Supplementary Materials

1 Second chance assembly

In low-coverage regions it may be necessary to use “Second Chance Assembly” to
complement the standard EULER-USR assembly pipeline. The “Second Chance
Assembly” attempts to assemble reads discarded during error correction along
with "hooks’: edges from the assembly on fixed reads that they may be assembled
with. The motivation is that fragmentation may be caused by a relatively small
number of reads that are discarded during error correction, and if they overlap
the ends of contigs they may be brought into the original assembly to bridge
gaps.

In real sequencing projects, read coverage varies greatly and is typically de-
pendent on sequence features. For example, a 45 nt inverted palindrome was
correctly read only 3 times in the entire set of 50 nt long reads with 500X
coverage (in the human BAC dataset). In some applications (e.g., single cell
sequencing), the variation in coverage is even more extreme. The variations
in read coverage affect the k-mer coverage Coverage, (i) defined as the number
of reads covering the position i in the genome and fully containing the k-mer
starting at this position. We define a k-mer gap as a longest sequence of con-
secutive genomic positions with Coverage, (i) < m, where m is the multiplicity
threshold. The fluctuations in read coverage create k-mer gaps and each such
gap fragments the repeat graph, as shown in Figure 1. It is possible to reduce
the fragmentation of the repeat graph using a lower k-mer multiplicity thresh-
old during error correction, or further by simply constructing the de Bruijn
graph on all available reads, as error correction filters out reads that cannot be
fixed. On the dataset of 50 nt long reads (50X coverage) lowering the multi-
plicity threshold from 5 to 2, and further to 1, decreases the number of gaps
in the genome coverage from 27 to 15, and to 9 correspondingly. Lowering
the threshold increases the size of the de Bruijn graph, due to inclusion of a
number of erroneous reads, resulting in possible miss-assemblies. Therefore, we
choose the k-mer multiplicity threshold conservatively as a lower bound. The
threshold of 5, used in error correcting the dataset of 50 nt long reads, filters
8.1% of original reads resulting in a high quality set of reads that covers the
majority of the genome (99.6%). This allows us to drastically reduce memory
constraints relative to no thereshold, and operate on a more simple graph; the
graph on reads without a k-mer multiplicity threshold has 320,261 vertices and
338,836 edges versus 10,060 vertices and 11,464 edges in the de Bruijn graph on

1500 3000

T T T T
- 5— N50 —8— Number of k-mer gaps
—6— Expected number of fragments
1000 2000
[
Q
©
o
@
£
x 3
<] z
5]
Qo
€
=)
z
500 - 1000
o & £ 0
10 15 20 25 30 35 40 45
k-mer size

Figure 1: The choice of k-mer size affects the number of k-mer gaps (left Y-
axis) in the the genome (human BAC). An increase in the k-mer size increases
both the number of k-mer gaps and the number of connected components in
OPTIMAL-ASSEMBLY (k) (negative effect). On the other hand, it increases
the N50 size of OPTIMAL-ASSEMBLY (k) (positive effect). The N50 values are
presented on the right Y-axis. For the Human BAC the optimal k-mer size is
under 40 bases.

error corrected data. Table 1 shows the number of gaps in the genome coverage
formed by reads on different stages of our algorithm.

We examined the tradeoff between the k-mer size and repeat graph fragmen-
tation by constructing the de Bruijn graph on k-mers with & ranging from 10
to 45 nt using perfect reads. The results are shown in Figure 1. The number of
gaps grows similarly to that expected by the Poisson distribution of fragments
if coverage is uniform, however it grows slightly more quickly indicating sample
bias at the resolution of less than the size of a read.

2 EULER-USR runtime

The EULER-USR is given as a set of ¢ reads of length n each of the overall length
N =t -n. Error correcting reads and the construction of the de Bruijn/repeat
graph takes O(N -log N) time [1]. Threading requires a depth first search
starting at the edge on which the read begins. While the total number of edges
searched per read may be high, it is usually small for typical repeat graphs with
small vertex degrees (like most repeat graphs). Therefore, the overall running

Read length | Coverage Original SA corrected Threaded and

threshold reads reads Second Chance reads
BAC35 5 27 69 41
BAC50 5 27 59 56
simBAC100 5 14 17 14

Table 1: The number of k-mer gaps at different stages of the EULER-USR
assembly (k = 20). The increase in the number of k-mer gaps after the error
correction is mainly caused by discarding reads.

time is typically O(N -log N).

The Velvet assembly ran considerably faster than EULER-USR: 7 minutes
compared to 48 minutes for ECOLI dataset (on a desktop PC). Since the data
required roughly a week to generate, we do not anticipate assembly time to be
a bottleneck in bacterial sequencing projects.

3 Detailed description of how mate-paths are
used to resolve repeats

Once mate-pairs have been transformed into mate-reads, we use the resulting
mate-paths to resolve the repeats and simplify the repeat graph (compare with
the Eulerian Superpath Problem discussed in [2]). Mate-paths that begin and
end on edges with sequences unique to the genome may be used to resolve
repeats. To detect if an edge is (likely) unique, first consider a repeat graph
G = (V,E) constructed on a genome. We will use paths in the repeat graph
defined by reads (read-paths) and mate-pairs (mate-paths) to label edges as
unique or not (read-paths and mate-paths correspond to superpaths in [2]).
The motivation for determining which edges are unique are from solutions to
the Chinese Postman Path (CPP) discussed in [1]. A CPP PYF is a path
of minimal length that visits every edge at least once. Edges that are visited
multiple times on the CPP are not unique. The path P¢" may be replaced
by an Eulerian path if edges are replaced by multiedges with a count equal to
the number of times they are traversed in PP [2]. Let P = (Pi,...P,) be
a set of arbitrary subpaths from PP, but for the sake of simplicity, assume
that no path in P is fully contained by any other path in P. If an edge e is
represented by a sequence that is unique in the genome, then only one path in P
may begin with e, and only one path from P may end with e. When more than
one path from P begins with (ends with) e, there is more than one sequence
in the genome that begins with (ends with) e, therefore e is not unique. The
converse is not necessarily true; it is possible that only one path from P starts
and ends at e because P is a set of arbitrary subpaths from PP, We denote
an edge as unique if the above condition holds given a set of paths P.

In assembly projects, the P¢? is not known and the goal is to detect it using
mate-pair information. Mate-paths that start and end on unique edges must be

part of PYP. To detect unique edges using reads, the set of sub-paths from the
repeat graph are defined by read-paths P and mate-paths PM. A path that
begins and ends on unique edges is a resolving path. To find resolving paths, let
P = PREUPM. Again, for simplicity, assume no path in P is fully contained by
any other path in P (if not, P is further processed to remove such paths). For
each edge e, start(e) is the the number of paths starting at e, and end(e) is the
number of paths ending at e. When a path P from P begins at an edge e; with
start(es) = 1 and ends on an edge e. with end(e.) = 1, P is a resolving path,
and may be used to link es to e, in the assembly.

The repeat graph is transformed using resolving paths to route paths out
of repeat tangles (similar to the equivalent transformations in [2]). Given
a resolving path P begining on an edge (Sstart,dstart), and ending on edge
(Sendv dend)~ The edge (sstartvdstart) is replaced by an edge (Sstartv dend)v and
edges (Sstart; dstart) and (Send, dend) are removed from the graph. The sequence
of (Sstart, dend) 18 set to the sequence of the path (estart, Py €end), and all reads
from mate-pairs that supported P are mapped to the new edge. Each edge
contains a list of reads that map to it in the assembly. Reads that supported
path (estart, P, €end) are removed from edges along P, and re-mapped to the
new edge (Sstart, dend). When no reads map to an edge, the edge is removed
from the graph.

There are two difficulties when labeling edges as unique: an edge corre-
sponding to a duplicated sequence is marked as unique (false positive), and an
otherwise unique edge may be considered duplicated (false negative). The false
positive labels result from missing paths due to a lack of coverage, i.e. no end
of a mate-pair is sampled from a duplicated sequence. When coverage is high,
we found that the rate of misclassifications is very low when considering edges
of a minimal length 200 for E. coli. The second misclassification arises when
paths are added erroneously to the graph due to reads that contain sequencing
errors. Although error correction is performed both prior to assembly, and in
graph correction operations, errors typically remain in repeat regions. We found
that the set of paths P contains very few erroneous edges, although only using
‘P results in more false positive edges. As a result, we resolve tangles first using
PEUPM then only PM.

4 Analysis of simBAC100 assembly

We analyzed the simBAC100 dataset to evaluate how threading improves the
assembly quality 2. The Spectral Alignment error correction routine trims reads
to on average 46.6 bases. However, after threading, the average read length was
recovered to 94.5 bases. The longer read length allowed us to perform repeat
resolution with a larger k-mer size (50), resulting in a further 18% improvement
in N50 assembly as compared to sSimBAC35. There is a large disparity between
the assembly on perfect reads of length 100, and the assembly on threaded
reads, even though the average threaded read length is over 90 nt. Most of
the repeats in the genome are due to repetitive elements longer than 100 bases.

When the repeats diverge from the consensus sequence they may be resolved by
perfect reads. However, we thread reads through the repeat graph, a simplified
representation of the genome that merges repeats into a consensus. When the
repeat consensus is longer than the average read length, small mutations that
differentiate repeat copies are lost, and therefore are not resolved by reads only
covering a portion of the repeat.

No. reads Total Reads spanning Reads spanning Reads spanning Average read length

one edge two edges > 2 edges (after threading)
correct/correct 2819 2523 115 181 97
correct /incorrect 5 2 3 0 100
incorrect/corrected 323589 272290 16480 34819 96
incorrect/incorrect 4116 717 888 2511 91

Table 2: The results of read threading on simBAC100 dataset. Reads are clas-
sified into four categories: correct/correct (if threading does not change a cor-
rect read), correct/incorrect (if threading turns a correct read into incorrect),
incorrect/correct (if threading turns an incorrect read into correct), and incor-
rect/incorrect (if threading turns an incorrect read into an incorrect read). The
table classifies reads in each of these four categories depending on how many
edges in the repeat graph they span.

5 Detailed comparison of EULER-USR and Vel-
vet assemblies

Figure 2 illustrates the results of both Velvet and EULER-USR by mapping
contigs to the E.coli genome.
References

[1] Chaisson MJ, and Pevzner PA. Short Read Fragment Assembly of Bacterial
Genomes. Genome Research, 18:324-330, 2008.

[2] Pevzner PA, Tang H. Fragment assembly with double-barreled data. Bioin-
formatics, S225-233, 2001.

-0Mb

o

=

g Ny

R il (el

Sl mamngy i

ST Rt

P NN
RS

%‘/ﬁ ..

7

Escherichia coli Bacterium

A B0

{7~ s
S O

b) /#W/h.ll-l'."{'l‘-\l““*&@

L gy Ay
EULER-USR mate pairs ’ [T T N\
— e © @.--“M‘) E
I VELVET mate pairs N ©

[VELVET

Figure 2: Comparison of contigs generated by EULER-USR and Velvet. The
gap at the top shows where the reference genome was linearized.

