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Figure 1:lllustration of the reconstruction algorithm. A The mapping of a hypothetical COG
species distribution onto the leaves of a species tree. Our method adds an empty ancestor before
the root of the tree to include the cost of gene creation and duplication when a family is present in
LUCA (Last Universal Common AncestorB First step of the reconstruction. Starting from the
leaves and going to the root, all possible paths are calcul&@e8econd and final step. Starting

from the root, the path that minimize the cost function is selected. The process is repeated for all
COGs.

S1. Reconstruction of ancestral gene contentThe reconstruction of ancestral gene content
is performed per COG with maximum parsimony, i.e. finding the evolutionary scenario which
renders the least number of (weighted) events. This is done by minimizing the cost fuBetion
0+ Ad +vyg, whered is the number of deletionsl number of duplications) duplication costg
number of gains anggain cost (see (Mirkiet al., 2003) for related methods). This is implemented
as an extension of PAUP’s generalized parsimony algorithm (Swofford, 1998; Mirkiy 2003).

Fig S1 provides an illustration of the steps in the algorithm.

The gain-loss reconstruction is that described in (Migdml., 2003). This is simply the same
method as our full reconstruction but using 0 or 1 in the leaves to specify presence or absence of
the family, instead of using the actual family sizes.

S2. Evaluation of reconstruction results.
Based on our simulation of genome evolution, we can evaluate how the reconstruction algorithm
approximates the real (simulated) values of the ancestors in the tree. For this we calculate the

average percentage error, based on 100 simulations and 100 corresponding reconstructions with



Gain cost| Size of LUCA | Percentage of events with HGT
3 1900 5%

5 2400 2%

10 2934 0.0009%

Table 1: Comparison of different gain costs. The percentage of events is calculated relative

to HGT, duplications and deletions. We see also that even with gain cost 3 the size of LUCA
is close to that of an average bacterium species. This suggests that our reconstructions already
underestimate the amount of transfer which may have happened at early stages of cellular life.
cost of duplication 2 and cost of innovation 3. The calculated percentage error is only 1.3%, which
we think is a reasonable error margin.

We have used different costs of innovation and duplication to validate our results. The costs
used in the reconstruction follow the logic that deletions could be more favored than duplications,
and that gene creation is less likely than duplication. However, we must warn the reader that there
is no known estimate of the real values. Probably the most controversial parameter is the gain
penalty, since it represents the likelihood of horizontal gene transfer (HGT) events. In the next
section we study the effects of changing this important parameter.

S3. Different gain costs and function prediction.

We have checked the effect of the different gain costs on the function prediction. While the patrtial
correlation score seems to be insensitive to differences in gain penalty, reconstructions with a
higher gain cost give a somewhat better prediction performance when using the sign score (Fig
S2).

What happens when the cost of a gain is high enough is that creation events gets pushed down to
the last common ancestor, adding losses in the intermediate branches to fill the 'gaps’ caused by
this shift. Changes in gain costs affect only the reconstruction of gain and loss events. Accordingly,
a similar increment in performance is observed in the sign score for the gain-loss reconstruction.

The better function prediction achieved with higher gain costs should not be confused as a



Supplementary Figure S2.

accuracy plot ROC curve

5000
0.15
1

10|00 20|00
Y
]
— 7
0 I].0
8
A

L) —
£
o L)
S \ é
" =
...
)
te
.’;'; S
o
&1 %
[
%
gain cost = 10 oo ©
gain cost =5 o
gain cost=3 o o
=3 °
Sh \
L)
\.
- ///
2R 1 =
T T T T T T T T T T T
0.2 0.4 0.6 0.8 1.0 0.000  0.001 0.002 0.003 0.004 0.005
TP/(FP+TP) 1-TN/(FP+TN)

Figure 2:Comparison of different gain costs.The picture shows the prediction performance for
different gain penalties with the sign score.



symptom of higher reconstruction accuracy. As seen in Table 1, reconstructions with higher cost
increase the size of LUCA and decrease the number of horizontal transfer events (HGT) to ex-
tremely unrealistic levels. In fact, the reconstruction with gain cost 10 wipes out almost all HGT
event from the reconstruction. Therefore, accepting such a reconstruction as more accurate equals
saying that HGT does not exist.

In fact there is a simpler explanation. The better prediction performance reflects that there is a
better way to score the presence-absence information using a tree. What the sign score with high
gain penalty does is similar to measuring the similarity in COG species distribution by finding
maximum subtrees where one or both COGs are absent. One can emulate the scores obtained with
high gain penalty by finding these maximum subtrees and performing the following calculation

(see Fig S3 for an illustration.):

score = - number of maxsubtrees with only 1 COG
foreach: maximum empty subtree
if: sibling subtree contains only 1 COG
score= score— 1
else:
score= score+ 1

endfor

This is actually a way of measuring the structural similarity of the COG species distribution. It
identifies those parts of the tree that reveal coordinated absence and those revealing independent
absence. Notice that this is independent of the ancestor reconstruction. It is a different way to
interpret the information contained on the COG-species distribution and the phylogenetic tree.
There are least two reasons why this is a better way to measure the similarity of presence-absence

patterns of characters related by a tree: a) two COGs occurring only in the same two distant lin-
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Figure 3: Gain-loss scoring scheme based on maximum subtrees.both COGs are created
in the same branch, the sign score with high gain penalty equals 1 + the score produced by this
algorithm. In this formalism a leave is also a maximum subtree.



eages may get a low sign score if their gains are not exactly coupled. The score based on maximum
subtrees, however, will get higher as the distance between these two lineages increases, because
intermediate clades will get positively scored for their lack of both families. b) The maximum
subtree based score will be proportional to the depth of the clade where the gain occurred, which
means that gains happening in peripheral clades, such as Enterobacteria, are considered more sig-
nificant than those occurring in, for example, the ancestor of all bacteria.

An example that illustrates this is given by COGs COG2037 and COG3252. Both COGs are
exclusively archaeal, except for an HGTRhodopirellula baltica With gain cost 3, the sign score
on the gain-loss reconstruction gives a score of 2 for these COGs. The maximum tree variant gives
instead a score of 9, highlighting the remarkable cooccurrence of these two families in two distant
and deep lineages.

A number of possible variants to the above-mentioned scheme are possible. However, a broader
analysis of alternative scoring techniques is out of the scope of this article and is left for future
research.

S4. Distinguishing gains from duplications.

The sign score mentioned in the main text does not distinguish between gain-gain coocurrence and
gain-duplication coocurrence, since both represent an increment in family size. We have imple-
mented a variant in which only gain-gain and duplication-duplication events contribute positively

to the score, finding that the results are exactly the same to our sign score as presented in the main
text. This is also the case even when gain-duplication occurrences decrease the score.

S5. Degree distribution of coevolution networks.

Supplementary Fig S4 shows the degree distributions for coevolution networks built with partial
correlation and with sign score for different thresholds.

S6. Best fit to degree distribution.

We have fitted the cumulative degree distribution of the coevolution network to an exponential,
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Figure 4:Degree distribution of coevolution network. The left panel shows the degree distribu-
tion for different thresholds for the sign score based coevolution network. The right panel shows
this for the partial correlation based coevolution networks.
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Figure 5:Best fits to coevolution network degree distribution.The left panel shows the cumula-

tive degree distribution (pcor threshold = 0.6) and the best fit for different distributions. We see that
a power law with exponential cutoff describes the data better than the other alternatives. The right
panel shows the cumulative degree distribution in comparison with 100 distributions obtained by
random sampling from the best fit power law with exponential cutoff. The smoothed 2D histogram
shows the distribution of the synthetic data.



power law and power law with exponential cutoff distribution. The power law fit was done as
described in Clausedt al. (2007); the other two where done by least square minimization using
R’s function ‘nls’. As seen in Fig S5 the power law with exponential cutoff describes the data
better than the rest. This is confirmed by generating 100 distributions sampled from the derivative
of the fitted cumulative. We use the method described in Clais#t(2007) to generate random
numbers from a power law with cutoff.

S7. Alternative benchmarks.

In our main text we use the KO based KEGG network to benchmark function prediction. KO is an
scheme of ortholog identification based on computational analysis and manual curation which can
be mapped to COGs. The mapping is available at the KEGG database website. The KEGG based
COG network is constructed by establishing a link between two COGs when their corresponding
KOs patrticipate in the same pathway. The resulting network contains 1137 COGs and 20943 links.
72% of these COGs are mapped by a 1-1 mapping to a KO, and 16% by a 2-1 or 1-2 mapping.
Alternatively, one can build the COG network directly from the cooccurrence of COG members
in KEGG pathways, which results in larger coverage of COGs by the addition of less 'significant’
links (1933 COGs and 78874 links). Supplementary Fig 5 show that the results based on this latter
benchmark are consistent with those based on the KO KEGG network.

We see that for low percentage of true positives the sign score losses its high performance, while
the partial correlation keeps a high accuracy. This could be caused by the inclusion of extra COGs
where a filtering of large genome expansions and contractions is needed.

S8. Histories with large expansion and contraction events.

Supplementary Fig. 6 shows in detail the histories of COGs involved in the cluster of ABC trans-

porters.
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Figure 6: Prediction performance with alternative KEGG benchmark. Accuracy-Coverage
plot and ROC curve based on gene based KEGG network.
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Figure 7:Evolutionary history of ABC transport families. The heat map shows the duplications

and deletions per branch on the whole tree, normalized per row. We see that some groups of fam-
ilies have similar histories of events and that the high correlation is not caused by one concerted
gain but by many gene duplication and deletion events. Groups without label contain uncharac-
terized COGs. COG3839 is shared by sugars and peptides clusters. The colors show the intensity
of duplications (red) and deletions (green). In the heatmap, inner branches are placed in between
their daughter subtrees.
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S9. Supplementary data.
Reconstructed histories, species list and coevolution maps are available online at

http://bioinformatics.bio.uu.nl/otto/coevolution
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