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1 TLR system

Birth-and-death evolution of the vertebrate TLR11 lineage

Although the vertebrate TLR11 family can be tracked back to bonyfishes, not
an orthologous lineage can extend from bonyfishes to mammals, which suggests high
turnover rate of the TLR11 lineage. To the extreme, mouse has 3 divergent TLR11
members (TLR11, 12 and 13), whereas the only human TLR11 member has become a
pseudogene (Roach et al. 2005).

Sable paraphyletic relationship between 33 amphioxus V-TLRs and the vertebrate
TLR11 family

The low bootstrap value in Figure 1 for the cluster containing 33 amphioxus
V-TLRs and the vertebrate TLR11 family is largely due to two highly divergent insect
V-TLRs. Insect V-TLRs are incorporated into the tree in Figure 1 in order to provide
more information for the evolution of V-TLRs. The clustering of 33 amphioxus
V-TLRs and the vertebrate TLR11 family is actually quite stable, because it is
supported by both sequence similarity and phylogenetic analysis. Firstly, most
amphioxus V-TLRs share 40-50% aa identity with members of the vertebrate TLR11
family, much higher than with members of other vertebrate TLR families;, among
them, Bf68489, Bf68417, Bf142546, even share over 50% aa identity with their
vertebrate TLR11 counterparts. Secondly, both phylogenetic analyses by using
minimum-evolution method in Figure 1 and Figure S3 support the relation and
excluding insect V-TLRs from the analysis (Figure 3) greatly improves the bootstrap
value. Finaly, phylogenetic analyses by wusing other methods, like
maximum-likelihood and neighbor-joining, recover the same topol ogy.

The selection force on the amphioxus TLRs of the SC75 lineage

Of 19 members of the SC75 lineage, 12 are not affected by unsequenced
regions (gaps), frame shift or stop codon mutations. Hence, 12 full length sequences
are used to generate an alignment (Figure S4) and put to selection tests. As stated in
the paper, pairwise amino acid identities of the TIR domains of SC75 TLRs are more
than 85%, whereas the LRR regions are full of munations, small indels and large
portions of deletions and insertions (Figure $4). So intuitively these LRR regions may
be controlled by diversifying selection. We then used the MEGA 3 software for simple
selection tests, the overall mean dy/ds values of 12 sequences are given as followed:



LRR region:

complete deletion, Nei-Gojobori method (p-distance) dy/ds =0.317/0.461=0.688
complete deletion, Nei-Gojobori method (Jukes-Cantor) dy/ds =0.419/0.816=0.513
TIR domain:

complete deletion, Nei-Gojobori(p-distance) dy/ds =0.044/0.160=0.275

complete deletion, Nei-Gojobori method (Jukes-Cantor) dy/ds =0.046/0.195=0.236
LRRNT+LRRCT+TM+TIR:

complete deletion, Nei-Gojobori (p-distance) dy/ds =0.098/0.258=0.380

complete deletion, Nei-Gojobori method (Jukes-Cantor) dy/ds =0.106/0.334=0.317

Apparently the dy, ds and dy/ds are all elevated in the LRR regions. Since the
Nei-Gojobori method (p-distance) for selection test is rather conservative, dy/ds =
0.688 may suggest a fraction of tested sites under positive selection. Prompted by this,
we performed an advanced selection test with the PAML v3.15 package (Yang et al.
2005). The results are as followed:

Codon frequency is estimated using F1X4 option.

All indels are deleted.

One-ratio model MO, Site-specific model M1a (nearly neutral) and M2a (positive selection)
are used to fit the data:

MO model: InL=-19792.89, np=1.

M1lamodel: InL=-19031.81, np=2.

M2a model: InL=-18820.50, np=4.

The likelihood ratio tests (LRT) indicate that Ml1la model fits the data
significantly better than MO (Probability<0.001), and M2a model fits the data
significantly better than M1a models (Probability<0.001), hence suggesting a fraction
of tested sites under positive selection. The Bayes empirical Bayes (BEB) approach
(Yang et al. 2005) is then used to identify all possible sites under positive selection. It
shows that all sites under positive selection are located in the LRR regions
(unpublished data). Therefore, our conclusion is that the LRR regions of SC75 lineage
should be dominated by diversifying selection.



2 NLR system

The overall architecture of amphioxus NLR proteins

As showed in Figure S6, most of the non-typical NLR structures apparently
derive from the typical NLR structure (DEATH/CARD-NACHT-LRR). As for DLRs
(DFD-LRR), because their DFD and LRR amino acid sequences are similar to other
NLRs, DLRs are considered as NLRs with amissing NACHT domain.

There are 14 gene models (DFD-NACHT) containing no LRR regions. As a
routine (see Materials and Methods), when we found a NLR model without LRR
regions, we anayzed 20kb C-terminal sequences beyond the gene model, with this
procedure we have recovered missing LRR regions for many NLR models (see
Supplementary B, the model structure is marked by “unpredictedLRR”). However, we
failed to detect LRRs for these 14 models. It has been reported that the LRR regions
of NLRs of thevertebrate and the sea urchin are encoded in complex exon structures,
but it should not prevent us from finding the LRR fragments, unless the intron
between LRR and NACHT domains spans more than 20kb (this scenario is very
unlikely). Considering the architecture occurs 14 times (including aleles), it is
unlikely to be a computational artifact. On the other hand, we have cloned an NLR
cDNA with complete 3'-UTR and the DEATH-NACHT structure from B. japonicum
(Accession: EU183367).

There are 30 NLR models (NACHT-LRR) containing no clear DFD N-terminal
domains (we have analyzed 20kb N/C-termina sequences flanking the models),
which is either complete lost or is substituted by other domains. There are severa
ESTs (with 5 UTR) supporting this type of models, including Bf69066 (supported by
BW703366), Bf78182 (supported by BW864684), Bf120153 (supported by
BW772443, BW785759), Bf121225 (supported by BW953997, BW895355,
BW745463, BW913163), Bf89727 (supported by BW802409).

There are 21 NLR models containing neither detectable LRRs nor clear DFD
domains. Despite not EST evidence for them, considering that both DFD and LRR
can be absent, the presence of NACHT-only genes is reasonable. Nevertheless, we
have analyzed 20kb N/C-terminal sequences flanking the models before we reach this
conclusion.

There are 22 DLR models (DFD-LRR). According to our analysis, no detectable
NACHT domain resides in the sequence between the DFD and the LRRs. There are
two ESTs (Accession: BW794253, BW781035) supporting the existence of a
CARD-LRR (Bf132252).



The N-terninal domain structure of amphioxus NLR proteins

Amphioxus NLRs with DEATH or CARD domains are present in abundance and
usually have simple and compact exon structures. They also have EST evidence:
EU183367, EU183368 for DEATH-NACHT combination and EU183366 for
CARD-NACHT combination (regardless of the presence or absence of LRR).

The DED-NACHT-(LRR) structure occurs 5 times (models), but has no EST
support so far. However, DEDs are adjacent to NACHTS, in other words, only short
interval sequences (<1-1.5kb, intron included) between them and there is no
interruption by other domains.

When we extended the analysis to the 20kb region before the N-terminal of the
NLR models, it yielded be some new domain combination, like CARD-CARD,
DED-DEATH and DFD-nonDFD. However, because of the complex genomic
structure and the obvious lack of EST evidence, these novel domain combinations are
questionable. Among them, the model Bf97362 may be an exception, for its
DEATH-DEATH structure is adjacent to the NACHT domain.

As for the DLR models, there are various domain combinations can be found
(Supplementary B), but due to the complex exon structures, these combinations
require experimental evidence. However, the DFD domain right next to the NACHT
domain appears valid because of close adjacency. So far, only model Bf132252
(CARD-LRR) has EST supports (Accession: BW794253, BW781035).

3 LRRIG genes

A typica LRR and IGcam containing protein (LRRIG) consists of N-terminal
LRRs, one or more central | Gcam domains, a transmembrane region and a C-terminal
cytoplasmic tail. There are approximately 30 vertebrate LRRIG proteins, including
AMIGO, NGL-1, LINGO-1, NLRRs and LRRIGs. These genes are usually expressed
on neura cells, mediating cell adhesion, signal transduction and therefore associate
with the development, maintenance and regeneration of the nervous system (Chen et
al. 2006b). In D. melanogaster there are several LRRIG proteins, of which Kekl1 can
inhibit EGFR activity during eye development (Layalle et a. 2004). The sea urchin
genome encodes approximately 20 LRRIG gene models according to our analysis.
The amphioxus draft genome contains 240 LRRIG gene models (approximate 190
genes, Table 2), most of which contain single IGcam. There are at least 113 of them
containing predicted transmembrane regions. There are 194 LRRIG models encoding
LRR and IGcam in the same exon, which is believed to favor rapid duplication and
diversification (Figure S7). The number of LRR motifs of vertebrate LRRIGS varies
from 5 to 15 in different families. Analysis of 131 well-predicted amphioxus LRRIG
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models indicates that more than half of them have 8-11 LRR motifs, and this number
ranges from 4 to 24 if all 131 LRRIGs are taken in account.

The immunological relevance of LRRIGs is not determined, but both LRR
motifs and the IGcam domain are competent immune recognition modules. As for the
IGcam, insect hemolins can mediate anti-bacterial response by recognizing
lipopolysaccharide through their IGcam domains (Schmidt et al. 1993). Insect and
vertebrate DSCAM proteins carry multiple IGcam domains and function in neuron
development. Recent studies further showed that insect DSCAM can produce 38016
aternative-spliced mRNA isoforms and the derived proteins can act as diversified
receptors in both immunity and neuron development (Watson et al. 2005; Chen et al.
2006a). Reminiscent of the saying “the brain and the immune system speak a common
biochemical language” (Boulanger and Shatz 2004; Du Pasquier 2005), it is of
interest to quest whether the expanded amphioxus LRRIG repertoire has arole in host
defense.

4 Other LRR-containing models

Leucine-rich repeat (LRR) modules of 20-29 amino acids are present in more
than 8,000 proteins from viruses, bacteria, archaea and eukaryotes. LRR-containing
proteins participate in nearly all known biological functions (Pancer and Cooper
2006), and alarge part of them are involved in host defense of both animals and plants.
In plants there are about 1% of the genes of whole genome encode disease resistance
factors that contain LRRs (Nurnberger et al. 2004). Besides, LRR modules are the
building blocks of the rearranged antigen receptors of lamprey and hagfish (Pancer
and Cooper 2006). The above-mentioned TLR and NLR are major defense molecules
in echinoderms, protochordates and jawless vertebrates. Amphioxus LRRIG proteins
also have undergone large expansion but their role in immunity is not clear. In this
section, we focused on the other LRR-containing proteins encoded in the amphioxus
genome, many of which may have arole in immunity.

LRR-TM-DEATH proteins

We found 3 LRR-TM-DEATH models with signa peptides, transmembrane
regions and cytoplasmic DEATH domains, hence consisting of.a novel class of
membrane receptors not reported previously. These gene models encode LRR and
DEATH in a single exon or in adjacent exons (intron <1kb), hence this domain
structure is unlikely caused by faulty prediction. These genes may function as
receptors which probably activate downstream signal pathway through interaction
with cytoplasmic DEATH adaptors.



Models containing both LRR and other domains

In addition to TLRs, NLRs, LRRIGs, LRR-TM-DEATHS, there are 185 gene
models containing both LRR and other domains in the genome. The most abundant
domain structures include 24 Fbox-LRR models (which has 20 homologs in humans),
37 human MFHASI-like gene models (LRR-GTPase or LRR-GTPase-DEATH), 13
LRR-DEATH-Kinase or LRR-DEATH models (which have no homolog in
vertebrates and no EST evidence but are encoded in clear exon structures). Notably,
the human MFHASL is a candidate oncogene found in a B-cell lymphoma cell line
(Tagawa et al. 2004). In the rest 111 models, various domains can be found, some of
which have homologs in vertebrates, and most of which lack EST evidence.

Models containing only LRRs

We have identified a total of 1589 LRR-containing models in the amphioxus
genome. In addition to TLRs NLRs, LRRIGs and models clearly containing LRR and
other domains, there are 1178 models left, which contain only LRR and hence termed
LRR-only models (Table 3). BLASTP analysis indicates that 230 LRR-only models
are apparent fragments of other LRR-containing genes hence there are still 948
LRR-only models left. Since LRR genes are often incorrectly captured by gene
prediction programs, an LRR gene may be broken down into 2 or more models. To
address this issue, we examined the genomic distance between LRR-only models and
all LRR-containing models (including LRR-only). We found that numbers of adjacent
models (LRR-only vs. LRR-only or other LRR-containing) with distance smaller than
3kb, 5kb and 10 kb are 59, 89 and 123, respectively, which means that most of 948
LRR-only models should represent distinct genes because few amphioxus introns can
span over 10 kb.

However, due to the nature of the current draft genome, not all LRR-only models
really represent genes containing only LRR. We have found that some LRR-only
models likely contain other domain that either fails to be captured or istoo diverged to
be detected by our methods (data not shown). Nevertheless, 948 distinct
L RR-containing models comprises a huge LRR arsenal.

Our genomic survey indicates that 78 scaffolds account for more than half of 948
LRR-only models. There are 11 scaffolds containing 10-17 LRR-only models. Many
LRR-only models are encoded in single exon (some might be artifacts because LRR
domain in separate exons are difficult to be correctly captured by gene prediction
programs). There are 266 LRR-only models containing transmembrane regions, but
this number is greatly underestimated because a large fraction of LRR-only models
are not correctly predicted and we did not perform manual corrections because of the



large number and the inability of current gene prediction programs.

We also calculated the number of LRR repeats of 161 well-predicted LRR-only
models carrying clear LRRNT and LRRCT capping motifs. The average LRR
numbers for each LRR-only gene is approximately 10, and is ranged from 3 to 30.
More than half the models (83 models) contain 5-12 LRR motifs. Since LRR domains
are highly variable in primary sequence and length, conventional methods of
phylogenetic analysis (i.e. molecular tree reconstruction) can not be applied. So we
used the BLASTCLUST program, which can cluster sequences into different groups
according to their sequence similarity. With 50% sequence coverage and 65% aa
identity as thresholds, BLASTCLUST identifies 28 groups that contain at least 5
LRR-only models, of which two largest groups include 56 and 37 members (the third
largest had only 12 members). If the identity threshold is relaxed to 60%, member
numbers of two groups are expanded to 112 and 49, respectively. These facts suggests
that the amphioxus LRR-only repertoire may aso have undergone the same
evolutionary history as amphioxus TLRs and NLRs, namely, lineage-specific
duplications and diversification.

5 Domain combinationsin amphioxus C-type lectins

Twelve non-CTLD domains present in both vertebrate and amphioxus CTL
proteins are COL, CUB, EGF, CCP, LDLa, VWF, PKD (polycystic kiney disease),
WSC (yeast cell wall integrity and stress response component protein), Ig-like, REJ
(Receptor for Egg Jelly domain), Recin, fibronetin. Domains present in vertebrates
but absent in amphioxus CTL models are PSI (domain found in Plexins, Semaphorins
and Integrins), apha-helix, SCP (sterol carrier protein), Calx-beta, Link domain and
CSPG repeat (chondroitin sulfate proteoglycan core protein). More information about
these domains and corresponding CTL architectures were detailed previously
(Zelensky and Gready 2005).

More than 200 amphioxus CTL models have complex exon structures. Many
domains found in these amphioxus CTL models are absent in vertebrate CTLs. The
popular ones include LY (Low-density lipoprotein-receptor YWTD domain), TSP1
(Thrombospondin,type 1), GPS (G-protein-coupled receptor proteolytic site domain),
MAM (Domain in meprin, A5, receptor protein tyrosine phosphatase mu), NIDO
(Nidogen,extracellular region), Kringle domain, FA58C (Coagulation factor 5/8 type,
C-terminal), etc. However, only FAS58C (BW697762), NIDO (BW795887,
BW870375, BW839447, BW815452 and BW882828) and LY (Yu and Xu.
unpublished data) have EST evidence so far.
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Table S1. Cross-species comparison of the immune-related protein domains.

fly urchin  amphioxus zebrafish human notes
domains involved in pathogen recognition and clearance
AAA(NACHT) 299 476 509 296 339 ologomerizaton of NLR
SR 14 1966 479 183 129 SRCR receptors
CLTLD 39 346 1316 388 175 C-typelectins
LDLa 329 743 1389 276 272 low density lipoprotein receptors class A
IG 1027 1080 1675 1679 2290 immunoglobulin
LRR 565 1150 5485 1687 1128 presentin NLR, TLR, LRRIG
CCP 84 741 1675 307 592 complement system, complement control proteins
TSP1 7 328 796 232 382 complement system, Thrombospondin type 1 repeats
VWA 10 93 350 144 226 complement system,von Willebrand factor type A
FBG 18 100 399 43 37 complement system, fibrinogen-C-terminal domain
Clqg 0 8 79 56 43 complement system
CuB 88 608 669 154 222 complement system, Domainsin C1r, Cls
MACPF 2 28 50 20 17 membrane-attack complex/perforin
CASc 8 48 65 25 31 caspases
domains of cytokines and their receptors
TNFR 1 8 66 25 81 tumor necrosis factor receptor
TNF 2 2 31 13 23 tumor necrosis factor
EGF 344 1907 1164 391 437 Epidermal growth factor domain
domains mediating protein interactions
CARD 0 24 158 15 24 death fold domain
DEATH 11 91 491 29 45 death fold domain
DED 0 14 132 12 22 death fold domain
TIR 13 337 163 18 28 Toll/IL-1 receptor domain
TRAF 6 20 38 30 18 tumor necrosis factor receptor assciated factors
ANK 672 12635 818 1346 1461 ankyrin repeats
TPR 216 520 4074 421 466 Tetratricopeptide repeats
WD40 1072 2063 1895 1537 1540 WDA40 repeats, present in Apaf-1
SAM 63 109 111 119 126 Sterile alpha motif, present in adaptor SARM1
SPRY 33 29 69 248 146 domains in butyrophilin/marenostrin/pyrin
domainsinvolved in signal transduction
SH2 7 106 49 164 161 Src homology 2 domains
SH3 208 236 299 371 426 Src homology 3 domains
PDZ 204 226 210 397 445
PH 152 210 185 346 421 pleckstrin, inositol phosphate binding
PI3Kc 14 17 22 20 24 Phosphoinositide 3-kinase
S TKc 413 509 511 883 598 Serine/Threonine protein kinases
TyrKc 7 148 426 153 156 Tyrosine kinase
RAS 18 32 32 25 13 small GTPase
RAS-RAB 3 66 51 32 24 small GTPase
RAS-RAN 73 117 113 125 117 small GTPase
RAS-RHO 8 27 13 32 14 small GTPase
PTPC 47 83 80 82 114 Protein tyrosine phosphatase, catalytic domain
PKC-C1 53 47 60 107 120 protein kinase C, C1 domain
PKC-C2 119 195 215 281 296 protein kinase C, C2 domain
NOTES:

1. Protein sets of human, zebrafish, and D. melanogaster are downloaded from NCBI FTP site. Notably, the
NCBI predicted protein sets are not non-redundant and no procedure is performed to exclude those redundant
protein entries. Proteins of sea urchin is also used the NCBI predicted protein set, where many domains are
represented by two alleles. Proteins of amphioxus is used the JGI predicted protein set, where 75% loci are
represented by two haplotypes. Taken together, this comparison analysis is APPROXIMATE because the
estimation of the domain number isAPPROXIMATE.

2. HMMER2.0 and SMART domain set is used to perform this domain estimation at the e-value cutoff < 0.01.
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Table S2. Information of 927 amphioxus CTL gene models containing single CTLD domain.

without .
Large Family Gene small sugar Collectin major domain
family model S structure Notes, EST evidence and expression
D @ numbers CTL bln.dmg %) content
motifs (2)
A A01 189 Yes 2models singleCTLD
A02 19 Yes single CTLD
A03 7 Yes Yes COL-CTLD
A04 4 Yes single CTLD
A05 5 Yes Yes COL-CTLD
A06 14 Yes Yes COL-CTLD
A07 6 Yes Yes single CTLD
A08 13 Yes single CTLD, CCP-CTLD
A09 5 Yes single CTLD
A10 6 Yes single CTLD
All 8 Yes single CTLD
Al12 4 Yes Yes single CTLD
A13 6 Yes Yes COL-CTLD
Al4 4 Yes Yes COL-CTLD
Al15 4 Yes Yes COL-CTLD
BO1 15 Yes single CTLD EST, secreted?, gut/skin, EU183372
B02 9 Yes single CTLD
BO3 8 Yes single CTLD
B0O4 9 Yes single CTLD
B Co1 36 Yes single CTLD
C C02 108 Yes single CTLD
D01 6 Yes NIDO-CTLD EST, secreted
D02 4 Yes uncertain
D03 7 Yes EGF,VWF,CCP
D04 8 Yes single CTLD
D05 8 Yes single CTLD
D06 6 uncertain
D07 4 uncertain contain FA58C, etc
D08 7 uncertain
D09 4 Yes uncertain
D10 4 Yes single CTLD
single CTLD, aloose subfamily with diverged members;
b Dbu 100 ves 1moddls  cor oTip EST, secreted, gut/skin, EU183370
D15 4 Yes CUB-CTLD
EO1 6 Yes single CTLD
E02 11 Yes single CTLD EST, Secreted?, gut/skin, EU183371
EO3 18 Yes 2models  singleCTLD
FO1 4 Yes single CTLD
FO2 10 Yes single CTLD
G01 12 uncertain contain EGF
G02 12 Yes uncertain contain EGF
G03 4 Yes Yes EGF-CTLD
Go4 9 uncertain Contain VWF, CCP, etc
E G05 40 Yes Yes EGF-CTLD-EGF  EST, secreted, gut, EU183373~EU183375
others 160 n/a n/a 21 models n/a
total 927 692 91 66

(1) Only 43 subfamilies that have at least 4 members are shown.

(2) There are 483 out of 927 CTLD containing EPN and QPD. There are more “unusua” patterns could be
viewed as derivatives of EPN or QPD, like QPS, EPS, EPK, EPE, QPN, EPD, etc. All these add up to no less
than 650 CTLDs, but the number depends on how we define what are EPD/QPD-derived patterns. However,
members of 10 subfamilies completely lack these motifs (marked by “Yes’).

(3) These gene models contain similar structure (COL-CTLD) to vertebrate collectins, but they are not necessary
to have similar primary sequences to collectins. There are 6 subfamilies of COL-CTLD structure. There are
also some COL-CTLDs dispersed in other subfamilies, despite no EST evidence for them at present.
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Table S3. Grouping of the amphioxus DFD gene models based on their architectures.

DFD gene groups Domain architecture number of gene models

ANK-CARD 13
ANK-DD 9
Apafl-like CARD/DD/DED+NBARC+WD40/TPR 20
CARD-3DD 5
CARD-DD-NRF 2
CARD-FB3 CARD+FB3+weakNACHT

CARD-TIR 18
CARD-X2 X2 isan unknown domain 2
CARD-ZnF1 11
CASP2-like CARD+CASP 11
CASP7L 4
CASP8 DED+DED+CASP 2
CRADD-like CARD+DD 4
DAPK STK+DD 2
DD-CARD 8
DD-DD 2
DD-FB3 3
DD-ZnF 2
DED-CARD 4
DEDD 2
DED-GBP 4
DED-SPRY 1
DED-TPR 4
DLR CARD/DD/DED+LRR 22
DR TNFR+DD 19
FADD-like DED+DD 7
FB3-CARD 3

DED+DEATH+OTUB+X3+Gly
GLY TPR+X3+weak TIR+DEATH+Gly 38
CARD+RAS+DEATH+Gly

IGFN-TM-CARD 11
IRAK-like DEATH+STK 5
LRR-DD-STK 17
LRR-DD-TIR 2
LRR-RAS-CARD 1
LRR-RAS-DD 9
LRR-TM-DD 3
multiDD 5
multiDED 1
MyD88-like DD+TIR 12
NHL-DD 8
NHL-DED 55
NHL-DED-DD 12
NLR/NLAA CARD/DD/DED/TIR+NACHT+LRR 50
PEA15 DED 2
PIDD-like LRR+DEATH 4
RIG-I-like DED/TIR/DD/CARD+helicase 6
RIPK-like STK+DEATH 6
SPRY-DD 2
THOC1 Containing DEATH 2
tripleCARD 2
UNC5-like lgcam+TSP1+TM+ZU5+DEATH 15
X1-CARD X1 is an unknown domain 13
Orphan death-fold domains similar to genes listed above 52
Unknown orphan death-fold domains 111
Total gene models 632

Abbreviations not explained elsewhere. ANK=ankyrin, DD=DEATH; NRF=Nose Resistant to Fluoxetine-4; FB3=fribronetin type 3;
ZnF=zinc finger; CASP=caspase; STK=serine/threonine kinase; GBP= Guanylate-binding protein; SPRY =domain first identified in
splA and ryanodine receptor; Gly= Glycosyl transferase; IGFN=Ig and fibronectin; RAS=small G protein ras, TM=transmembrane;
NHL=first identified in NCL-1, HT2A, LIN-41; NLAA=NLR without DFD or LRR domain; ZU5=Domain present in ZO-1 and
Unc5-like netrin receptors.
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Figure S1. Two structural typesof TLR.
Vertebrate-like TLR (V-TLR)
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Schematic of two TLR structures: 1) vertebrate-like TLR (without extra LRRCT-LRRNT motif), 2)
protostome-like TLR (with extra LRRCT-LRRNT motif) and short TLR derived from
protostome-like TLR (having a cytoplasmic TIR highly similar to that of protostome-like TLR).
Figuresis produced by SMART tools (http://smart.embl-heidel berg.deY).

13



Figure S2. Phylogenetic analysis of amphioxus P-TLRsand all vertebrate TLR families.
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A minimum-evolution tree of amphioxus P-TLRs and all six vertebrate TLR families based on TIR
domain. The amphioxus P-TLRs are red colored. This tree shows that amphioxus P-TLRs form a
stable clade with vertebrate TLR4 family even in the presence of those highly divergent vertebrate
TLR lineages (TLR7, TLR3 and TLR5). This pattern may be caused by long-branch attraction.
However, vertebrate TLR3/5/7 lineages are much “longer” branches, so, this pattern may also
reflect that vertebrate TLR4 lineage derived from an ancient P-TLR lineage by the losing of typical
P-TLR structure (an extra LRRCT-LRRNT pair, see Figure S1).

Nevertheless, FEW sites in the alignment that can clearly separated amphioxus P-TLRs and

vertebrate TLR4 lineage from other TLR sequences (data not shown). Hence, this branching pattern
remains dubious.
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Figure S3. Phylogenetic analysis of amphioxus TLRsand vertebrate TL R1/4/11 lineages.
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This is a minimum-evolution tree of amphioxus TLRs and vertebrate TLR1, TLR11 and TLR4
lineages. This tree is different from the tree in Figure 1 in that it excludes insect V-TLRs and other
divergent amphioxus and vertebrate TLR sequences because they are too divergent to affect the
significance of the tree. As the tree shows, it gains more statistic significance after deleting those
divergent sequences.
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Figure $4. Alignment of 12 V-TLRs of the amphioxus SC75 lineage.
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This alignment is produced with 12 correctly predicted, high-quality TLR protein sequences of the
amphioxus SC75 lineage. It shows that the SC75 TLR lineage is highly conserved in TIR domain
and highly diversified in LRR region. The LRR region is located between LRRNT and LRRCT.
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Figure S5. Phylogenetic analysis of the NACHT domain of all amphioxustypical NLRs.
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A minimum-evolution tree of the NACHT domain of 96 NACHT-containing NLR gene models.
Those NLRs without NACHT domains (termed DLR) are not included in this tree. Abbreviations:
NLR=NLR containing NACHT and LRR; AAA~AAD=NLR containing no detectable LRR
regions.
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Figure S6. Phylogenetic analysis of the first |Gcam domain of amphioxus L RRIG models.
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A minimum-evolution tree of the first IGcam domain of 229 amphioxus LRRIG gene models.
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Figure S7. Phylogenetic analysis of the C1g domain of all amphioxus C1qg-like models.
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Figure S8. Phylogenetic analysis of the TNF domain of all amphioxus TNF models.
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A minimum-evolution tree of all amphioxus TNF gene models. This tree is different from the tree
in Figure 5 in that it contains only amphioxus TNF models and hence it clearly indicates the

evolution of TNF family within the amphioxus lineage. The tree also indicates TNF models with
N-terminal collagen (COL) domains.
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Figure S9. Expression profiles of fiveamphioxus TRAILS.

PCR product >100bp Bj-TRAIL?2 (ortholog of Bf68700)

primers duplex < 100bp ——

Bj-TRAIL3 (ortholog of Bf100450)
Bj-TRAILI (ortholog of Bf201657)

Bj-TRAIL4 (ortholog of Bf68699)

Bj-TRAILS (ortholog of Bf201658)

This is the semi-quantitative RT-PCR result of five amphiTRAILs (from B. japonicum), which

indicates that different amphiTRAILSs have different expression pattern. The result is confirmed by

real-time RT-PCR (unpublished data). Bj means B. japonicum.

The corresponding experimental procedure (in brief):

1) 300ul stock reaction solution contains dNTP, buffer, Hot start LA Tag (TAKARA corporation)
and 20ul 1ST strand cDNA from a certain tissue (synthesized by Invitrogen supperscriptlil).

2) Separate stock reaction solution into five tubes, 48 ul per tube. Each tube adds in 2 ul specific
primer pair designed for aamphiTRAIL.

3) Repeat 1) and 2) for the other four amphiTRAILS.

4) 30~35 cycles PCR amplification, then electrophoresis with 5 ul PCR products.

5) Repeat three times.
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Figure S10. Schematic illustration of the domain similarity between different DFD
architectures.
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This analysis supports that dynamic domain reshuffling plays a role in shaping the huge DFD gene
repertoire of amphioxus.
This analysis compares the protein sequence similarity between cognate DFD domains from
different DFD gene groups, where each group contains gene models with similar domain
architectures (listed in Table S3).
Lines of different color represent different domain comparison: cyan lines for DEATH versus
DEATH comparison, blue lines for CARD versus CARD, green lines for DED versus DED, red
lines for TIR versus TIR. Thick, thin and dash lines represent identity >60%, >50%, >40%,
respectively. Identity <40% is not shown by lines.
Nodes with the same color (except grey) represent sub-groups belonging to the same DFD gene
group. For instance, CARD-TIR group (yellow colored) has two subgroups, CARD-TIR1 and
CARD-TIR2. Although they have similar domain structure, CARDs from these two subgroups have
little sequence identity (<40%), suggesting that CARDs of two groups may have different origins.
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Figure S11. Phylogenetic analysis of all TRAF domainsin amphioxus.
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Figure S12. Phylogenetic analysis of the caspase domain of all amphioxus caspase models.
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This is a minimum-evolution tree including all amphioxus caspases and major vertebrate caspase
lineage. Amphioxus caspases are indicated by red color. Domain combination of each caspase gene
is also provided. If not specified, it means the gene contains no other domains or its structure is

uncertain.
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Figure S13. Phylogenetic analysis of all amphioxus | RF domains.

76 [~ 2SIEIT T4
bbHRFa
100 ML z1zg08ls50469.1 }

1524a7l454.121
- — 22oz1glzan.66.1 i| bEHRER
100 172729544204
99 hurnanlRFE gilS45a700lrefNP DOG132.11..
hurnanlRFS il 428324 96lre NP 0010921...
16 a5 - hurnanlRF3 gil4S04 725l MNP OS2 11..
a7 hurnanlRF 7 gil4 75861 0lrefINF 001563.21..

100 ——— 251372551161

L zoeziolasised
E= 66 [ humanlRFZ gil45047230re NP 002120.1..

100 | hurnanlRF1 gil4504721l-eflMP 00212911,

g hurnanlRF4 gilasoszavlrefNP 00245111,
i,—: hurnaniRFE qil450456 7lreflNP 002154.11..

hurnanlRFS qgil2Szez407lrefINP 00E07S.3...

a9

29 ———————— 232921|296.73.1

zod4zzl11.14841

1as1zhs01H
o0 _| bhbtRFe
gq 1253000770055
&IEE39000139

| | 100 2e70: 77000057
L egze0hso00140

EN

a7 gavovh 7roo00ss
o | 2979l sz000047
1on ——————— 97easl310000013
—
0.1

This is a minimum-evolution tree of the IRF domains of all amphioxus IRF models and human IRF
genes. The human sequences are indicated and the others are amphioxus |RF sequences. We cloned
three IRF full-length cDNAs from Chinese amphioxus (B. japonicum) and they are designated as
bbtlRFa, bbtIRFb and bbtIRFc (as indicated on the tree). Expression analysis indicates that they are

mainly expressed in the gut, the gill and the hepatytic diverticulum (data not shown).
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