table S1). Green bands correspond to the 95% distribution of 

the total frequency profiles in the control subgenome. 

 

Figure S2. Mutli-scale analysis of enrichment profiles: Indel vs. control. Here an 

example motif’s total frequency profile in an indel-related subgenome is 

compared with that in the corresponding control subgenome (black and green 

lines in Fig. 2A, respectively). The difference, i.e. the enrichment profile, is 

wavelet-transformed (left panel), and its size is measured by wavelet-based 

second moments computed at multiple scales (right panel; black line). 

Significance is assessed by randomly permuting the original frequency profiles, 

and recomputing enrichment profile, wavelet transform and second moments 

following each permutation – the red bands in the lower right panel capture 95% 

of the resulting “null” second moments (shown prior to FDR correction). Due to 

the decreasing number of available wavelet coefficients, the power of this 

analysis decreases as the scale increases. Yet, the topoisomerase cleavage site 



 7 

4 motif still presents a significant enrichment profile at large scales (observed 

second moments outside the red bands). 

 

Figure S3. Insertions vs. deletions: mutli-scale analysis of similarity between 

profiles. This is investigated comparing the example motif’s total frequency profile 

in a deletion-related subgenome with that in the corresponding insertion-related 

subgenome (e.g. the black lines, Fig. 2B). Each of the two profiles is wavelet 

transformed (left and middle panels), and their similarity is measured through 

wavelet-based Kendall’s tau correlations computed at multiple scales (right 

panel; black line). Significance is again assessed by randomly permuting the 

original frequency profiles, and recomputing wavelet transforms and correlations 

following each permutation – the red bands in the lower right panel capture 95% 

of the resulting “null” Kendall’s taus, with the expected increasing width as scale 

increases. The topoisomerase cleavage site 4 motif presents significantly 

dissimilar spatial patterns 5’ of deletions and insertions at the 80-bp scale 

(observed Kendall’s tau is indeed outside the red bands; shown prior to FDR 

correction). 

 

Figure S4. Motif X vs. motif Y: mutli-scale analysis of co-location in profiles. 

Along with topoisomerase cleavage site 4 (X), here we consider DNA Pol 

pause/frameshift hotpsot 1 (Y). Co-location is investigated comparing the total 

frequency profiles of X and Y in an indel-related subgenome (e.g. the black lines 

for X on the left, and Y on the right in Fig. 2C. Each of the two profiles is wavelet 

transformed (left and middle panels), their multi-scale similarity is measured 

through wavelet-based Kendall’s tau correlations (right panel; black line), and 

significance is assessed through random permutations of the original frequency 

profiles, resulting in the 95% “null” red bands in the right panel (again, shown 

prior to FDR correction). Topoisomerase cleavage site 4 and DNA Pol 

pause/frameshift hotpsot 1 (Y) present a significant co-location only at very small 

scales. The anticorrelation at large scales is not significant.  
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