
Supplement A Independent, semi-independent, and weakly-independent rearrange-
ments

Let P be a genome represented a graph on black and obverse edges. For any m black edges in P, we
define an m-break (or multi-break) rearrangement as replacement of these edges with other m black
edges forming a matching on the same vertices (see Alekseyev and Pevzner (2008a); Alekseyev
(2008)).

Let P1,P2, . . . ,Pk be genomes that evolved by some unknown multi-breaks following an unknown
evolutionary tree (we allow any combination of 2-breaks, 3-breaks, and m-breaks for m > 3 in a
single evolutionary scenario). Without loss of generality, we assume that there was at least one
multi-break on every branch of the tree. One may classify an m-break as independent if it does not
reuse breakpoints, i.e., creates exactly m new breakpoints. Similarly, we call the rearrangement
scenario independent if all its multi-breaks are independent.

If all multi-breaks are independent, the following theorem applies (the proof follows the proof
of a similar result in Chaisson et al. (2006)).

Theorem 1. If genomes P1,P2, . . . ,Pk are produced by independent multi-breaks, then both the correct
evolutionary tree for these genomes and the ancestral genomes in all its branching nodes may be reconstructed
in polynomial time.

We now consider the case when genomes P1,P2, . . . ,Pk are produced by semi-independent 2-breaks
that may re-use breakpoints within single branches of the evolutionary tree (i.e., a semi-independent
2-break does not share breakpoints with any other 2-break on a different branch of T). We call
the 2-break rearrangement scenario semi-independent if all its 2-breaks are semi-independent. Since
any semi-independent 2-break scenario corresponds to an independent multi-break scenario (see
Alekseyev and Pevzner (2008a)), Theorem 1 implies:

Theorem 2. If genomes P1,P2, . . . ,Pk are produced by semi-independent 2-breaks, then both the correct
evolutionary tree for these genomes and the ancestral genomes in all its branching nodes may be reconstructed
in polynomial time.

MGRA optimally solves the MGRP problem in case of semi-independent 2-breaks and uses
heuristics to move beyond the semi-independent assumption. In a new manuscript (Alekseyev and
Pevzner, 2009b) we define the notion of weakly independent rearrangements that relaxes the semi-
independent assumption by allowing breakpoint re-uses within selected pairs of incident branches in
the phylogenetic tree (as opposed to a single branch in semi-independent scenarios). We demonstrate
that the TCMGRP can be solved efficiently in the case of weakly independent scenarios.1 Below
we show that most 2-breaks in mammalian evolution are either independent, or semi-independent,
or weakly independent resulting in reliable ancestral reconstructions. The theoretical analysis
of weakly independent scenarios is not crucial for understanding MGRA and will be described
elsewhere.

Supplement B Simultaneous T-consistent transformations
The problem of finding a shortest rearrangement scenario typically has many solutions. To char-
acterize all genomes that may appear in shortest rearrangement scenarios between genomes A and
B, we say that a genome Q is located between A and B if the rearrangement distances between these
genomes satisfy the condition: d(A,Q) + d(Q,B) = d(A,B). In the case of a phylogenetic tree T with
known genomes at all internal nodes, we say that a genome Q is located on a branch (A,B) of the

1In particular, while the reversal median problem is NP-complete for arbitrary scenarios (Caprara, 1999a), one can
efficiently reconstruct the 2-break median for 3 genomes in case of weakly independent scenarios.
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phylogenetic tree T if it located between nodes (genomes) A and B. Similarly, a genome Q is located
on the tree T if it is located on a branch of T. A transformation between two genomes located on the
tree T is called T-consistent if every intermediate genome in this transformation is also located on T.

Let T be a tree with known genomes specified at every node. A tree T′ is homeomorphic to the tree T
if it is derived from T by adding extra internal nodes (of degree 2) within branches of T and specifying
some genomes at these added nodes. For example, Fig. 3c represents a tree homeomorphic to the
tree in Fig. 3a with two extra nodes added to the branch (Q2,Q3). A homeomorphic tree T′ defines a
T-consistent rearrangement scenario if genomes at every two adjacent nodes of T′ differ from each other
by a single rearrangement and the total number of rearrangements along each branch is minimal.
We now reformulate the problem of finding the most parsimonious rearrangement scenario as the
problem of finding a T-consistent rearrangement scenario with the minimum number of nodes in
the homeomorphic tree T′.

If X is an arbitrary genome (root) in T′ then the path path(X,Pi) from the root X to every leaf
genome Pi in T′ corresponds to a series of rearrangements transforming X into Pi (i = 1, 2, . . . , k).
A set of nodes C in T′ is called a cut if each path path(X,Pi) contains exactly one node from C
(for 1 ≤ i ≤ k). For example, the sets {X} and {P1, . . . ,Pk} represent cuts in T′ with minimum and
maximum number of nodes correspondingly. Given a cut C and a leaf genome Pi, let vC

i be a (single)
node in C located on a path path(X,Pi) and let PC

i be the genome assigned to the node vC
i . Therefore,

every cut C defines k genomes PCi
1 ,P

Ci
2 , . . .P

Ci
k .

One can orient branches of T′ in the direction from X to the leaves and define next(v) as the
set of children of an internal node v (the number of children equals the degree of v minus one).
Given an internal node v in a cut C, we define a new cut nextv(C) obtained from C by deleting a
node v and adding the set of nodes next(v). A simultaneous T-consistent transformation of the root
genome X into the leaf genomes P1, . . . ,Pk is a series of cuts {X} = C0,C1, . . . ,Cd = {P1, . . . ,Pk}

such that Ci+1 = nextvi(Ci) for some node vi ∈ Ci (0 ≤ i < d). It is easy to see that for every
T-consistent transformation there exists a simultaneous T-consistent transformation. Below we
give an equivalent definition of the simultaneous T-consistent transformation in terms of multiple
breakpoint graphs that motivates MGRA algorithm attempting to find a shortest simultaneous
T-consistent transformation.

Any subset of edges from the multi-edge (x, y) represents a sub-multi-edge (x, y) of the multi-
color formed by the colors of the edges in this subset. Any simultaneous T-consistent transfor-
mation of X into P1, . . . ,Pk defines a transformation of the identity breakpoint graph G(X, . . . ,X)
into G(P1,P2, . . . ,Pk) with a series of rearrangements applied to sub-multi-edges of T-consistent
multicolors. Namely, we define the multiple breakpoint graph corresponding to the cut Ci as
Gi = G(PCi

1 ,P
Ci
2 , . . . ,P

Ci
k ). It is easy to see that Gi+1 is obtained from Gi by a single rearrangement

ρ applied to all copies of some genome Q in PCi
1 ,P

Ci
2 , . . . ,P

Ci
k . Alternatively, a transformation of

Gi into Gi+1 can be viewed as applying ρ to T-consistent sub-multi-edges in Gi (of the multicolor
{Pi | PCi = Q}).

Supplement C Reconstructing reliable CARs
To reconstruct reliable adjacencies in the ancestor genome at a node of the phylogenetic tree, we
select this node as a root node X. Then we start to eliminate breakpoints in the breakpoint graph
G(P1, . . . ,Pk) with reliable 2-breaks (for whatever definition of reliability) and stop when no further
reliable 2-breaks exist. In the resulting breakpoint graph (that may still have some breakpoints) the
multi-edges of multicolors containing X (as a subset of colors) represent the reliable block adjacencies
in the target ancestor genome, and we generate CARs based only on such adjacencies. Note that
this approach can reconstruct CARs in only one ancestor genome at a time, and multiple runs (with
different root nodes X) are needed to reconstruct CARs in multiple ancestor genomes.
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Supplement D Comparison of various ancestral reconstructions for a component of the
breakpoint graph representing the human chromosomes 7, 16, and 19

Below we focus on the connected component of the breakpoint graph representing the human
chromosomes 7, 16, and 19 where the cytogenetics approach disagrees with Ma et al. (2006a). The
advantage of the breakpoint graph approach is that it enables a simple analysis of this controversy
since the analysis is reduced to “genomes” with only 6 synteny blocks after equivalent transforma-
tions performed by MGRA Stage 1 (Fig. S13). Indeed, the genomes represented by this component
can now be viewed as:

Macaque: 4, 5, (2,−6), (3,−1)
Mouse: 2, 3, (4, 6), (1,−5)
Dog: 1, (4,−6,−5), (2,−3)

where the block 1 is located on the human chromosome 7, the blocks 2 and 3 are located on the
human chromosome 16 and the blocks 4, 5, 6 are located on the human chromosome 19 (Fig. S11,
top panel and Fig. S13). Ma et al. (2006a) proposed the ancestral architecture with 4 chromosomes
1, 5, (2,−3), (6,−4) (no associations between chromosomes 7, 16, and 19), while Froenicke et al. (2006)
proposed 4, 5, (1,−3), (2,−6) (associations 16 + 7 and 16 + 19). It is easy to see that the cytogenetics
reconstruction is less parsimonious than Ma et al. (2006a) reconstruction. We therefore argue that
the criticism of Ma et al. (2006a) in Rocchi et al. (2006) regarding the missing association 7 + 16 is not
fully justified since the whole genome data do not support this associations.2

MGRA Stage 2 also generates a solution that improves on the cytogenetics reconstruction
(Froenicke et al., 2006) and proposes the ancestral association 7 + 19. While both our and Ma
et al. (2006a) solutions are more parsimonious than the cytogenetics reconstruction, we are not
claiming that these solutions are necessarily correct (the most parsimonious scenarios on 6 genomes
are not necessarily the most parsimonious scenarios on 100+ genomes). The important thing is that
MGRA Stage 1 reduces analysis of the 7/16/19 controversy to such a small example that all possible
scenarios can be explored.

Supplement E Selecting fair multi-edges in MGRA Stage 2
As described in the main text, the order of selected fair multi-edges may affect the ancestral recon-
structions at some nodes of the phylogenetic tree. Below we specify how MGRA Stage 2 selects such
edges.

Note that if a fair multi-edge is not ~T-consistent then this multi-edge can only be affected by
2-breaks on adjacent multi-edges. Although two such 2-breaks are possible, ordering of these 2-
breaks does not influence the final result (see Fig. 6, bottom panel). However, the situations when
two fair multi-edges share a vertex (and both are ~T-consistent) may be ambiguous since the final
result of their processing may be affected by the order in which these edges are processed. MGRA
Stage 2 starts by processing unambiguous fair edges first and selects the order of remaining fair
edges according to the following heuristics.

For a fixed ~T-consistent multicolor Q, an “ideal” 2-break of multicolor Q should satisfy two
conditions: (i) it increases the number of cycles alternating between every pair of colors from Q + Q
(i.e., one color from Q while the other is from Q), and (ii) it does not decrease the number of cycles
alternating between the other pairs of colors. It is easy to see that if a 2-break on a ~T-consistent
multicolor Q increases the number of connected components in the breakpoint graph then both these
conditions are satisfied. For each ~T-consistent multicolor Q, MGRA Stage 2 finds all 2-breaks on

2We are not claiming that the analysis of 7 + 16 association in Froenicke (2005); Robinson et al. (2006) is incorrect but
instead argue that it is not supported by data used in Ma et al. (2006a).
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Figure S10: The breakpoint graph of Mouse (red), Dog (green), and macaQue (violet) genomes after MGRA Stage 1 with
complete multi-edges and obverse edges shown (in contrast to Fig. 7). The obverse edges reveal many unicolored paths
formed by alternating obverse edges and complete multi-edges. Vertices are labeled and colored similarly to Fig. 4.

multicolor Q that increase the number of connected components and perform them (in an arbitrary
order).

Supplement F MGRA Stage 3: Processing complex breakpoints
If one attempts to find the positions and orientations of short synteny block in the ancestors, there
are two possibilities. If the signs of the blocks are inferred correctly then the same micro-inversion
happened independently on two different branches of the evolutionary tree. However, if the signs
of the blocks are incorrect, manual re-examination of some blocks may be necessary. Recently, Ma
et al. (2006a) and Chaisson et al. (2006) emphasized the difficulties in detecting micro-inversions and
improved on previous work in detecting micro-inversions (Feuk et al., 2005). While these papers
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Figure S11: Compact representation of the breakpoint graph of the Mouse (red), Dog (green), and macaQue (violet) genomes
after MGRA Stage 1 (top) and Stages 1-2 (bottom) (compare to Fig. S10). Every unicolored alternating path of obverse
edges and complete multi-edges (with possible exception of the initial and terminal synteny blocks) is represented as a
rectangular vertex labeled by the overall length and number of synteny blocks in this alternating path. The numbers in
parentheses as well as vertex colors indicate the corresponding human chromosome. The isolated vertices of the total
length shorter than 15 Mb are not shown. The observed edges are shown as dashed edges. The boxed selected component
(top) is analyzed in Fig. S13.

resulted in two largely consistent sets of human-chimpanzee micro-inversions, there are still some
differences between the sets/signs of human-chimpanzee micro-inversions generated by algorithms
in Ma et al. (2006a) and Chaisson et al. (2006), indicating that some micro-inversions detected by
these approaches may be unreliable. The micro-inversions detection becomes even more difficult
when one moves from human and chimpanzee to more distant mammals.
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73.1M / 74 (15) 85.7M / 58 (14)

71.6M / 92 (16) 20.1M / 46 (7)
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115.7M / 90 (8)
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137.1M / 186 (X)123.1M / 92 (2)

176.3M / 204 (5)

161.8M / 158 (6)

124.0M / 134 (7)
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101.2M / 88 (9)36.5M / 36 (10)

85.5M / 108 (10)

122.0M / 94 (11)
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Figure S12: Compact representation of the unicolored connected components in Fig. S11 (top).

Mouse:
555t (7) 20.1M / 46 (7)28.5M / 52 (16) 1061h (16) 15.7M / 34 (19) 1189h (19)1062t (16) 43.1M / 40 (16)1190t (19) 590K / 4 (19) 1191h (19)7.9M / 14 (19) 1192t (19)

Dog:
555t (7) 20.1M / 46 (7)28.5M / 52 (16) 1061h (16)15.7M / 34 (19) 1189h (19)1062t (16) 43.1M / 40 (16)1190t (19) 590K / 4 (19) 1191h (19)7.9M / 14 (19) 1192t (19)

Macaque:
555t (7) 20.1M / 46 (7)28.5M / 52 (16) 1061h (16) 1062t (16)15.7M / 34 (19) 1189h (19) 1190t (19) 43.1M / 40 (16)590K / 4 (19) 1191h (19) 1192t (19) 7.9M / 14 (19)

Figure S13: The regions of the Mouse, Dog, and Macaque genomes corresponding to the boxed component of the graph
in Fig. S11, top panel.

The manual analysis of block 1300 (Jian Ma, personal communication) revealed that it indeed
represents two independent micro-inversions in rat and macaque resulting in arrangements +1299,
−1300, +1301 in rat and macaque as opposed to the arrangement +1299, +1300, +1301 in the human,
chimpanzee, dog, and mouse genomes. It also found small aligned regions between blocks 1299
and 1300 (block 1299a) as well as between blocks 1300 and 1301 (block 1301a). While the regions
1299a and 1301a are too short to pass through any reasonable threshold on the synteny blocks
size, they revealed the following arrangements: (+1299, −1300, −1299a, +1301a, +1301) in rat,
(+1299, +1299a, −1301a, −1300, +1301) in macaque, and (+1299, +1299a, +1300, +1301a, +1301) in
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human/chimpanzee/dog/mouse genomes.
We use similar arguments to process the remaining components of the breakpoint graph. For

example, the simplest explanation for a component with two vertices 970t and 971t is a fission in
dog that transforms the T-consistent split (mouse/rat/dog vs. human/chimpanzee/macaque) into an
inconsistent split (mouse/rat vs. human/chimpanzee/macaque/dog). Note that the dog genome was
subject to frequent fissions resulting in nearly doubling the number of chromosomes as compared
to other five mammals. We remark that this processing at MGRA Stage 3 is viewed as less reliable
and the resulting associations are not considered in the proposed ancestral reconstructions.

Supplement G The architecture of the ancestral X chromosome

QHCMRD

HCMR

QD H C

M

MR

R

Figure S14: The architecture (up to micro-rearrangements) of 19 synteny blocks forming X chromosomes in the Dog,
macaQue, Human, and Chimpanzee genomes as well as their common ancestral genomes (top panel). The Mouse and
Rat X chromosomes (along with the MR ancestral X chromosome) are shown on a separate (bottom) panel since they
display much higher fragmentation (46 synteny blocks).

Supplement H Rearrangements between the reconstructed ancestral genomes
Table S5 illustrates how the rearrangement distances between genomes at the leaves of the phylo-
genetic tree are being reduced while progressing through Stages 1 and 2 of MGRA.

M R D Q H C
M 0 438 436 392 395 406
R 0 739 689 696 707
D 0 283 284 292
Q 0 104 113
H 0 22
C 0

M R D Q H C
0 37 90 95 95 97

0 91 93 94 96
0 43 40 39

0 16 16
0 7

0

M R D Q H C
0 4 3 9 5 7

0 7 5 5 7
0 9 5 5

0 6 6
0 4

0

Table S5: The estimated pairwise genomic distances (based on the formula from Alekseyev (2008)) between the genomes
before (left table) and after MGRA Stage 1 (center table) as well as after MGRA Stage 2 (right table).

Table S6 shows the pairwise rearrangement distances between the ancestral and leaf genomes,
following the strict T-consistent transformation constructed by MGRA, and compares them to the
genomic distances computed by GRIMM (Tesler, 2002b). The differences between these distances
are rather small, suggesting that the ~T-consistent transformation found by MGRA is close to the
most parsimonious.

It is not surprising that some of the 2-break distances in Tables S6 are smaller than the correspond-
ing genomic distances. The explanation for this phenomenon is that 2-breaks have an “advantage”
over the standard rearrangements in the presence of complex components (such as hurdles (Han-
nenhalli and Pevzner, 1999)) in linear genomes. Such components can be typically resolved with
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M R D Q H C MR MRD QHC HC

M 0 499 450 407 409 421 81:81 285 354 404
R 0 800 749 753 765 436:384 637 701 748
D 0 291 295 304 380 173:170 241 290
Q 0 110 117 334 130 54:53 107
H 0 23 336 133 59 7:6
C 0 347 145 72 18:17

MR 0 212:213 281 331
MRD 0 76:76 128
QHC 0 54:53
HC 0

M R O D Q H C MR MRO MROD QHC HC

M 0 442 822 412 370 378 382 74:77 276 279 334 371
R 0 1107 713 665 674 676 382:341 579 581 631 665
O 0 714 675 682 682 761 587:586 591 637 673
D 0 245 253 256 351 156 150:148 210 246
Q 0 94 95 305 107 102 44:44 85
H 0 21 315 118 112 50 9:9
C 0 317 119 114 53 12:12

MR 0 212:215 215 269 306
MRO 0 7:9 69 109

MROD 0 63:65 103
QHC 0 41:40
HC 0

Table S6: The pairwise rearrangement distances between the Human, Mouse, Rat, Dog, Chimpanzee, and macaQue
genomes (top table) as well as the Opossum genome (bottom table) and their ancestral genomes MR, MRD, MRO, MROD,
HC, and QHC reconstructed by MGRA. Each cell contains a number x or a pair of numbers x : y where x is the genomic
distance (computed by GRIMM (Tesler, 2002b)) and y is the number of 2-breaks between the genomes in the ~T-consistent
transformation constructed by MGRA. The distances corresponding to the branches of the phylogenetic tree T are grayed.

smaller number of 2-breaks via temporary creation of circular chromosomes.
Table S7 shows the breakdown of intrachromosomal and interchromosomal rearrangements

(generated by MGRA) between different branches of the phylogenetic tree. While the number of in-
trachromosomal 2-breaks is roughly twice larger than the the number of interchromosomal 2-breaks
(on average), some branches (D + MRQHC and MR + DQHC) reveal an elevated number of inter-
chromosomal rearrangements (approaching and even exceeding the number of intrachromosomal
rearrangements).

In presence of the Opossum genome, MGRA assigns the following 2-breaks to the contested
MRO + DQHC branch: three fissions (1547h with 710h, 1420h with 627h, and 1377h with 748t at
MGRA Stage 2), five fusions (1548t with 1547h, 1668t with 1667h, 1531h with 1377h, 748t with 747h,
and 957t with 924h at MGRA Stage 2), and one translocation (on edges (952t, 953t) and (951t, 952h)
at MGRA Stage 3).

Supplement I Detailed comparison of MGRA and inferCARs reconstructions
To further compare these MGRA and inferCARs reconstructions we constructed the breakpoint
graph G(MRDMGRA,MRDCARs) (Fig. S15). The non-trivial components of G(MRDMGRA,MRDCARs)
are formed by 2 cycles (on 4 vertices each) and 19 paths (on 55 vertices), out of which 8 paths consist
of single purple edges and represent various CARs (constructed by inferCARs) that were connected
by MGRA. 5 out of 19 paths are purple-purple paths (representing CARs that are connected in
MRDMGRA and disconnected in MRDCARs), 11 are cyan-cyan paths (representing CARs that are
connected in MRDCARs and disconnected in MRDMGRA), and 3 are a purple-cyan path. One out of
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Branch # intrachromosomal 2-break # interchromosomal 2-breaks Total

M+RDQHC 53 28 81
R+MDQHC 294 90 384
D+MRQHC 92 78 170
Q+MRDHC 32 21 53
H+MRDQC 5 1 6
C+MRDQH 16 1 17
MR+DQHC 80 133 213
HC+MRDQ 40 13 53
MRD+QHC 55 21 76

Total 667 386 1053

Table S7: The statistics of the 2-break scenario reconstructed by MGRA between the Mouse, Rat, Dog, macaQue, Chim-
panzee, and Human genomes. For each branch of the phylogenetic tree, it gives the number of intrachromosomal
2-breaks (reversals and intrachromosomal translocations) and the number of interchromosomal 2-breaks (fissions/fusions
and interchromosomal translocations).

the two cycles as well as some paths in Fig. S15 represent different interpretations of micro-inversions
(formed by synteny blocks that are located closely to each other in some genomes) by MGRA and
inferCARs algorithms and do not affect the large-scale view of ancestral architectures.

Supplement J How stable are the ancestral reconstructions?
In order to test the stability of MGRA reconstructions with changing resolution (minimum size
of the synteny blocks), we removed short synteny blocks from the original set of 1357 blocks for
six genomes and compared the resulting reconstructions. While removing some synteny blocks
unavoidably affects the ancestral reconstructions (e.g., some adjacencies may become “invisible”),
it is important to verify that the number of changes is relatively small.

Note that removal of a synteny block may “enlarge” others by merging them (two blocks are
merged as soon as they are adjacent in all 6 genomes). Therefore, we performed short block removal
as iterative procedure that removes the shortest block (w.r.t. the human genome) and possibly
merges all pairs of consistently adjacent blocks into longer blocks. The procedure stops when
the length of the shortest blocks exceeds the specified threshold. We further reconstructed the
Boreoeutherian ancestors using the genomes with all short blocks removed.

Removing synteny blocks may result in either loosing some ancestral adjacencies (e.g., breaking a
single CAR into two CARs) or in introducing new adjacencies (as compared to the original ancestral
reconstruction). To compare reconstructions on different sets of blocks we selected the set of blocks
share between two reconstructions and computed the number of “missing” and “extra” adjacencies
between two ancestral reconstructions. The results for minimal blocks thresholds of 100K, 250K,
and 500K are shown in Tab. S8 that illustrates that MGRA reconstructions are rather stable. For
example, removing all 168 blocks shorter than 100 Kb results (12% of all blocks) in reconstructions
that retain 99.5% adjacencies compared to each other. Increasing the threshold to 250K results in
removing 34% of all blocks but retains 98.5% of adjacencies.

MinBlockLength #Blocks Left #Adjacencies Extra Adjacencies Missing Adjacencies
100K 1189 1161 5 6
250K 903 871 11 17
500K 711 676 15 24

Table S8: Comparison of MGRA reconstructions on the original 1357 synteny blocks (for 6 genomes) with MGRA recon-
struction on the reduced set of synteny blocks (blocks shorter than MinBlockLength threshold removed).
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1246h (22)
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1289h (23)
1290t (23)

1290h (23)
1291t (23)

1299h (23)
1300t (23)

1300h (23)
1301t (23)

375h (5)
376t (5)
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940h (13)

941t (13)

941h (13)

1003h (15)

1014t (15)

1017h (15)
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1197t (19)

1224h (20)

71h (1)

1245h (22)

1264h (22)

1246t (22)

1254h (22)

142t (2)

730t (9)

652h (8)

658h (8)

729h (9)

752t (10)

871t (12)

935h (13)

970t (14)

971t (14)

Figure S15: The breakpoint graph of the genomes MRDCARs (cyan) and MRDMGRA (purple). Bold purple edges represent
reliable adjacencies obtained by MGRA Stage 1, while dashed purple edges (shown even if they are parts of complete
multi-edges) represent adjacencies (between vertices incident to a split in M/R/D colors in Fig. 7, bottom panel) viewed
as less reliable. Dashed cyan and orange edges represent ambiguous joins made by inferCARs.

Supplement K CytoAncestor software
To bridge the gap between the cytogenetics and the rearrangement-based approaches we imple-
mented CytoAncestor software, which follows the logic of the cytogenetics approach described in
Kemkemer et al. (2006). The tests of CytoAncestor revealed that the cytogenetics approach does not
scale well with increase in the number of synteny blocks. In particular, on Ma et al. (2006a) data
CytoAncestor produces a Boreoeutherian ancestor that does not agree with the widely accepted
cytogenetics reconstruction (Supplement K).3 MGRA Stage 1, in contrast to CytoAncestor, produces
a reconstruction that is largely consistent with the current view of the Boreoeutherian ancestor.

Kemkemer et al. (2006) recently applied the cytogenetics approach to E-painting data using semi-
manual data analysis. We implemented their algorithm and applied it to the Human, Mouse, and

3The results improve when one limits attention to very large synteny blocks (e.g., larger than 3 Mb) indicating that
further studies are needed to extend the cytogenetics approach to high-resolution data.
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Dog data (1357 synteny blocks from Ma et al. (2006a)). The goal of our analysis is to investigate
whether CytoAncestor scales well when one moves from the cytogenetics resolution (typically 100-
200 synteny blocks) to genomic resolution (1000+ synteny blocks).

We briefly describe the cytogenetics approach for the case of 3 genomes P1,P2,P3 with p1, p2, p3
chromosomes (see Kemkemer et al. (2006)). We use a synteny-triple (t1, t2, t3) to describe a synteny
block located on chromosome t1 in P1, chromosome t2 in P2, and chromosome t3 in P3. Clearly,
there exist at most p1 · p2 · p3 distinct synteny-triples. In reality the number of synteny-triples is
much smaller than this maximum, and for 1357 synteny blocks in the Human, Mouse, and Dog
genomes we have only 204 synteny-triples. The synteny-triples represent vertices in the synteny
graph that are further connected by edges as described in Kemkemer et al. (2006) (Fig. S16). The
connected components in the resulting graph represent the ancestral chromosomes and reveal the
synteny associations. For example, the unicolored connected components representing human
chromosomes 6, 9, 11, 17, 18, 20, and X all correspond to single chromosomes in the ancestor and
are consistent with the now favored cytogenetics reconstruction. However, all other connected
components disagree with the existing reconstruction (Froenicke et al., 2006). In particular, the
giant multicolored component formed by human chromosomes 1 + 5 + 10 + 16 + 4 + 7 + 8 + 13
was never reported in previous cytogenetics studies and is likely to reflect the limitations of the
cytogenetics approach when applied to a small number of species with many synteny blocks. We
remark that with the same dataset, the rearrangement-based approaches inferCARs and MGRA
produce ancestors that are largely consistent with the now favored cytogenetics reconstruction.

In an attempt to alleviate these shortcomings of CytoAncestor we limited our attention to long
synteny blocks by excluding synteny-triples that cover less 300 Kb, 1 Mb, and 3 Mb from the dataset
in Ma et al. (2006a) (Fig. S16). While the size of the giant component reduces, even for synteny-triples
of size 3 Mb and longer (typical cytogenetics resolution), most of the resulting synteny associations
remain unrealistic.

Supplement L Benchmarking MGRA on simulated data
We benchamarked MGRA on various simulated datasets with a fixed phylogenetic tree shown in
Fig. 5 (for illustration purposes, we refer to the leaves of the tree as M, R, D, Q, H, and C). In addition,
we evaluated MGRA’s ability to reconstruct an unknown tree in case of short internal branches.

In the first “constant branch length” simulation, we fixed the number of rearrangements on each
branch to the same number varying from 25 to 250 and generated the leaf genomes by performing
rearrangements on a fixed MRD genome consisting of 20 chromosomes with 75 synteny blocks each.
The total number of synteny blocks in this simulation is close to the number of synteny blocks for
six mammalian genomes studied in Ma et al. (2006a). The leaf genomes were generated from the
MRD genome by applying random 2-breaks (preserving linearity) along the branches of the tree. We
further applied MGRA to the leaf genomes and compared the reconstructed MRD ancestral genome
with the simulated one, counting the number of missing and incorrectly reconstructed adjacencies
(Table S9).

Below we focus on the simulation with branch lenght 125 which results in a rather difficult
ancestral reconstruction problem with high breakpoint re-use rate4 of 1.5. We remark that 125
rearrangements on each branch imply 5 · 125 = 625 rearrangements between the simulated H
(“human”) and M (“mouse”) nodes in Fig. 5, a rather large number of rearrangements (as compared
to the number of rearrangements between the real human and mouse genomes). Note that 625
rearrangements break the lion share of adjacencies between 1500 synteny blocks in the simulated
genomes, making the ancestral reconstruction difficult. Nevertheless, MGRA produced an error-

4Similarly to Pevzner and Tesler (2003b), we estimate the breakpoint re-use rate as two times the 2-break distance
divided by the number of breakpoints between two genomes.
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Figure S16: Chromosomal associations between the Human, Mouse, and Dog genomes on 1357 synteny blocks revealed
by the cytogenetics approach for all synteny-triples (top left), and synteny-triples longer than 300 Kb (top right), 1 Mb
(bottom left), and 3 Mb (bottom right). Each vertex corresponds to a synteny-triple (t1, t2, t3) located on chromosomes t1

in Human, t2 in Mouse, and t3 in Dog. Each vertex is also labeled with the total size and number of the synteny blocks
corresponding to the synteny-triple (t1, t2, t3). For example, a blue vertex labeled as 74.8M / 24

(14,12,8) describes 24 synteny blocks
of the total size 74.8 Mb described by the synteny-triple (14, 12, 8).

free reconstruction of the ancestral MRD genome in this case (with only 2 missing adjacencies). As
expected, MGRA becomes less accurate and more fragmented when the genomes become extremely
scrambled (e.g., 4% of adjacencies are incorrect and 9% of adjacencies are lost for the branch length
250).

Table S9 also shows the results of inferCARs reconstructions and illustrates that MGRA generates
more accurate ancestral reconstructions for all choices of parameters. In particular, for simulation
with the branch length 125, about 2% of adjacencies reconstructed by inferCARs are incorrect. While
it is a relatively small proportion of incorrect adjacencies (for a rather difficult ancestral recon-
struction problem with high breakpoint re-use), MGRA produced an error-free and less fragmented
reconstruction in this case.

To evaluate effect of more complex rearrangements (e.g., transpositions) on MGRA performance,
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Branch
length

H-M
breakpoint
re-use

Conserved
adjacencies

Reconstructed adjacencies
Correct Missing Incorrect

MGRA inferCARs MGRA inferCARs MGRA inferCARs

25 1.14 1093 1480 1472 0 8 0 6
50 1.18 806 1480 1464 0 16 0 9
75 1.32 608 1479 1461 1 19 0 9
100 1.38 432 1478 1446 2 34 0 15
125 1.50 317 1478 1425 2 55 0 28
150 1.58 233 1463 1412 17 68 8 39
175 1.70 175 1460 1373 20 107 14 56
200 1.78 130 1448 1342 32 138 20 86
225 1.83 113 1429 1305 51 175 39 118
250 1.89 81 1343 1255 137 225 62 162

Table S9: Reconstruction of the MRD ancestor of six simulated genomes with the phylogenetic tree shown in Fig. 5 where
all branches have the same length. The genomes were generated from a fixed MRD genome on 20 chromosomes and
1500 synteny blocks (with 1480 adjacencies), applying random 2-breaks (preserving linearity) along the branches of the
tree. The second column refers to the breakpoint re-use rate between simulated genomes corresponding to H (“human”)
and M (“mouse”) nodes. Some of the pairs of adjacent synteny blocks in the MRD genome remain adjacent in all six
generated leaf genomes. The number of such conserved adjacencies is shown in the third column (hence, the effective
number of the synteny blocks in each simulation is 1480 minus the number of conserved adjacencies). The columns from
forth to ninth give the statistics of reconstructed adjacencies by classifying them into correct, missing, and incorrect (for
both MGRA and inferCARs).

we further added 3-breaks (happening with the probability 0.1 at every step) to the set of simu-
lated rearrangements. Table S10 illustrates that adding 3-breaks has only minor effect on MGRA
performance. Again, MGRA improves on inferCARs in the case when both 2-breaks and 3-breaks
are included in the simulations.

Branch
length

H-M
breakpoint
re-use

Conserved
adjacencies

Reconstructed adjacencies
Correct Missing Incorrect

MGRA inferCARs MGRA inferCARs MGRA inferCARs

25 1.20 1092 1478 1467 2 13 0 11
50 1.23 804 1480 1466 0 14 0 9
75 1.36 587 1480 1449 0 31 0 17
100 1.42 429 1478 1430 2 50 0 29
125 1.49 315 1474 1417 6 63 6 33
150 1.63 233 1453 1387 27 93 15 53
175 1.75 186 1461 1375 19 105 11 58
200 1.80 116 1462 1350 18 130 14 77
225 1.85 105 1382 1304 98 176 68 121
250 1.90 61 1376 1256 104 224 60 148

Table S10: Simulations similar to those in Table S9, where rearrangements in addition to 2-breaks include 3-breaks
occuring with the probability 0.1.

In the second “variable branch length” simulation, we selected the number of rearrangements
on each branch of the tree according to the values from Table S6(top) to better reflect various rates
of rearrangements in different mammalian lineages. To model breakpoint re-use, we varied the
number of initial synteny blocks from 1000 to 2000 (the smaller is the number of blocks, the large
is the breakpoint re-use). The benchmarking results for this simulation are shown in Table S11 (for
MRD genome).

Table S11 illustrates that for 1400 synteny blocks (roughly the number of synteny blocks identified
in Ma et al. (2006a)), MGRA is error-free but rather fragmentary with 55 missing adjacencies. We
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Number
of
blocks

H-M
breakpoint
re-use

Conserved
adjacencies

Reconstructed adjacencies
Correct Missing Incorrect

MGRA inferCARs MGRA inferCARs MGRA inferCARs

1000 1.52 99 893 909 87 71 21 55
1100 1.50 123 1021 1015 59 65 17 36
1200 1.47 188 1120 1114 60 66 9 36
1300 1.33 242 1228 1227 52 53 2 34
1400 1.32 282 1325 1338 55 42 0 26
1500 1.32 346 1446 1441 24 39 0 25
1600 1.32 381 1553 1532 27 48 2 29
1700 1.32 451 1652 1629 28 51 0 34
1800 1.27 532 1740 1739 40 41 0 27
1900 1.28 592 1862 1842 18 38 0 20
2000 1.25 622 1954 1938 26 42 0 32

Table S11: Reconstruction of the MRD ancestor of six simulated genomes with the phylogenetic tree shown in Fig. 5,
where the length of branches is the same as in Table S6(top) and the number of synteny blocks varies from 1000 to 2000.
Compare to Table S9.

remark that such significant fragmentation was not observed when MGRA was applied to real
data. A possible explanation is that many rearrangements in real scenarios are actually micro-
rearrangements that are typically easier to analyze (unless they lead to breakpoint re-use). Our
simulation does not model micro-rearrangements, thus making reconstruction of simulated genomes
in this case somewhat more difficult than reconstruction of real genomes. We remark that while
inferCARs generated slightly less fragmented reconstruction than MGRA in this case, it generated
26 incorrect adjacencies.

In the third simulation we investigated whether MGRA is capable of revealing the short branches
of the phylogenetic tree in the “blind mode” when the tree is not known in advance. The goal is to
evaluate whether the phylogenetic characters generated by MGRA (such as in Tables 1, S13, and 4)
may be misleading in the case of very short branches. TSuch short branches typically incurred very
few rearrangements that may be difficult to reconstruct due to a variety of factors (e.g., breakpoint
re-use or long branch attraction).

We simulated H, M, D, and O genomes and preserved the rearrangement distances between the
Human, Mouse, Dog, and Opossum genomes shown in Table S6(bottom). We considered a tree on 4
leaves and two internal nodes XHD and XMO with branch distance d(H,XHD) = 110, d(D,XHD) = 140,
d(M,XMO) = 260, d(O,XMO) = 560 and the varying length of the internal edge between XHD and
XMO) (from 0 to 50). We further simulated rearrangements on 5 branches of the resulting tree
according to the specified rearrangement distances. We performed 4 simulations (for 1000, 1250,
1500, and 1750 synteny blocks) resulting in various breakpoint re-use rates. Table S12 illustrates
that MGRA reveals the correct topology in nearly all cases with the exception of the cases when the
length of the internal branch is close to zero.

Supplement M Paths in the breakpoint graph and the primate–rodent–carnivore split
We analyzed the paths in the breakpoint graph in Fig. S18(top) with the goal to find a path that may
support or reject the primate–carnivore split. Since the branch corresponding to this split is relatively
short (≈ 7 million years), we do not expect to find many rearrangements supporting either the
primate–carnivore, or the primate–rodent splits. Alternating MRO-DQHC paths would represent a
strong supporting evidence for the primate-carnivore split, while alternating DO-MRDQHC paths
would represent a strong supporting evidence for the primate-rodent split. Not surprisingly, neither
the original breakpoint graph, nor the breakpoint graph after applying MGRA Stage 1 contains such
paths, an indication that the branch corresponding to the split is indeed short. Fig. S17 enlarges a
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MO + DH length MO + DH multi-edges/paths MH + DO multi-edges/paths MD + HO multi-edges/paths

0 0 / 0 0 / 0 4 / 1
5 20 / 5 0 / 0 0 / 0
10 40 / 10 0 / 0 0 / 0
15 54 / 13 0 / 0 0 / 0
20 76 / 19 0 / 0 0 / 0
25 92 / 23 0 / 0 0 / 0
30 112 / 27 3 / 1 0 / 0
35 132 / 33 0 / 0 4 / 1
40 136 / 34 0 / 0 0 / 0
45 172 / 43 0 / 0 0 / 0
50 170 / 42 4 / 1 0 / 0

0 4 / 1 0 / 0 0 / 0
5 16 / 4 7 / 2 0 / 0
10 24 / 6 0 / 0 0 / 0
15 48 / 12 0 / 0 0 / 0
20 76 / 19 0 / 0 0 / 0
25 96 / 24 0 / 0 0 / 0
30 114 / 29 0 / 0 0 / 0
35 129 / 32 4 / 1 0 / 0
40 122 / 30 0 / 0 3 / 1
45 140 / 34 0 / 0 0 / 0
50 130 / 32 0 / 0 0 / 0

0 0 / 0 0 / 0 0 / 0
5 20 / 5 0 / 0 3 / 1
10 24 / 6 0 / 0 0 / 0
15 52 / 13 0 / 0 0 / 0
20 63 / 16 0 / 0 3 / 1
25 70 / 18 4 / 1 0 / 0
30 88 / 22 0 / 0 4 / 1
35 96 / 24 3 / 1 0 / 0
40 98 / 24 4 / 1 0 / 0
45 108 / 21 0 / 0 4 / 1
50 148 / 36 3 / 1 0 / 0

0 0 / 0 4 / 1 8 / 2
5 16 / 4 0 / 0 9 / 2
10 20 / 5 3 / 1 0 / 0
15 31 / 8 0 / 0 0 / 0
20 56 / 14 4 / 1 0 / 0
25 55 / 13 7 / 2 0 / 0
30 82 / 21 0 / 0 6 / 2
35 58 / 14 9 / 3 0 / 0
40 65 / 15 0 / 0 0 / 0
45 72 / 18 0 / 0 0 / 0
50 105 / 25 0 / 0 3 / 1

Table S12: The statistics of the breakpoint graph of the simulated M, H, D, and O genomes (using the ((H,D)(M,O)) tree
topology with 5 branches) on 1750 (first table), 1500 (second table), 1250 (third table), and 1000 (fourth table) synteny
blocks. The tables represent the statistics after MGRA Stages 1-2 run on the confident leaf branches. The length of the
branch separating M and O from H and D varied from 0 to 50. Compare to Tables 1(bottom), S13, and 4.

path of alternating O and MR edges in the breakpoint graph in Fig. S18(top) that groups opossums
with rodents and represents the best supporting evidence for the primate–carnivore split (most
vertices on this path represent chromosome endpoints in D, Q, H, and C genomes). We emphasize
that while this path is hard to explain under the assumption of primate-rodent split, it does not
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represent a “proof” of the primate-carnivore split since complex breakpoint re-uses combined with
difficulties in finding the synteny blocks between distant mammals may skew the statistics of paths
in the breakpoint graph.

161h 1267h 814t 108t 1208t 1111h 747h 927h

Figure S17: A path of the alternating MR and O edges from the breakpoint graph shown in Fig. S18(top). The vertices
forming this path represent mostly chromosome endpoints in the other genomes.

Multicolors Multi-
edges

Simple
vertices

Simple
miltiedges

Simple
paths+cycles

O +MRDQHC 561 + 738 = 1299 1120 559 + 434 = 993 125 + 92 = 217
R +MDQHCO 442 + 557 = 999 884 442 + 391 = 833 51 + 148 = 199
MR + DQHCO 226 + 177 = 403 288 104 + 126 = 230 44 + 24 = 68
D +MRQHCO 135 + 241 = 376 270 135 + 86 = 221 49 + 30 = 79
M + RDQHCO 138 + 64 = 202 128 39 + 64 = 103 25 + 16 = 41
QHC +MRDO 49 + 104 = 153 81 34 + 27 = 61 13 + 11 = 24
Q +MRDHCO 46 + 80 = 126 92 46 + 33 = 79 13 + 13 = 26
HC +MRDQO 38 + 66 = 104 70 32 + 23 = 55 12 + 8 = 20
C +MRDQHO 12 + 25 = 37 24 12 + 6 = 18 6 + 3 = 9
H +MRDQCO 9 + 18 = 27 18 9 + 6 = 15 3 + 2 = 5
MRO + DQHC 4 + 46 = 50 1 0 + 0 = 0 0 + 0 = 0
RO + MDQHC 31 + 2 = 33 1 0 + 0 = 0 0 + 0 = 0
DO + MRQHC 21 + 11 = 32 0 0 + 0 = 0 0 + 0 = 0
MRD + QHCO 15 + 7 = 22 1 0 + 0 = 0 0 + 0 = 0
HCO + MRDQ 5 + 2 = 7 0 0 + 0 = 0 0 + 0 = 0
DHC + MRQO 2 + 4 = 6 0 0 + 0 = 0 0 + 0 = 0
MO + RDQHC 0 + 5 = 5 0 0 + 0 = 0 0 + 0 = 0
DQO + MRHC 1 + 3 = 4 0 0 + 0 = 0 0 + 0 = 0
QC + MRDHO 0 + 3 = 3 0 0 + 0 = 0 0 + 0 = 0
QH + MRDCO 0 + 3 = 3 0 0 + 0 = 0 0 + 0 = 0
MRQ + DHCO 2 + 1 = 3 0 0 + 0 = 0 0 + 0 = 0
RDO + MQHC 1 + 1 = 2 0 0 + 0 = 0 0 + 0 = 0
DQC + MRHO 0 + 1 = 1 0 0 + 0 = 0 0 + 0 = 0
MRC + DQHO 0 + 1 = 1 0 0 + 0 = 0 0 + 0 = 0
DQH + MRCO 0 + 1 = 1 0 0 + 0 = 0 0 + 0 = 0
RQC + MDHO 0 + 1 = 1 0 0 + 0 = 0 0 + 0 = 0

Table S13: The statistics of the breakpoint graph for the Mouse, Rat, Dog, macaQue, Human, Chimpanzee, and Opossum
genomes. For every pair of complementary multicolors, we show the number of multi-edges of these multicolors, the
number of simple vertices that are incident to such multi-edges, the number of simple multi-edges, and the number of
simple paths and cycles. The confident T-consistent multicolors are shown in bold.
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Figure S18: Top panel: The breakpoint graph of the Mouse (red), Rat (blue), Dog (green), macaQue (violet), Human (orange),
Chimpanzee (yellow), and Opossum (brown) genomes after MGRA Stages 1-2 on the confident branches. Compare to
Fig. 7(bottom). Restricting this graph to 4 genomes M,D,Q,O and running MGRA on this smaller graph using only 4
confident branches M + DQO, D + MQO, Q + MDO, and O + MDQ results in the breakpoint graph G(M,D,Q,O) shown
at the bottom panel. Bottom panel: The breakpoint graph G(M,D,Q,O) of the Mouse, Dog, macaQue, and Opossum
genomes after MGRA Stages 1-2 on the confident branches.
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Supplement N Additional Tables and Figures

CAR Length
+1239 1.0 Mb
+72 +73 +74 11.3 Mb
+75 7.0 Mb
+76 0.5 Mb
+77 +78 0.3 Mb

Table S14: The list of short CARs (shorter than 15 Mb w.r.t. the Human genome) in MGRA reconstruction of the
Boreoeutherian ancestral genome.
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Figure S19: The breakpoint graph of the genomes MRDCARs (cyan) and MRD′CARs (orange) reconstructed by inferCARs as
well as MRDMGRA (purple) reconstructed by MGRA. Bold purple edges represent reliable adjacencies obtained by MGRA
Stage 1, while dashed purple edges (shown even if they are parts of complete multi-edges) represent adjacencies (between
vertices incident to a split in M/R/D colors in Fig. 7, bottom panel) viewed as less reliable. Dashed cyan and orange edges
represent ambiguous joins made by inferCARs.
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Figure S20: a) Unichromosomal genome P = (+a+b−c) represented as a black-obverse cycle. b) Unichromosomal genome
Q = (+a − b + c) represented as a green-obverse cycle. b) Unichromosomal genome R = (+a − c − b) represented as a
blue-obverse cycle. d) The (multiple) breakpoint graph G(P,Q,R) with and without obverse edges (compare to Fig. 1).
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Figure S21: Transformation of the breakpoint graph G(P,Q) of the “black” genome P = (+a + b − c) and “green” genome
Q = (+a − b + c) (see Fig. 1) into the identity breakpoint graphs G(P,P) (with “green” 2-breaks) and G(Q,Q) (with “black”
2-breaks).
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