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Convergence

We derive the conditions for G to be a kernel.

G = [γI− (A−S)]−1

= (γI−H)−1

= γ
−1(I− γ

−1H)−1

= γ
−1[I+ γ

−1H+ γ
−2H2 + · · · ]. (1)

The matrix H = A−S, the negative of the graph Laplacian, is symmetric and negative semi-definite [Kondor and Lafferty 2002].

Let {λi;~φi}, i = 1, · · · ,n be the eigenvalue-eigenvector pairs of H. From the definitions of eigenvalues and

eigenvectors and symmetric property of H, we have

H~φi = λi~φi, (2)

~φT
i HT = ~φT

i H =~φT
i λi. (3)

Any n by 1 vector~c can be written as a linear combination of the orthonormal eigenvectors of H,

~c =
n

∑
i=1

ai~φi. (4)

Combining Eqs. (1), (2), (4), we have for any vector~c,

~cT G~c = ∑
i

ai~φ
T
i [γ−1(I+ γ

−1H+ γ
−2H2 + · · ·)]∑

j
a j~φ

T
j

= ∑
i

a2
i γ

−1~φT
i (I + γ

−1H+ γ
−2H2 + · · ·)~φi

= ∑
i

a2
i γ

−1(1+λi/γ+λ
2
i /γ

2 + · · ·) (5)

In order for the RHS of Eq. (5) to converge to the LHS, a sufficient condition is λi/γ < 1 for all i. When this

is true, Eq. (5) reduces to

~cT G~c = ∑
i

a2
i

γ−λi
(6)
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From Eq. (6) it is clear that under the same condition for convergence, G is also positive semi-definite.

Hence a sufficient conditions for G to converge to a kernel is that γ is larger than the maximum eigenvalue

of H. Since H is negative semidefinite, this implies that γ > 0 will always converge. In this application,

convergence was always achieved with the allowed relaxation of G to a pseudo-inverse.

Kernel scores conditioned on SFL and co-complex status

Diffusion kernels for known SFL pairs from BioGRID [Stark et al. 2006] were calculated using γ = 1. SFL

edges were randomly assigned to one of five cross-validation groups, and kernels were computed separately

for each four-fifths of the data. For known SFL pairs, kernel scores were taken from the single calcula-

tion that excluded that edge; for all other pairs, kernel scores were averaged across the five folds. Known

co-complex pairs were obtained from the MIPS protein complex catalog [Mewes et al. 2004]. Only the

human-curated complexes were used, not the high-throughput complexes. For complexes with hierarchi-

cal structure, only pairs present in a sub-complex at the deepest level were taken as known PPI positives.

Negative examples were pairs that were not co-complexed at any level in the hierarchy.

The histogram of G+ for known positive co-complex members is bimodal. The peak at higher kernel

score is from pairs where each gene was used as a query in a high-throughput SFL screen. The lower peak

is from pairs where at least one gene was not used as a query.
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Figure 1: Diffusion kernels G− and G+ were calculated from the SFL network with symmetric normaliza-
tion and γ = 1. (A) Histograms of G− for SFL gene pairs and non-SFL gene pairs. Scores for known SFL
pairs are shifted to higher values. (B) Histograms of G+ for co-complexed and non-co-complexed gene
products. Scores for known co-complexed pairs are shifted to higher values.
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SFL prediction

The performance of the diffusion kernels depends on the diffusion parameter γ. Large γ corresponds to short

diffusive paths while small γ allows the kernel to explore more of the network via longer paths. We evaluated

the kernels under 14 different γ values ranging from 0.01 to 256 in order to find the optimal parameter for

each kernel and compare the performances of the kernels. In addition to the three diffusion kernels, we also

examined the performance of three methods based on the number of length-3 paths, denoted by A3, N(A3)

and [N(A)]3 (see Main Text, Materials and Methods). The performances of the three counting methods do

not depend on γ.

The performances of SFL prediction by the above mentioned six methods (three diffusion kernels and

three counting methods) are assessed by the maximal F-score and the AUC of the ROC curve (Materials and

Methods). Both the AUC and the F-score metrics show that the odd-parity kernel G− is a better predictor for

SFLs than the even-parity kernel G+ and the full kernel G, with G+ being the worst among the three at all

γ values (Supplemental Fig. 2). The AUC of G+ decreases abruptly when γ increases from 16 to 32. This is

a numerical artifact due to machine precision: kernel scores decrease exponentially with γ, and the smallest

scores in G+ fell below the machine precision for γ ≥ 32. These scores account for the tail of the ROC

curve at large false positive rate but have negligible influence on the PR curve. The G kernel achieves the

best performance at an intermediate value of γ = 1, according to the F-score metric. In cross-validation, the

direct edge between pairs to be predicted have been removed from the training data and hence the dominant

term in G− and G+ are length-3 and length-2 paths respectively. As γ increases, though the performance of

G− improves, G is increasingly dominated by the length-2 path term in G+, resulting in worse performance

of G.

The optimization procedure shows that G− achieves its best performance on the BioGRID dataset at

large γ values around γ ≥ 32. At γ ≥ 32, only length-3 paths contribute to the G− kernel. Indeed, one of the

counting method, [N(A)]3, works as well as the optimized G− kernel. This method which pre-normalize the

adjacency matrix significantly out-performs the raw count A3, and N[(A)3] which post-normalizes the raw

count matrix.
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Figure 2: Parameter optimization for predicting genetic interactions from BioGRID by diffusion kernels
and performance comparison with three counting methods. The N(·) operation represents the symmetrical
normalization in Eq. (6). A3: raw counts of length-3 paths; N(A3): symmetrically normalized A3; [N(A)]3:
counts of length-3 paths adjusted for node degrees. See text for details about A3, N(A3) and [N(A)]3.
The odd-parity kernel significantly outperforms the other two diffusion kernels and has the same perfor-
mance as the normalized counting method [N(A)]3 at large γ values. (A) Area under the curve (AUC) of
the full ROC curve as a function of the diffusion parameter γ. (B) Maximal F-score. F-score is defined
as 2*Precision*Recall/(Precision + Recall). Maximal F-score is the maximized F-score across the entire
Precision-Recall curve.
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The PR curve for G− has a distinctive shape, falling rapidly but then maintaining a plateau of about

45% precision as the recall increases. Known positives and negatives used for testing were separated into

query-query and query-target pairs based on knowledge of the 179 genes used as queries in high-throughput

studies. For query-query pairs, G− and the raw path-3 count A3 perform much better than G or G+ (Sup-

plemental Fig. 3). There are many more query-target pairs, however, and for these G− performs better than

any of the other predictors (Supplemental Fig. 4).
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Figure 3: Performance of genetic interaction prediction where both genes in each gene pair in the test set are
known query genes. The odd-parity kernel G− and the raw count of length-3 paths A3 have high prediction
accuracy while the diffusion kernels G+ and G perform poorly. (A) Precision recall curves. (B) Receiver
operator characteristic curves.
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Figure 4: Performance of genetic interaction prediction where each gene pair in the test set contains one
known query gene and one target gene. The odd-parity kernel G− significantly outperforms the other three
methods. (A) Precision recall curves. (B) Receiver operator characteristic curves.
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Comparison with previous SFL predictions on an earlier data set
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Figure 5: Performance of SSL prediction by three diffusion kernels on a smaller dataset. Five fold cross-
validation is carried out for a dataset obtained from the supporting website of (Kelley and Ideker 2005). The
maximal F-score is plotted as a function of γ. The G− kernel achieves the best performance at γ ≥ 64.
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Figure 6: The performance of SFL prediction by G−(γ = 64) is compared to previous results for a smaller
dataset [Kelley and Ideker 2005]. Previously reported results were 87% precision (37 true positives) at
0.77% recall. At 87% precision, G− has 1.1% recall, and at 0.77% recall it has 92% precision. The F-score
for G− is calculated from its best overall performance of 28% precision at 40% recall.
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Figure 7: Scatter plot matrix of precision, recall of the top 100 predictions for each query and six bio-
logical and topological features that are significantly associated with SFL prediction quality. APMS cc:
clustering coefficient of the query protein in the protein-protein interaction network obtained by affinity
purification and mass spectrometry; cc: average clustering coefficient of known SFL partner in the SFL
network; score top100: average G− score for top 100 predictions; num SFL: number of SFL partners from
(Lin et al. 2008). See Supplementary data 2 for details of the regression model with these significant factors.
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Figure 8: Performance of genome-scale SFL target prediction by the G− kernel for 37 query genes. The
maximal F-score is used as the performance metric and plotted as a function of γ. Each curve represents the
prediction performance for one query. Queries are color coded according to the maximal F-score averaged
across different γ values tested.
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Figure 9: Histograms of the maximal F-score for 37 query genes at γ = 1 vs. γ = 32 by the G− kernel.
Eighteen queries have a maximal F-score greater than 0.15 at γ = 1 vs. sixteen at γ = 32.
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Co-complex/pathway membership prediction

We optimized the diffusion parameter for the kernels in predicting co-complex membership by evaluating

the kernels at 14 different γ values. We compared the performances of the diffusion kernels to those of

four methods based on length-2 paths. One such method is the congruence score, which has been the

best algorithm for inferring co-complex/pathway membership from only genetic interactions (Materials and

Methods). The other three methods, A2, N(A2), and [N(A)]2, are (normalized) counts of length-2 paths (see

Main Text, Materials and Methods).

According to the two performance metric, the maximal F-score and the AUC of the ROC curve, the

general trend is that the G+ kernel is a better predictor for co-complex membership than G− at all γ values

examined (Supplemental Fig. 10). This is consistent with our hypothesis that an excess of even-length

paths increases the likelihood of co-complex membership. There is a clear trade-off between precision and

coverage. Although γ on the small extreme have larger AUC of the ROC curve, the F-score metric suggests

the optimal γ values are at 0.1, 0.25 and 0.05 for G, G+ and G−, respectively. While inferior to the G+

kernel, the odd-parity kernel predicts a non-negligible fraction of co-complex proteins. As a result, the best

kernel overall is G at γ = 0.1 while the G+ kernel is similar or slightly better than G for γ≥ 32. At γ = 0.25,

the even-length paths that contribute to G+ include those much longer than length-2.

According to the F-score metric, all three diffusion kernels are significantly better than the congruence

score. The raw count of length-2 paths, A2 is the worst predictor among all. The congruence score is better

than A2 but not as good as the two normalized counting methods. Of course, it is possible that the true

performance of the congruence score is better than presented here, given perfect knowledge of query or

target status. But the requirement of knowing query or target status can itself be a limitation, which the

graph diffusion kernels do not have. Interestingly, the simple predictor [N(A)]2 performed very well. The

optimized G+ kernel at γ = 0.25 outperforms [N(A)]2 in terms of the AUC of the ROC curve but only

slightly better in terms of the maximal F-score. This analysis shows that the improvement of G+ over

congruence score and A2 comes mainly from the normalization of the adjacency matrix which accounts for

the degrees of all the nodes on the length-2 paths that connect a pair of gene i and j, while the congruence

score only considers the degrees of i and j themselves and A2 completely ignores node degree information.
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Figure 10: Parameter optimization for predicting co-complex/pathway membership by diffusion kernels
and performance comparison with the congruence score and three counting methods. CS: congruence score.
The N(·) operation represents the symmetrical normalization in Eq. (6). A2: raw counts of length-2 paths;
N(A2): symmetrically normalized A2; [N(A)]2: counts of length-2 paths adjusted for node degrees. See
text for details about A2, N(A2) and [N(A)]2. The three best methods are the full kernel G at γ = 0.1, the
even-parity kernel G+ at γ = 0.25 and the counting method [N(A)]2.(A) Area under the curve (AUC) of
the full ROC curve as a function of the diffusion parameter γ. (B) Maximal F-score. F-score is defined as
2*Precision*Recall/(Precision + Recall).

15



Searches seeded by MIPS complexes

Protein complexes were obtained from all levels of the MIPS catalog of curated complexes. A compound

query was built from the genes in complex. All genes in the SFL network, including the known members of

a complex, were ranked according to the score

si =
n

n−δi
∑

j∈complex, j 6=i
Gi j. (7)

The condition j 6= i indicates that the self-terms Gii are omitted when ranking known members of a complex.

The term δi is defined as 1 for i ∈ complex and 0 otherwise. The normalization prefactor n/(n−δi) corrects

the score for the excluded self-term. This procedure provides a natural calibration of precision and recall

with respect to known complex members.

In many cases, genes not annotated as complex members are interspersed with known members. All

complexes with at least 10% precision at 80% recall were analyzed to identify why non-members were

ranked higher than known members. As discussed in the main text, a common explanation was the identifi-

cation of proteins that are co-complexed at higher levels in the hierarchy and in linked biological processes.

A performance summary for all complex indicates good performance for complexes with at least 5 to 8

known members (Supplemental Fig. 11). Complexes with 4 or fewer known members have worse perfor-

mance, with F-scores typically below 0.1.
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The exponential kernel

While the main text describes a steady-state diffusion kernel, several other kernels have been described

for graphs. Perhaps most widely used is the exponential kernel, which can be interpreted as a transient

response [Kondor and Lafferty 2002]. The solution to the heat equation (d/dβ)Kβ =−LKβ is

K = exp(−βL) (8)

where the matrix exponentiation transforms local structure of the graph captured by L into global structure

of the graph characterized by K. When L is symmetric, K is symmetric and positive semi-definite and hence

a kernel. The kernels described by Eq. (8) form an exponential family with generator L and bandwidth pa-

rameter β. In particular, a generator for an undirected, unweighted graph is L = S−A, where A is the graph

adjacency matrix and S is a diagonal matrix containing the node degrees. The bandwidth parameter β can be

interpreted as the time delay before measuring the transient reponse. Small β corresponds to shallow diffu-

sion (analogous to large γ for the steady-state kernel) while large β corresponds to long diffusion (analogous

to small γ). Calculations for the exponential kernel used the unnormalized adjacency matrix.

It is possible to define a parity for the exponential kernel,

K± = B±(β)+
Z

β

0
dβ

′K2(β−β
′)K±(β′)

B+(β) = exp(−βS)

B−(β) =
Z

β

0
dβ

′ exp[−(β−β
′)S]Aexp[−β

′S]

K2(β) =
Z

β

0
dβ

′ exp[−(β−β
′)S]AB−(β′). (9)

Whereas calculating the full exponential kernel requires only repeated matrix multiplications, calculating

parity-specific exponential kernels requires either quadrature over a grid in β-space or conversion of convo-

lutions over parameter β into products of Laplace transforms, followed by inverse Laplace transform. Under

some normalization schemes, the computation is easier because the diagonal matrix S is proportional to the

identity matrix, removing the necessity of integrals over β′. We did not pursue these approaches.

Because only the full kernel was calculated, only performance in recovering PPIs was investigated. The
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Figure 12: Performance of the exponential kernel K in predicting co-complex/pathway membership. The
performance of the exponential kernel is plotted as a function of the bandwidth parameter β. Large β

corresponds to long diffusion and small β corresponds to short diffusion. (A) AUC of the full ROC curve as
a function of β. (B) Maximal F-score as a function of β. The optimal β is 0.1.

full kernel did only slightly better than the count of normalized length-2 paths (Supp. Fig. 12), and not

as well as the steady-state kernel. It is possible that normalization of the adjacency matrix prior to kernel

calculation would improve the performance of the exponential kernel. But as our objective is investigating

parity-specific kernels, we did not pursue this point.
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SVM performance

SVM (SFL only) SVM (no SFL) SVM (ALL)
Precision 0.857 0.639 0.864
Recall (True pos. rate) 0.794 0.403 0.807
False pos. rate 0.132 0.228 0.127
Accuracy 0.831 0.588 0.840
F-score 0.824 0.494 0.835

Table 1: Results of SFL prediction by three SVM classifiers. Each statistic is the average across five test
sets and within test sets averaged over 5-fold cross-valiation. Accuracy is defined as (# true pos. + # true
neg.)/(# known pos. + # known neg.).
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Figure 13: Performance of the three diffusion kernels G−, GAG1 and GAG2, in predicting genetic interac-
tions. GAG1, termed GAG in the main text, is G+AG+; GAG2 = G+N(A)G+. G− is the best kernel overall
but the GAG1 kernel has a superior performance at low recall region.
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