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Supplementary Box 1  - Pruning algorithm 
 

1. Set all non-hit nodes in the current network as unvisited 
2. If there is one or more unvisited non-hit node, randomly select one and 

mark it as visited. Otherwise, stop the pruning. 
3. Check the node selected in step 2. If at least one neighbor is a hit, go to 

step 2. Otherwise, go to step 4. 
4. Remove this node from network. Check if all the hit genes are still 

connected, if not so, undo the remove and go to step 2. Otherwise, go to 
step 5. 

5. Check through all the unvisited non-hit genes and find those that are no 
longer connected to positive hit genes. Remove these nodes from the 
network if there are any. Go to step 2. 
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Supplementary Figures 
 
Causal gene selection 

 
 
Figure S-1a. The strategy of selecting ~870 causal genes from BxH mouse cross. 
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Figure S-1b 

 
 
Figure S-1b. The filtering used to select 177 genes from the ~870 causal gene list. 
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Supplementary Figure 2.  Permutation tests assess the significance of the PEXA 
module.  A) Two types of permutation tests were carried out to assess whether the PEXA 
module was enriched for siRNA hit genes, as described in the text.  In the first test the 
null distribution was estimated by randomly selecting 313 genes from the set of genes 
comprising the PPI network (green bars).  In the second test the null distribution was 
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estimated by randomly sampling the 126 siRNA hit list genes from the set of 313 genes 
that was screened (blue bars).  In both cases the observed number of siRNA hit list genes 
in the PEXA module (red arrow) was significantly more than observed in the permuted 
data. B) Scatter plot of the distribution of the number of siRNA non-hit nodes contained 
in the PEXA module vs. the number of siRNA hit nodes in the network. The blue dots 
were generated from the second permutation test described in A).  The red asterisk 
indicates the results from the PEXA module applied to the observed data.  These results 
highlight that the siRNA hits are significantly supported by the independently generated 
KEGG and PPI data, confirming their coherence for insulin signaling pathways.  
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Supplementary Figure 3.  Body weights of wildtype and S1pr2-/- mice at a) age of wk 8 
and b) age of wk 20.  
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Supplementary Figure 4.  Free fatty acid release measured from adipocytes which were 
untransfacted (UT), transfacted with scrambled siRNA (siNT), with Akt2 siRNA and with 
Pten siRNA.   
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Supplementary Tables 
 
Gene selection for siRNA screen 
 
Table S1. We selected 313 genes for siRNA screen. 876 genes were obtained as causal 
for diabetes related traits using an integrative causality test as previously described 
(Schadt 2005). 177 were further selected from these genes based on certain internal 
criteria such as protein functionality, druggability, etc. The rest of the list was taken from 
several sources, which included manually selected genes by Merck scientists, genes 
related to fatty acid beta-oxidation (FAO), orphan peptidases (OPI) based on mouse 
genetics, historical microarray data and external information. 
 
 
 Numb. of Genes siRNA hits Fraction (%) 
Causality test 177 78 44.1 
FAO 18 6 33.3 
OPI 50 14 28.0 
Manually picked 68 28 41.2 
Total* 313 126 40.3 
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Test upon expression signature gene sets 
Table S2. List of the four knock out mouse gene expression signature sets as measured 
from adipose tissue. These expression signature sets were performed with PEXA module 
and KEGG insulin signaling pathway gene set. For all the KO experiments, expression 
signature gene sets were significantly more enriched in PEXA modules genes than 
KEGG insulin pathway genes. For the KO phenotype, we only listed a representative one 
and omitted the rests. 
 
 
KO Gene Sig size1 OL Ins PW2 E-value3 OL PEXA4 E-value KO Phenotype5 
Alox5 4947 44 5.4×10-3 72 1.9×10-7 abnormal cholesterol level 
Cbr1 7493 60 7.0×10-3 93 1.5×10-6 abnormal circulating insulin level 
Lrp5 1075 11 0.19 26 2.1×10-6 impaired glucose tolerance 
Mc3r/Mc4r 5898 52 1.8×10-3 85 6.5×10-9 obese 
 
1 The gene expression signature size. Differentially expressed genes were defined by ANOVA with cutoff value of significance set to 
be <0.01. 
2 The number of overlapped genes between expression signature genes and the KEGG insulin signaling pathway genes. 
3 Corrected P-values based on Fisher Exact Test. The background was set to be 22,770 which is the number of all the genes 
represented on Rosetta/Merck Mouse 25k v1.4 microarray. 
4 The number of overlapped genes between expression signature genes and PEXA module genes. 
5 Knock out phenotypes were obtained from Mouse Genome Informatics database(Eppig et al. 2007). 
 
 
 
 
Supplementary Methods 
 
Considerations on siRNA hit rate 
 
Hit rate for our screen was higher than several whole genome screen results reported 
elsewhere by other groups investigating different biological processes in different cell 
lines/organisms. One main reason is certainly the selection criteria for genes entered into 
the screen, but other factors likely contribute to this as well. These factors include the 
cellular process under investigation, the design of the assay system, e.g., cell line, siRNA 
vendor, assay protocol, readout measurement, and the threshold chosen for making hit 
calls, etc.  As these factors are different for different experiments, these hit rates are not 
directly comparable (these single factors can easily cause several fold difference in hit 
rates).  
 
On the other hand, we don't have gold standard sets of positive and negative control 
genes that do or do not modulate insulin dependent FFA release in 3T3-L1 adipocyte.  
Recent publications of our own and others point out that there are a lot more genes 
contribute to diabetes and obesity related phenotypes (Chen et al. 2008; Emilsson et al. 
2008).      
 
Given all the above, we did not explicitly estimate the false positive rate of the siRNA 
screening result. Instead, we first carefully checked our knockdown experiments to 
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ensure that for most genes, their mRNAs were knocked down to at least 55% of their 
normal levels using Taqman measurement. Second, we did perform several positive 
controls for the assay. As shown in Supplementary Figure 4, the FFA release significant 
changed in expected directions for Akt2 and Pten where their mRNAs were knocked 
down by 57% and 69% as measured by Taqman analysis. FFA release did not change for 
untransfected cells or cells transfected with scrambled siRNA. For genes functions as 
insulin signaling activators (e.g., Akt2), the KD increases FFA release, and vice versa 
(e.g., Pten). Although we do not expect every screen result to be accurate, for those well 
annotated genes (other examples are Insr, Atgl), the siRNA screen results meet our 
expectation. Third, we tested and demonstrated that siRNA hits are informative based on 
permutation test and KEGG pathway enrichment test (see main text, Table 1). Fourth, we 
observed different hit rate for different groups of genes selected based on different 
criteria, shown in (Supplementary Table 1). The gene set selected based on causality has 
the highest positive hit rate, while the gene set selected based on orphan peptides and 
correlation with clinical traits has the lowest positive rate. The hit rate increases as the 
selection criteria gets more stringent.   All of these suggest that the siRNA result contains 
valuable information and is suitable for further analysis.  
 
 
Implementation of PEXA 
 
The algorithm of PEXA was described in the main text and we list a few implementation 
details here. 
 
1. Not every KEGG interaction is directed. If an edge does not have direction, PEXA 
treats them as bidirectional edges pointing in both directions in identifying seeding paths. 
We do not disallow such long tails in the seeding step, since there might be chance that 
siRNA hits interact with these long tails during expansion and we cannot tell in advance. 
However, if no siRNA hits interact with these long tails, they will be removed by the 
pruning.  
 
2. In the graphical displays of pathways from KEGG database website, they frequently 
use a single symbol to represent an array of genes. For example, in the insulin signaling 
pathway, AKT actually represents AKT1, AKT2, and AKT3. (This can be seen by 
following the link http://www.kegg.com/dbget-bin/show_pathway?hsa04910  and then 
click on AKT, AKT1, 2, and 3 will be displayed instead of one gene). When we drew the 
seeding paths (and the rest two networks), we displayed only one symbol for one node, 
since otherwise, some nodes names were too long to display well. When selecting 
symbols, we use the positive result if results are conflicting. However, internal to PEXA, 
we include all the genes and treat each gene as a single node. 
 
 
Alox5-/- mouse construction and expression profiling 
 
Alox5-/- mice were constructed and maintained at UCLA as previously 
described(Mehrabian et al. 2002). 20 female wild type and 5-lipoxygenase knockout mice 
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had been fed on a normal chow diet for 16 weeks and 5 animals from each group were 
sacrificed.  Adipose tissues were collected and subjected to expression profiling. 5 
normal mice's RNAs were pooled together as control, and were hybridized with each 
Alox5-/- mouse RNA extract on Rosetta Mouse 25k microarrays. 
 
 
Cbr1-/- mouse construction and expression profiling 
 
This experiment compares gene expression in iWAT from mice fed high fat chow and 
against a pool of normal mice also fed high fat chow. Fourteen week old C56Bl/6J mice 
maintained on high fat diet for six weeks (plus a vehicle control arm with animals 
maintained on regular chow) were sacrificed. iWAT were harvested for profiling.  
 
 
Lrp5-/- mouse construction and expression profiling 
 
Lrp5 knockout mice construction was previously reported(Fujino et al. 2003). Lrp5 -/- 
mice were compared to Lrp5 (+/-) mice. Samples were prepared separately for each tissue 
(liver, colon and fat) and sex; 2 pools of 3 animals for each sex and each of the 3 
genotypes. A reference pool was prepared by pooling RNA from 6 heterozygotes. 
 
 
Mc3r/M4r double knockout mouse construction and expression profiling 
 
Both wildtype and Mcr3/Mcr4 knockout male mice of ~6 month old were under diet 
induced obesity (DIO) for 2.5 months (weight of WT about 30g and knockout about 55g). 
iWAT tissues were collected at the time of sacrifice. Wildtype DIO mice were compared 
with DIO Mc3r/Mc4r knockout mice. 
 
 
Expression signature gene set calculation 
 
Differentially expressed genes were calculated using ANOVA test. Signature lists were 
selected by applying a cutoff P-value of < 0.01. 
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