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Supplemental Material 

Best reciprocal FASTA 

Each CDS (a) from the genome (A) was searched, with FASTA (Pearson 1990), 

against the CDSs of the other genome (B). If the top hit covered at least 80% of the 

length of both sequences with at least 30% identity, a reciprocal FASTA search of the 

top hit sequence (b) was launched against the CDSs of the first genome. If the 

reciprocal top hit is the same as the original query CDS then (a) and (b) are 

considered orthologous genes of (A) and (B). In a second step, in order to validate the 

results, we performed a BLASTN (Altschul et al. 1997) comparison between the 

strains, visualized using  ACT (Carver et al. 2005) to curate ambiguous cases e.g. 

gene remnants (pseudogenes), IS elements, phage-related CDSs and to check for a 

syntenic relationship among the putative orthologs. 

Alignments 

Whole genome sequence alignments were made using the MAUVE algorithm 

(Darling et al. 2004). The complete chromosome sequence of the eleven Salmonella 

strains and the four outgroups were aligned. For the Staphylococcus dataset, only the 

thirteen Staphylococcus chromosomes were aligned, excluding the four outgroup 

sequences due to the overall low sequence similarity to the Staphylococcus genomes. 

For the Streptococcus dataset the overall low sequence similarity between the 

different strains did not allow the construction of whole genome sequence alignments. 

Moreover, for each genus, aminoacid sequence alignments of the core gene (i.e. 

orthologous genes shared by all the strains of a given genus and the corresponding 

outgroups) products were also built using CLUSTALW (Thompson et al. 1994); the 

alignments were manually curated and gapped columns were removed. 

Structural Annotation 

Integrase(-like) protein domains 

Each query genome (six frame translation) was searched against fifteen integrase(-

like) Pfam (Sonnhammer et al. 1998) Hidden Markov Models (HMMs), using the 

HMMER software (http://hmmer.janelia.org/). Throughout this analysis, fifteen 

protein domains (Supplemental Table 2) that are frequently found in proteins involved 

in the mobilization of DNA are referred to as integrase-like domains, or simply 

“integrase”. 

 

Phage-related protein domains 

In order to predict CDSs of putative phage origin, we used the hmmpfam search 

option of the HMMER package and each query genome (six frame translation) was 

searched against a manually constructed database of 191 phage-related Pfam HMMs 

(Supplemental Table 2). 

 

Non-coding RNA 

Each query genome was searched against the non-coding RNA families of Rfam 

(Griffiths-Jones et al. 2005). This methodology was followed in order that putative 
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associations of GIs with other non-coding RNA families (apart from the tRNA and 

tmRNA genes) could be captured. 

 

Compositional analysis 

For all the 668 regions identified in this analysis, their Interpolated Variable Order 

Motif (IVOM) score (Vernikos and Parkhill 2006) was calculated, using the 

alien_hunter algorithm (http://www.sanger.ac.uk/Software/analysis/alien_hunter/). 

The IVOM frequency is a weighted sum of compositional biases derived from 

different order k-mers (0 ≤ k ≤ 8) that captures both low and high order compositional 

deviation from the backbone composition. The IVOM score is expressed as the 

relative entropy between the query and the genome-backbone (variable order) 

compositional distribution, i.e. the higher the IVOM score is, the stronger the 

compositional deviation. 

 

Repeat analysis 

Repeat analysis at the boundaries of each of the 668 regions was performed, using the 

REPuter software (Kurtz and Schleiermacher 1999). The REPuter parameters used are 

as follows: Type of repeats (= Forward, Complemented), minimum size of repeats (= 

18bp), number (hamming distance) of mismatches for degenerate repeats (= 3). 

 

Other 

All 668 regions were further annotated in terms of size (bp), gene density (number of 

genes per kb) and their insertion point; in the latter case two distinct states were 

(binary) evaluated: insertion point within a CDS locus (disrupting the corresponding 

CDS) or insertion within an intergenic part of the chromosome. 

Machine Learning 

Given a set of N examples (training set) along with their corresponding class (i.e. GI, 

non-GI) we are trying to build a model of how the input vectors 1{x }Ni i=  affect the 

corresponding classification 1{ }Ni ic = , with the aim of making predictions of the class 

for unseen input data, based on the model parameters (weights
1
) 1{ }Kj jw =  calculated 

during the training; K denotes the number of basis functions (in our case structural 

features e.g. repeats, RNA, IVOM, etc) used to describe the data. In order to build 

structural GI models, we use Generalized Linear Models (GLMs), a form of model 

suitable for classification and regression analysis. A GI structural model (Si) is the 

weighted sum of K basis functions of the form:  
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 Throughout this manuscript, we will refer to the RVM model parameters w as “weights” because they 

quantify the relative contribution of each feature to the model, i.e. the higher the feature weight the 

higher its contribution to the model. Note that for the model parameters w there is a no actual upper or 

lower bound. 
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For two-class classification (in our case class 1 corresponds to GI and class 0 to non-

GI) the aim is to predict the posterior probability that a given input x is a true GI, 

given the model. Because we are interested in a binary classification task, we apply to 

the output of model Si the logistic function:  
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The logistic function (2) normalizes (0 ≤ σ(Si) ≤ 1) the output of model Si and can be 

considered as the probability that a given structure is a true GI, given the model. In 

function (1), U is a constant that controls the output of this function, in such a way 

that the final score (assuming the logistic function) can take any value between 0 and 

1. 

 

The feature weight w is indicative of the actual feature contribution to the given 

model, (i.e. the higher the weight the higher the feature contribution), however it does 

not take into account the dispersion of the actual values of a given feature in the 

training set. A more reliable estimate of the actual feature importance can be 

calculated through the following function: 

 

   (3)j j jR w SD= ⋅  

 

where Rj is the “importance” of feature j with weight wj and standard deviation SDj 

(the standard deviation of the actual values of a given basis function in the training 

set). Under this framework, a basis function with significant SDj will be more 

important (higher R) than a basis function with comparable weight but with lower 

SDj. 

 

Details about the training and technical aspects of the RVM are discussed in detail in 

(Tipping 2001). Briefly, the probability that a given dataset is correctly classified 

given the model is given by the following function: 
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Note that for binary classification {0,1}c∈ . During the training process, the RVM 

is estimating appropriate values of the model weights in an iterative fashion, with the 

aim of maximizing the likelihood function (4). If a given basis function is informative 

when classifying the training dataset, then by setting its weight to a non-zero value, 

will increase the number of correctly classified data, which in turn will increase the 

likelihood function (4), and therefore the probability of the model given the training 

set. On the other hand, if a basis function in not informative (or has redundant 

information) for the classification task, there is no actual weight value that would 

increase the likelihood; however, setting the corresponding weight value to zero, 

maximizes the posterior probability of the given model. From this point onwards, the 

given basis function is treated as non informative and is removed (wj = 0) from the 

model. At the end of the training process only few informative basis functions 

(‘relevance’ vectors) with non-zero weights will contribute to the final model. Under 
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this increased sparsity framework, RVM models avoid efficiently overfitting to the 

training dataset, selecting only a small number of ‘relevance’ vectors, with good 

generalization properties on unseen datasets. 

ROC curve 

In order to evaluate the performance of the RVM classifier under different GI models, 

we implemented a receiver operating characteristic (ROC) curve analysis 

(Supplemental Fig. S4). The ROC curve illustrates graphically the performance of a 

classifier, under different cut-off values showing the trade-off between sensitivity and 

specificity. More specifically, in a ROC curve the True Positive rate (Sensitivity) is 

plotted against the False Positive rate (1-Specificity) for increasing values of the score 

cut-off of a binary classifier. The area under the (ROC) curve (AUC) is a measure of 

accuracy: The closer the curve follows the left-hand and the top border of the ROC 

space, the more accurate the classification model. A perfect classifier (AUC=1) would 

predict correctly all the True Positives (Sensitivity = 1) giving no False Positives 

(Specificity = 1). A classifier that makes a random guess would result in an AUC of 

0.5. 

Cross-Validation 

Cross-validation is a method for estimating generalization error based on resampling. 

It provides an indication of how well the classifier performs in making new 

predictions for previously unseen data. Some of the data is removed prior to the 

training; after the training, the data that was removed is used to test the performance 

of the learned model on unseen data. In this analysis we pursued a 5fold cross 

validation approach dividing each dataset into five subsets; the results of this 5fold 

cross validation are shown in Supplemental Figure S4 and summarized in Fig. 3. 
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