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Figure S1. Insulin/TOR pathway in D. melanogaster. In the presence of insulin, the insulin receptor
(InR) undergoes autophosphorylation providing docking sites for a protein complex; this complex
catalyzes the phosphorylation of the membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP,) to
phosphatidylinositol-3,4,5-trisphosphate (PIP;). The secondary messenger PIP; recruits a series of
pleckstrin homology domain-containing proteins to the plasma membrane including PKB, which becomes
phosphorylated at the plasma membrane. The phosphorylated form of PKB phosphorylates downstream
elements, thus unleashing a reactions cascade that activates a series of effectors, including transcription
factors and proteins involved in translation and in anabolic metabolism. Activatory and inhibitory
elements are represented in green and in red, respectively. Solid lines indicate physical protein-protein
interactions (PPIs). Activating and inhibiting interactions are represented by arrows and by lines ending in
“T’, respectively. The pathway final effector proteins are represented by rectangles. Recently, Bai et al.
have shown that, in mammalian cells, Rheb activates mTOR by binding FKBP38 (an inhibitor of mTOR)
(Bai et al. 2007). Even though there is a putative FKBP38 ortholog in the D. melanogaster genome
(CG5482), currently it is unknown if this gene is really involved in the IT pathway. Furthermore, previous
analysis suggested that the activation of mTOR by Rheb takes place through direct Rheb-TOR interaction
(Long et al. 2005). Therefore, we have not considered in the analyses the CG5482 gene. Including this
gene in the analyses, however, does not change the main conclusions of our work.
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Figure S2. Correlations between different factors (connectivity, codon bias, gene expression levels and
protein length) and either the element position in the insulin/TOR pathway (A-D) or the @ values (E-H).
Regression lines are represented only for the significant correlations.
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Table S1. Genes involved in the D. melanogaster insulin/TOR signaling pathway.

Accession . Number of Chosen Protein ;.
Gene number Protein isoforms _isoform _length Chromosome Position
Akt1 CG4006 PKB 2 A 530 3R 11,927,872
chico CG5686 Chico 1 A 968 2L 10,244,329
am CG10798 dMyc 1 A 717 X 3,274,192
elF2B-¢ CG3806 elF2B-¢ 1 A 669 X 1,815,720
elF-4E CG4035 elF4E-1,2 2 A 259 3L 9,393,583
elF4E-3 CG8023 elF4E-3 1 A 244 3L 8,223,001
elF4E-4 CG10124 elF4E-4 1 A 229 3L 6,658,069
elF4E-5 CG8277 elF4E-5 1 A 232 3L 7,888,543
elF4E-6 CG1442 elF4E-6 1 A 173 3R 24,852,462
elF4E-7 CG32859 elF4E-7 1 A 429 X 1,053,493
4EHP CG33100 elF4E-8 1 A 223 3R 19,911,879
foxo CG3143 dFOXO 2 B 613 3R 9,899,992
gig CG6975 Tsc2 1 A 1847 3L 20,127,198
melt CG8624 Melted 2 A 992 3L 7,134,079
Pi3K21B  CG2699 p60 1 A 506 2L 300,531
PiBK92E CG4141 p110 1 A 1088 3R 16,457,356
Pk61C CG1210 PDK1 4 D 836 3L 136,821
Pten CG5671 PTEN 3 D 514 2L 10,258,031
Rheb CG1081 Rheb 1 A 182 3R 1,395,392
RpS6 CG10944 RpS6 3 C 251 X 7,794,475
S6k CG10539 S6k 1 A 490 3L 5,798,515
sgg CG2621 Shaggy 6 D 1067 X 2,561,010
step CG11628 Step 2 B 488 2L 21,744,219
Thor CG8846 d4E-BP 1 A 117 2L 3,479,004
Tor CG5092 TOR 1 A 2470 2L 13,008,859
Tsc1 CG6147 Tsci 1 A 1100 3R 19,958,219
CG6904  CG6904 GS? 2 A 709 3R 10,969,512

“Putative ortholog of the glucogen synthase.
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Table S2. Copy number of the insulin/TOR signaling pathway genes in 12 Drosophila
genomes

Gene Dmel Dsim Dsec Dyak Dere Dana Dpse Dper Dwil Dmoj Dvir Dgri

Akt1 1 1 1 1 2f 1 1
chico
am
elF2B-¢
elF-4E
elF4E-3
elF4E-4
elF4E-5
elF4E-6
elF4E-7
4EHP
foxo
gig
melt
Pi3K21B
PiBK92E
Pk61C
Pten
Rheb
RpS6
S6k
599
step
Thor
Tor
Tsc1
CG6904

O = A N) = -
O = A N) = -
—_

A a At o

o T

o
O = = A ) = =
O = =MNN ===

—_
o
N
—_
o
—_
N
o

—_
—_
o

Y
Q
Y

Y

GGG GGG O G QGG O G G G QG
GGG GGG O G QGG G O G G QG
ol el el el e e el el bl e e el N) = b e el el el ek ek e

[ QGG U |\ J S G G G G G G G G GO J G G G G G G Gy

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

JET G GGG Gl G GG G G G G G G G G G G T G T G G G Y
_A._LN[\)_L_A._L_L_L_L_L_L_L_L_L_L_L_LO_L_L_L_I;_L_L_L

4 a4 a4 gt a4
4 a4 gt 4
a a4
JEFQUEOIG U O i G G G G G G G G Gy
OO | O O G G G G G G G G G G Gy

141%

Dmel, D. melanogaster; Dsim, D. simulans; Dsec, D. sechellia; Dyak, D. yakuba; Dere, D.
erecta; Dana, D. ananassae; Dpse, D. pseudoobscura; Dper, D. persimilis; Dwil, D.
willistoni; Dmoj, D. mojavensis; Dvir, D. virilis; Dgri, D. grimshawi.

*Copies located in tandem in the same genomic scaffold.

steudogene, DNA sequence with a frameshift or covering less than 40% of the D.
melanogaster ortholog.
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Table S3. Phylogenetic analysis by maximum likelihood of the insulin/TOR pathway genes

Gene fmo {rR fmia fm2a fm3 fmr fus 2(frr—tmo) 2(fm2a—fm1a) 2(Ems—fmz)  2(£ma—Emo)
Akt1 -3,233.47 -3,219.85 -3,194.43 -3,191.90 -3,191.72 -3,197.52 -3,191.72 27.25 *** 5.06 11.60 ** 83.51 ***
chico -7,055.41 -7,046.34 -7,003.48 -7,003.48 -6,991.73 -6,993.51 -6,992.98 18.14 ~* 0.00 1.06 127.35 ***
am -3,620.02 -3,611.08 -3,569.89 -3,569.89 -3,564.14 -3,565.58 -3,565.39 17.89 ** 0.00 0.39 111.77 ***
elF2B-e -4,679.84 -4,673.55 -4,656.33 —-4,655.25 —4,654.48 —4,662.72 —4,655.32 12.60 2.16 14.80 *** 50.74 ***
elF-4E -1,368.58 -1,365.22 -1,360.96 -1,360.96 -1,358.49 -1,358.49 -1,358.49 6.73 0.00 0.00 20.19 ***
elF4E-3 -2,059.13 —-2,049.09 -2,035.92 -2,035.92 -2,035.00 -2,035.98 -2,035.18 20.08 ** 0.00 1.60 48.26 ***
elF4E-4 -1,565.39 -1,561.53 -1,558.78 -1,558.78 —-1,555.94 -1,556.55 -1,556.55 7.72 0.00 0.00 18.90 ***
e/F4E-65a —1,449.04 —1,427.93 -1,446.09 —-1,446.09 —1,444.33 —1,44442 —1,444.42 4222 *** 0.00 0.00 9.43
elF4E- - - - - - - - - - — -
elF4E-7 —-1,965.06 -1,918.53 -1,951.28 -1,951.28 -1,950.66 —-1,953.51 —-1,951.06 93.05 *** 0.00 4.89 28.79 ***
4EHP -1,311.36 -1,29492 -1,310.00 -1,310.00 -1,309.86 -1,309.98 -1,309.88 32.88 *** 0.00 0.21 2.99
foxo -3,429.60 -3,420.59 -3,420.45 -3,420.45 -3,420.21 -3,420.33 -3,420.22 18.02 ** 0.00 0.23 18.79 ***
gig -13,110.05 -13,103.01 -13,074.83 —-13,074.60 —13,063.34 —-13,065.68 —13,063.42 14.08 0.48 4.51 93.42 ***
melt -6,518.80 -6,515.25 -6,496.18 -6,496.18 -6,494.46 -6,496.07 -6,494.49 7.11 0.00 3.17 48.67 ***
Pi3K21B -3,562.99 -3,557.21 -3,538.34 -3,538.34 -3,531.28 -3,531.84 -3,531.62 11.57 0.00 0.44 63.42 ***
Pi3K92E -7,852.60 -7,843.01 -7,822.97 -7,822.97 -7,810.25 -7,810.43 -7,810.43 19.20 ** 0.00 0.00 84.71 ***
Pk61C -4,576.43 -4,573.15 —-4567.55 -4,567.55 -4564.51 -4,564.72 -4564.57 6.55 0.00 0.30 23.85 ***
Pten -3,599.14 -3,588.06 -3,570.06 -3,569.09 -3,569.09 -3,571.22 -3,569.10 22.16 ** 1.94 4.24 60.09 ***
Rheb —-1,244.78 —-1,239.81 —-1,24420 —-1,244.20 -1,242.16 —-1,242.25 -1,242.25 9.93 0.00 0.00 5.23
RpS6 -1,383.46 -1,377.25 -1,374.83 -1,374.40 -1,374.40 -1,376.67 —-1,374.43 12.42 0.85 4.48 18.12 ***
S6k -2,769.89 -2,765.16 —-2,769.88 —-2,769.86 -2,769.86 —-2,769.94 -2,769.91 9.48 0.04 0.06 0.07
sgg -4,760.04 —-4,757.31 -4,728.18 —4,728.18 —-4,727.92 —-4,728.22 -4,728.00 5.47 0.00 0.44 64.23 ***
step -3,5634.06 -3,521.30 -3,516.42 -3,516.42 -3,513.24 -3,513.79 -3,513.56 25.52 *** 0.00 0.46 41.65 ***
Thor —799.33 —-797.34 —-799.33 —799.33 —799.33 —799.49 —-799.49 3.96 0.00 0.00 0.00
Tor —-15,824.18 —15,789.18 —-15,754.01 —15,754.01 —-15,747.90 —-15,751.67 —-15,747.39 69.99 *** 0.00 8.57 * 152.56 ***
Tsc1 -7,365.47 -7,356.64 -7,348.84 -7,348.84 -7,342.41 -7,343.34 -7,342.67 17.66 ** 0.00 1.34 46.12 ***
CG6904 -4,305.75 —-4,297.50 -4,297.89 -4,297.89 -4296.97 -4,298.61 —4,297.56 16.50 * 0.00 2.09 17.56 ***

¢;, log-likelihood of the observed data under the evolutionary model i. *, P < 0.05; **, statistically significant values at a false
discovery rate (FDR) of 0.05. ***_ statistically significant values under the Bonferroni correction.
*Analysis not conducted since there is no orthologous copy in D. ananassae.
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Table S4. Connections between the insulin/TOR pathway and other pathways in D.

melanogaster.
IT pathway Pathway or Input/ Effecton IT Kind of
element molecule output pathway evidence References
p60 Decapentaplegic input activation m (Higaki and Shimokado 1999; Martin-
pathway Castellanos and Edgar 2002)
p110 Ras pathway input activation d (Orme et al. 2006)
Tsc2 and/or amino acids input activation d (Gao et al. 2002)
TOR
Rheb TCTP input activation d (Hsu et al. 2007)
elF-4E LK6 input activation d (Arquier et al. 2005; Reiling et al.
2005)
dMyc Ras pathway input activation d (Prober and Edgar 2002)
p60 Susi input inhibition d (Wittwer et al. 2005)
Tsci Scylla/Charybdis input inhibition d (Reiling and Hafen 2004)
S6K PP2A input inhibition d (Bielinski and Mumby 2007)
dMyc Archipelago input inhibition d (Moberg et al. 2004)
dMyc Dco input inhibition d (Galletti et al. 2007)
dMyc Wingless input inhibition d (Johnston et al. 1999; Quinn et al.
pathway 2004)
dFOXO JNK pathway input inhibition d (Wang et al. 2005)
Shaggy Hedgehog input/ activation d (Jia et al. 2002; Price and Kalderon
pathway output 2002)
Shaggy Wingless input/ no effect d (Noordermeer et al. 1994)
pathway output
InR Dock pathway output activation d (Song et al. 2003)
PDKA1 RSK output activation d (Rintelen et al. 2001)
S6K Sima/HIF-1 output activation d (Dekanty et al. 2005)
PKB Trh output activation d (Jin et al. 2001)
PKB sugar output activation m (Rulifson et al. 2002)
metabolism
PKB lipid metabolism output activation d (Vereshchagina and Wilson 2006)
PKB Sima/HIF-1 output activation d (Dekanty et al. 2005)
PKB ERK pathway output activation d (Kim et al. 2004)
PKB apoptosis output inhibition m (Scanga et al. 2000)

d, interaction observed in D. melanogaster; m, interaction observed in mammals that may
also exist in D. melanogaster as judged from some indirect evidence.
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