Supplemental Material

Best reciprocal FASTA

Each CDS (a) from the genome (A) was searched, with FASTA (Pearson 1990),
against the CDSs of the other genome (B). If the top hit covered at least 80% of the
length of both sequences with at least 30% identity, a reciprocal FASTA search of the
top hit sequence (b) was launched against the CDSs of the first genome. If the
reciprocal top hit is the same as the original query CDS then (a) and (b) are
considered orthologous genes of (A) and (B). In a second step, in order to validate the
results, we performed a BLASTN (Altschul et al. 1997) comparison between the
strains, visualized using ACT (Carver et al. 2005) to curate ambiguous cases e.g.
gene remnants (pseudogenes), IS elements, phage-related CDSs and to check for a
syntenic relationship among the putative orthologs.

Alignments

Whole genome sequence alignments were made using the MAUVE algorithm
(Darling et al. 2004). The complete chromosome sequence of the eleven Salmonella
strains and the four outgroups were aligned. For the Staphylococcus dataset, only the
thirteen Staphylococcus chromosomes were aligned, excluding the four outgroup
sequences due to the overall low sequence similarity to the Staphylococcus genomes.
For the Streptococcus dataset the overall low sequence similarity between the
different strains did not allow the construction of whole genome sequence alignments.
Moreover, for each genus, aminoacid sequence alignments of the core gene (i.e.
orthologous genes shared by all the strains of a given genus and the corresponding
outgroups) products were also built using CLUSTALW (Thompson et al. 1994); the
alignments were manually curated and gapped columns were removed.

Structural Annotation

Integrase(-like) protein domains

Each query genome (six frame translation) was searched against fifteen integrase(-
like) Pfam (Sonnhammer et al. 1998) Hidden Markov Models (HMMs), using the
HMMER software (http://hmmer.janelia.org/). Throughout this analysis, fifteen
protein domains (Supplemental Table 2) that are frequently found in proteins involved
in the mobilization of DNA are referred to as integrase-like domains, or simply
“integrase”.

Phage-related protein domains

In order to predict CDSs of putative phage origin, we used the hmmpfam search
option of the HMMER package and each query genome (six frame translation) was
searched against a manually constructed database of 191 phage-related Pfam HMMs
(Supplemental Table 2).

Non-coding RNA
Each query genome was searched against the non-coding RNA families of Rfam
(Griffiths-Jones et al. 2005). This methodology was followed in order that putative



associations of GIs with other non-coding RNA families (apart from the tRNA and
tmRNA genes) could be captured.

Compositional analysis

For all the 668 regions identified in this analysis, their Interpolated Variable Order
Motif (IVOM) score (Vernikos and Parkhill 2006) was calculated, using the
alien_hunter algorithm (http://www.sanger.ac.uk/Software/analysis/alien_hunter/).
The IVOM frequency is a weighted sum of compositional biases derived from
different order k-mers (0 < k < 8) that captures both low and high order compositional
deviation from the backbone composition. The IVOM score is expressed as the
relative entropy between the query and the genome-backbone (variable order)
compositional distribution, i.e. the higher the IVOM score is, the stronger the
compositional deviation.

Repeat analysis

Repeat analysis at the boundaries of each of the 668 regions was performed, using the
REPuter software (Kurtz and Schleiermacher 1999). The REPuter parameters used are
as follows: Type of repeats (= Forward, Complemented), minimum size of repeats (=
18bp), number (hamming distance) of mismatches for degenerate repeats (= 3).

Other

All 668 regions were further annotated in terms of size (bp), gene density (number of
genes per kb) and their insertion point; in the latter case two distinct states were
(binary) evaluated: insertion point within a CDS locus (disrupting the corresponding
CDS) or insertion within an intergenic part of the chromosome.

Machine Learning

Given a set of N examples (training set) along with their corresponding class (i.e. GI,

N
non-GI) we are trying to build a model of how the input vectors {Xi},2) affect the
N
corresponding classification {eihil , with the aim of making predictions of the class

K
for unseen input data, based on the model parameters (weights’) {wi} j=1 calculated

during the training; K denotes the number of basis functions (in our case structural
features e.g. repeats, RNA, IVOM, etc) used to describe the data. In order to build
structural GI models, we use Generalized Linear Models (GLMs), a form of model
suitable for classification and regression analysis. A GI structural model (S;) is the
weighted sum of K basis functions of the form:

K
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J=1

! Throughout this manuscript, we will refer to the RVM model parameters w as “weights” because they
quantify the relative contribution of each feature to the model, i.e. the higher the feature weight the
higher its contribution to the model. Note that for the model parameters w there is a no actual upper or
lower bound.



For two-class classification (in our case class 1 corresponds to GI and class 0 to non-
GI) the aim is to predict the posterior probability that a given input x is a true GI,
given the model. Because we are interested in a binary classification task, we apply to
the output of model S; the logistic function:

o(S) =# @)

The logistic function (2) normalizes (0 < o(S;) < 1) the output of model §; and can be
considered as the probability that a given structure is a true GI, given the model. In
function (1), U is a constant that controls the output of this function, in such a way

that the final score (assuming the logistic function) can take any value between 0 and
1.

The feature weight w is indicative of the actual feature contribution to the given
model, (i.e. the higher the weight the higher the feature contribution), however it does
not take into account the dispersion of the actual values of a given feature in the
training set. A more reliable estimate of the actual feature importance can be
calculated through the following function:

Ri=w;-SD; (3)

where R; is the “importance” of feature j with weight w; and standard deviation SD;
(the standard deviation of the actual values of a given basis function in the training
set). Under this framework, a basis function with significant SD; will be more
important (higher R) than a basis function with comparable weight but with lower
SD;.

Details about the training and technical aspects of the RVM are discussed in detail in
(Tipping 2001). Briefly, the probability that a given dataset is correctly classified
given the model is given by the following function:

P(c|x,w)= Ha(s,-)@' (1-o(S)™ (4)

Note that for binary classification € € {091} . During the training process, the RVM
is estimating appropriate values of the model weights in an iterative fashion, with the
aim of maximizing the likelihood function (4). If a given basis function is informative
when classifying the training dataset, then by setting its weight to a non-zero value,
will increase the number of correctly classified data, which in turn will increase the
likelihood function (4), and therefore the probability of the model given the training
set. On the other hand, if a basis function in not informative (or has redundant
information) for the classification task, there is no actual weight value that would
increase the likelihood; however, setting the corresponding weight value to zero,
maximizes the posterior probability of the given model. From this point onwards, the
given basis function is treated as non informative and is removed (w; = 0) from the
model. At the end of the training process only few informative basis functions
(‘relevance’ vectors) with non-zero weights will contribute to the final model. Under



this increased sparsity framework, RVM models avoid efficiently overfitting to the
training dataset, selecting only a small number of ‘relevance’ vectors, with good
generalization properties on unseen datasets.

ROC curve

In order to evaluate the performance of the RVM classifier under different GI models,
we implemented a receiver operating -characteristic (ROC) curve analysis
(Supplemental Fig. S4). The ROC curve illustrates graphically the performance of a
classifier, under different cut-off values showing the trade-off between sensitivity and
specificity. More specifically, in a ROC curve the True Positive rate (Sensitivity) is
plotted against the False Positive rate (1-Specificity) for increasing values of the score
cut-off of a binary classifier. The area under the (ROC) curve (AUC) is a measure of
accuracy: The closer the curve follows the left-hand and the top border of the ROC
space, the more accurate the classification model. A perfect classifier (AUC=1) would
predict correctly all the True Positives (Sensitivity = 1) giving no False Positives
(Specificity = 1). A classifier that makes a random guess would result in an AUC of
0.5.

Cross-Validation

Cross-validation is a method for estimating generalization error based on resampling.
It provides an indication of how well the classifier performs in making new
predictions for previously unseen data. Some of the data is removed prior to the
training; after the training, the data that was removed is used to test the performance
of the learned model on unseen data. In this analysis we pursued a Sfold cross
validation approach dividing each dataset into five subsets; the results of this Sfold
cross validation are shown in Supplemental Figure S4 and summarized in Fig. 3.
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