
Contents
1 454
2 amplicon
3 reads
4 qc 2

4 5 4

##
10/24/2008
RW Citek, C. Tatham, R.K. Maloney, A. Garrido, and J.A. Jeddeloh
Copyright (C) 2005 Orion Genomics
All rights reserved.
Redistribution and use in source and binary forms are freely
permitted provided that the above copyright notice and
attribution and date of work and this paragraph are duplicated
in all such forms and that neither this software nor software
based in whole or in part on this software is sold for profit.
THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.
##

The purpose of this code is to generate a data table containing the cytosine methylation
occupancy information from bisulfite treated patient samples. The approach should
work for the analysis of pooled PCR products derrvied from ultra deep sequenncing or
from shot gun library approaches derrived from complexity reduced samples.

The idea was to generate a large table that would eassily support querries allowing robust
statistical analysis of the methylation information per molecule as well as per CpG position.
The approach was utilized successfully to analyze PCR products amplified using site specific
primers that contained not only the 454 A and B primer information, but also patient specific
 nucleotide tags. A full decription of the work is in press in the peer reviewed journal
Genome Research.

'''Massively Parallel Bisulphite Pyrosequencing Reveals the Molecular Complexity of
Breast Cancer Associated Cytosine Methylation Patterns Obtained from Tissue and Serum DNA'''

Yulia Korshunova1, Rebecca K. Maloney1, Nathan Lakey1, Robert W. Citek1, Blaire Bacher1,
Arief Budiman1, Jared M. Ordway1, W. Richard McCombie2, Jorge Leon1,
 Jeffrey A. Jeddeloh1+* and John D. McPherson3

1 Orion Genomics, LLC, 4041 Forest Park Ave, St. Louis. MO 63108;
2 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11723;
3 Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
* Current Address:
Roche NimbleGen, 500 S. Rosa, Madison, WI 53719
jjeddeloh[AT]nimblegen.com

The general idea is to create a working enviornment, generate the BLAST libraries necessary to use MethylMapper (http://www.sourceforge.net) for the analysis of the
amplicons. The source files necessary are kept in a directory called base.files and linked into where they are necessary for use. Since each sequencing round resulted in
modifications to the code, we chose to put each analysis from a sequencing run into a direcotry called round.00X where X is the interation of the analysis.

export TMPDIR=/extra/tmp # needed for extra temp space for sort
runnum= #put what you want to name your experiment here

The working environment initially should look like this:

${runnum}
|-- base.files
`-- round.001

Commands:

cd ${runnum}
mkdir base.files
mkdir round.001
tree ${runnum}

The base.files folder holds the amplicon information and tar file. The round.001 (or round.002, round.003, etc.) folder is the working folder. For the base.files, they are
usually created by hand or downloaded, e.g. from Wash-U. They can also be copied from previous runs, e.g run.001:

cp -r ../run.001/base.files/* base.files
ls -la base.files

Move to the working directory:1 .

cd round.001

And run this script to initialize the environment:1 .

set -x
clear

rm -r *
mkdir blastdb
ln -s ../base.files/* .
ls -la --color

For previouslly designed Bis{TY} amplicons, copy from your favorite folder:

cp -r ../../run.002/amp ../

amplicon
set -x

genomic feature loci and TSS loci
at Orion we had these gennomic segments in a database of ~1kb elements
we like to maipulate sequence information by converting between tab delimited sequence files (.seq) and
files in the fasta format (.fasta)
this section will grab the elements from a databse, quick check them and get them ready for digital
bisulfite conversion

{ arraydb.sql.pl -f feature.loci "
 select FEATURENAME,SEQUENCE1060_CHUNK
 from tblfeature_map b
 where ASSEMBLY_VERSION=2 and b.FEATURENAME in "

 grep -i ghsr \
/nfs/orion2/projects/MethylScope/Bisulfite/Analysis/breast.c3.2006-05-05/transcription.start.sites/tss.seq
} > loci.seq
verify
cut -c1-100 loci.seq
wc -l loci.seq

tab2fasta.pl loci.seq > loci.fasta
verify
grep -c '^>' loci.fasta

#See MethylMapper code

bisulfite T convert for analysis
bisulfite_convert.pl loci.fasta > loci.bisT.fasta
fasta2tab.pl loci.bisT.fasta > loci.bisT.seq
length loci.bisT.fasta > loci.bisT.length
verify
wc -l loci.bisT.*

bisulfite Y convert as a conversion control
bisulfite_convert.pl -y loci.fasta > loci.bisY.fasta
fasta2tab.pl loci.bisY.fasta > loci.bisY.seq
length loci.bisY.fasta > loci.bisY.length
verify
wc -l loci.bisY.*

create blastdb of loci.bisT
formatdb -i loci.bisT.fasta -o T -p F -n blastdb/loci.bisT
verify
fastacmd -I -d blastdb/loci.bisT

create blastdb of loci.bisY
formatdb -i loci.bisY.fasta -o T -p F -n blastdb/loci.bisY
verify
fastacmd -I -d blastdb/loci.bisY

#We will want to find the amplicon primer sequence in each read so we need to
#prepare the converted primers. We will also use the position of the primers
#to generate the amplicons using a script that grabs sequence betweenn two
#coordinates, we call this script nab. The amplicons are used as a BLAST assembly
#scaffold (i.e. template with no-mistach).

bisT primer sequence
perl -F'\t' -lane 'print join("_",@F[0..2]) ."\t$F[4]"' loci+primer.raw |
 tail +2 > primers.bisT.seq
tab2fasta.pl primers.bisT.seq > primers.bisT.fasta
length primers.bisT.fasta > primers.bisT.length
verify
wc -l primers.bisT.length
head primers.bisT.length

create blastdb of bisT primers
formatdb -i primers.bisT.fasta -o T -p F -n blastdb/primers.bisT
verify
fastacmd -I -d blastdb/primers.bisT

find location of bisT primers in bisT loci
#May have to adjust the E-value ... its the threshold filter

blastall -p blastn -a 4 -i primers.bisT.fasta -d blastdb/loci.bisT -F F -W 15 -m 8 -e 1e-4 \
 > primers.bisT.blast.m8
blast.w.length.pl primers.bisT.blast.m8 primers.bisT.length loci.bisT.length \
 > primers.bisT.blast.m8.w.length
sed -e 's/revcomp/rc/' primers.bisT.blast.m8.w.length

verify only 2 primers per amplicon
cut -d"_" -f1,2 primers.bisT.blast.m8.w.length |
 sort |
 uniq -c

create amplicons coordinates within each 1Kb segment
paste \
 <(cut -f 1,2,9,10 primers.bisT.blast.m8.w.length | grep F$'\t') \
 <(cut -f 1,2,9,10 primers.bisT.blast.m8.w.length | grep R$'\t') |
 cut -f 1,2,3,7 \
 > amplicon.bisT.coords
verify
cat amplicon.bisT.coords
wc -l amplicon.bisT.coords

create primer, amplicon relation
perl -F'\t' -lane 'print "$F[0]\t$F[1]_$F[2]..$F[3]"' amplicon.bisT.coords \
 > primer.amplicon
verify
head primer.amplicon
wc -l primer.amplicon

create genomic coordinates

< amplicon.bisT.coords sed -e 's/_2*F//' -e 's/_bs//' \

 > amplicon.coords
verify
head amplicon.coords
wc -l amplicon.coords

Bisulfite conversion generates two non-complimentary DNA strands so one needs to work with both
since the coordinates are always relative to the 5'end of the strand
#rev is a script that reverses the order of a text string we use tr to replace the complementary base

create revcomp of genomic loci
cat loci.seq |
 while IFS=$'\t' read def seq ; do
 echo -ne "${def}_revcomp\t"
 echo "$seq" | rev | tr [gcatGCAT] [cgtaCGTA]
done > loci.rc.seq
verify
head loci.rc.seq

create genomic amplicons
cat amplicon.coords |
 while IFS=$'\t' read primer locus start end ; do
 grep -h $locus loci.seq loci.rc.seq |
 tab2fasta.pl - |
 nab - $start $end
done |
 fasta2tab.pl - |
 tr -s ' ' '_' > amplicon.seq
verify
cat amplicon.seq
wc -l amplicon.seq

create bisY amplicons
cat amplicon.coords |
 while IFS=$'\t' read primer locus start end ; do
 grep $locus loci.bisY.seq |
 tab2fasta.pl - |
 nab - $start $end
done |
 fasta2tab.pl -|
 tr -s ' ' '_' > amplicon.bisY.seq
verify
cat amplicon.bisY.seq
wc -l amplicon.bisY.seq

create bisT amplicons
cat amplicon.coords |
 while IFS=$'\t' read primer locus start end ; do
 grep $locus loci.bisT.seq |
 tab2fasta.pl - |
 nab - $start $end
done |
 fasta2tab.pl -|
 tr -s ' ' '_' > amplicon.bisT.seq
echo -e 'fail\t' >>amplicon.bisT.seq
verify
cat amplicon.bisT.seq
wc -l amplicon.bisT.seq

verify bisT amplicons
using amplicon as query, should see 2 hits per amplicon, unless there's overlap of the PCR products

tab2fasta.pl amplicon.bisT.seq |
 blastall -p blastn -a 4 -i stdin -d blastdb/primers.bisT -F F -m 8 -W 7 -e 1e-4 |
 cut -f1 |
 sort |
 uniq -c

modify bisY amplicons
cat amplicon.bisY.seq |
 while IFS=$'\t' read def seq ; do
 echo -ne "$def\t"
 echo "ccccr${seq}rrcccccccccc" | tr '[NY]' '[CN]'
done > amplicon.bisY.mod.seq

verify
head amplicon.bisY.mod.seq

create blastdb with modded bisY amplicons
tab2fasta.pl amplicon.bisY.mod.seq |
 formatdb -i stdin -o T -p F -n blastdb/ampY

blast modded bisY amplicons to modded amplicons db
... checking for NGs at 60x positions since these may result in bad calls b/c of m1 report line wrap
issues

tab2fasta.pl amplicon.bisY.mod.seq |
 blastall -p blastn -a 4 -i stdin -d blastdb/ampY -F F -m 1 -W 7 -e 1e-2 |
 grep -i ^query |
 more "+/ n|cccr|rccc"

adjust amplicon.bisY.mod.seq by hand,
1) adding Cs to the front to adjust for ' n'
2) adding Cs to the front to clamp front
3) adding Cs to the back to clamp back
... and repeat
vi amplicon.bisY.mod.seq

modify bisT amplicons
cat amplicon.bisT.seq |
 while IFS=$'\t' read def seq ; do
 echo -ne "$def\t"
 echo "ccccr${seq}rrcccccccccc"
done > amplicon.bisT.mod.seq
verify
head amplicon.bisT.mod.seq
wc -l amplicon.bisT.mod.seq

create blastdb with modded bisT amplicons
tab2fasta.pl amplicon.bisT.mod.seq |
 formatdb -i stdin -o T -p F -n blastdb/ampT

blast modded bisT amplicons to modded amplicons db
... checking for NGs at 60x positions
tab2fasta.pl amplicon.bisT.mod.seq |
 blastall -p blastn -a 4 -i stdin -d blastdb/ampT -F F -m 1 -W 7 -e 1e-2 |
 grep -i ^query |
 more "+/ n|cccr|rccc"

adjust amplicon.bisT.mod.seq by hand, adding/removing Cs from the front
... and repeat
vi amplicon.bisT.mod.seq

create amplicon, locus table -- weak, need better way
paste amplicon.bisT.seq amplicon.bisT.seq |
 cut -f 1,3 |
 sed -e 's/_[^_]*_[^_]*$//' -e 's/_revcomp$//' \
 > amplicon-bisT.locus
cat amplicon-bisT.locus
wc -l amplicon-bisT.locus

create tag, tag5 table
list of tags for each patient that links each 5bp tag to a single patient

cut -f4 sample.id.t-n.tag |
 tail +2 |
 sort > tags
cat tags
wc -l tags

##May not need this...
extend any 4-base tags to 5-base tag, i.e. CGAC{A,C,G,T}
{ grep -Ev '.{5}' tags |
 while read seq ; do
 for i in A C G T N ; do
 echo ${seq}$i
 done
 done
 grep -E '.{5}' tags
} | sort > tag5
cat tag5
wc -l tag5

create tag, tag5 mapping - for those tags that are fewer than 5 bp
manually trim from 5bp to 4bp
diff -y tags tag5 |
 tr -d '[|<>\]' |
 tr -s '[\t]' '\t' \
 > tag.tag5
vi tag.tag5

To link in previously designed amplicon information:

ln -snf ../amp/* .

reads
NAME YOUR READS FOR THE EXPERIMENT BY CHANGING THIS VAR

read_name=[YOUR NAMING CONVENTION]

set -x

When working with 454 data the reads are contained within .fna files
#one can get the reads by (try to do this so that the file is in base.files)
cat *.fna > reads.fasta

#We got our data from the WU Genome Center through collaboration as a tar file
#here we are getting the data

get all.fasta from Wash-U
ls -la ~/mnt/vader/shared/Info_Systems/temp/454/orion

gunzip
#tar -Otzvf file name will help you find the fasta (BIGG)
tar -Oxzvf orion_101306.tar.gz All* \
 > reads.fasta
head reads.fasta
grep -c '^>' reads.fasta

#We now want to make the 454 read name more amenable to blast table parsing (i.e. small)
#We will create a relationship table that links our new name (Variable above) with the 454 name

make tab delimited sequence file (ideal for joining)
fasta2tab.pl reads.fasta \
 > reads.seq
head reads.seq
wc -l reads.seq

create seqid, 454id, sequence table
seq[#] is for run of experiment, change to fit exact expt
cat -n reads.seq |
 perl -F'\t' -lane 'printf("seq'$read_name'-%07d\t%s\t%s\n", @F)' \
 > seqid.454id.seq
head seqid.454id.seq
wc -l seqid.454id.seq

##First level of Q/C is to find the patient tags...keep reads with tags
create seqid, tag table, look at frequencies of tags and total # of tags found
perl -F'\t' -lane 'print join("\t", $F[0],substr($F[2],0,5))' seqid.454id.seq \

 > seqid.tag
head seqid.tag
wc -l seqid.tag
cut -f2 seqid.tag | sort|uniq -c|sort -rn > seqid.tag.histo_raw
wc -l seqid.tag.histo_raw

create patient info with tag5
join -t$'\t' -1 4 \
 <(sort -t$'\t' -k 4,4 sample.id.t-n.tag) \
 <(sort tag.tag5) |
 sort -k 2,2n \
 > tag.sample.id.t-n.tag5
cat tag.sample.id.t-n.tag5
wc -l tag.sample.id.t-n.tag5

create patient info with read
join -t$'\t' -1 5 -2 2 \
 <(sort -k 5,5 tag.sample.id.t-n.tag5) \
 <(sort -k 2,2 seqid.tag) \
 > tag5.tag.sample.id.t-n.seqid
head tag5.tag.sample.id.t-n.seqid
wc -l tag5.tag.sample.id.t-n.seqid

create seqid, amplicon table this will take the reads with tags and find the amplicons in them

create blastdb of forward primers
grep F primers.bisT.seq |
 tab2fasta.pl - |
 formatdb -i stdin -o T -p F -n blastdb/f-primers
fastacmd -I -d blastdb/f-primers

pull out tag+primer

< seqid.454id.seq \
 perl -F'\t' -lane 'print join("\t", $F[0],substr($F[2],0,34))' \
 > seqid.tag+primer
head seqid.tag+primer
wc -l seqid.tag+primer seqid.454id.seq

determine blast params by blasting tag+primer against forward primers -v 5 -b 5
tab2fasta.pl seqid.tag+primer |
 blastall -a 4 -p blastn -i stdin -d blastdb/f-primers -F F -W 7 -v 1 -b 1 -m 8 \
 > primer.bin.blast

bin best e-value less than 0.001 and alignment start <=8
< primer.bin.blast \
 perl -F'\t' -lane 'print unless $prev eq $F[0] or $F[10] > 0.001 or $F[6] > 8 ; $prev=$F[0] ' \
 > primer.bin.top-hit
 wc -l primer.bin.top-hit

bin the results by primer
i.e. histogram of reads per primer
cut -f2 primer.bin.top-hit |
 sort |
 uniq -c |
 sed -e 's/_2*F$//' \
 > primer.bin.top-hit.histo
cat primer.bin.top-hit.histo
wc -l primer.bin.top-hit.histo

create passed seqid, amplicon table
join -t$'\t' -1 2 \
 <(cut -f1,2 primer.bin.top-hit | sort -k 2,2) \
 <(sort primer.amplicon) |
 cut -f2,3 |
 sort > seqid.amplicon
head seqid.amplicon
wc -l seqid.amplicon

create list of seqids that have sample tags
#
join -t$'\t' -2 2 \
 <(sort tag5) \
 <(sort -t$'\t' -k 2,2 seqid.tag) |
 perl -F'\t' -lane 'print join("\t", @F[1,0])' |
 sort \
 > seqid.tag-passed

should keep tags to do group stats... want to make sure that all patients are represented randomly
join -t$'\t' -2 2 \
 <(sort tag5) \
 <(sort -t$'\t' -k 2,2 seqid.tag) |
 cut -f2 |
 sort > seqid-passedTags
head seqid-passedTags
wc -l seqid-passedTags

create seqid, sequence table for seqids with passedTags
join -t$'\t' seqid-passedTags seqid.454id.seq |
 cut -f1,3 > seqid-passedTags.seq
head seqid-passedTags.seq
wc -l seqid-passedTags.seq

#Ok..we have the reads with tags and the reads with tags and aplicon sequence
#now we want to identify the reads with poor Bisulifte conversion
#these have C's remaining outside of CG motifs (works only in mammals...NOT PLANTS See MethylMapper).
#Sometimes the BisY MethylMapper control does not work because there is too much mismatch
#in templates to get a decent blast hit back to the BisY mutagenized template. This happens
#in stretches of high CG, high C or CW homopolymeric/simple sequence. In cases like this another control is better.
#Instead do the BisT conversion to the template and blast the reads to it, then
#look for unconverted Cs using a new script blast.m1.bisQC-norm.pl This new script is now available
#at http://sourceforge.net/projects/methylmapper/

BisY filter -for the work in the manuscript we used BisY control
create blastdb with modded bisY amplicons and seqid,sequence table (ampY-read db)
cat amplicon.bisY.mod.seq seqid-passedTags.seq |
 tab2fasta.pl - |
 formatdb -i stdin -o T -p F -n blastdb/ampY-read
fastacmd -I -d blastdb/ampY-read

blast modded bisY amplicons to ampY-read db
-b and -v options are necessary with blastall since the default is to report only 250 lines, make numbers big to get all the data.
tab2fasta.pl amplicon.bisY.mod.seq \
 > amplicon.bisY.mod.seq.fasta
blastall -a 4 -p blastn -i amplicon.bisY.mod.seq.fasta -d blastdb/ampY-read -F F -q -2 -r 3 -W 7 -m 1 -b 1000000 -v 1000000 -e 1e-5 |
 cleanBlast.pl - \

> blast.bisY.report.m1
head blast.bisY.report.m1
wc -l blast.bisY.report.m1

normalize m1 bisY blast
blast.m1.normalize.pl blast.bisY.report.m1 2> /dev/null |
 perl -F'\t' -lane 'print unless $F[0] eq $F[1]' \
 > blast.bisY.report.m1.norm
head blast.bisY.report.m1.norm
wc -l blast.bisY.report.m1.norm
cut -f2 blast.bisY.report.m1.norm | sort | uniq | wc -l

filter out reads that don't have a read-amplicon pair
join -t$'\t' \
 <(< seqid.amplicon tr '\t' '-' | sort) \
 <(< blast.bisY.report.m1.norm \
 perl -F'\t' -lane 'print join("\t", $F[1] ."-".$F[0], @F)' | sort) \
> blast.bisY.report.m1.norm.read-amp
wc -l blast.bisY.report.m1.norm.read-amp
head blast.bisY.report.m1.norm.read-amp
cut -f3 blast.bisY.report.m1.norm.read-amp | sort | uniq | wc -l

reads with poor bis-conversion
< blast.bisY.report.m1.norm.read-amp \
 perl -F'\t' -lane 'print $F[2] if $F[5] eq "c"' |
 sort |
 uniq -c \
 > seqid.poor.bisY
head seqid.poor.bisY
wc -l seqid.poor.bisY
tr -s ' ' '\t' < seqid.poor.bisY | cut -f2 | sort -n | uniq -c > seqid.poor.bisY.hist

Should get association of tag with poor bisY because each sample is independently mutagenized
this means that one wants to look at rate of read loss in each patient so that exclusion
of bad samples can be considered objectively

join -t$'\t' \
 <(perl -F'\t' -lane 'print join("\t",@F[5,0])' tag5.tag.sample.id.t-n.seqid |sort) \
 <(perl -lane 'print join("\t",@F[1,0])' seqid.poor.bisY |sort)\
 > seqid.tag5.poor.bisY
wc -l seqid.tag5.poor.bisY
cut -f2 seqid.tag5.poor.bisY|sort|uniq -c >seqid.tag5.poor.bisY.histo
wc -l seqid.tag5.poor.bisY.histo

create list of seqids sans poor bis-conversions
join -v 1 \
 <(cut -f1 seqid-passedTags.seq | sort) \
 <(awk '{print $2}' seqid.poor.bisY | sort) \
 > seqid.sans-bisY
head seqid.sans-bisY
wc -l seqid.sans-bisY

create seqid,read sans bisY (these are the most interesting reads that we want to analyze)
join -t$'\t' seqid.sans-bisY <(sort seqid-passedTags.seq) \
 > seqid-pt2.seq
head seqid-pt2.seq
wc -l seqid-pt2.seq

Creating blast database .. seed the reads with the C-tailed amplicons
this will ensure that the top hit for every amplicon is the C-tailed amplicon
this is a nice blast control and helps you understand what the best E-value
may be for a read

BisT
create blastdb with modded amplicons and seqid,sequence table (ampT-read db)
cat amplicon.bisT.mod.seq seqid-pt2.seq |
 tab2fasta.pl - |
 formatdb -i stdin -o T -p F -n blastdb/ampT-read
fastacmd -I -d blastdb/ampT-read

Next when we use blast to align we want to remove multi-hsp reads. This is because
they likely are the result of bad sequencing ... so we want to not trust them. The way
we approached this was to create an association between a read and only one amplicon and
then we only use the top blast hit of a read to that one amplicon. If a read hits an amplicon
two times we want to ignore the data from the read.

blast bisT amps to ampT-reads
tab2fasta.pl amplicon.bisT.mod.seq > amplicon.bisT.mod.fasta
 blastall -a 4 -p blastn -i amplicon.bisT.mod.fasta -d blastdb/ampT-read -F F -m 8 -W 7 -e 1e-8 -b 1000000 -v 1000000 \
 > blast.bisT.report.m8
head blast.bisT.report.m8
wc -l blast.bisT.report.m8

generate list of single-hsp seqids
join -t$'\t' \
 <(perl -F'\t' -lane 'print join("_", @F)' seqid.amplicon | sort) \
 <(perl -F'\t' -lane 'print join("\t", join("_", @F[1,0]), @F)' blast.bisT.report.m8 \
 | sort) |
 tee seq-amp.blast.bisT.report.m8 |
 cut -f1 |
 sort |
 uniq -c |

 sort -n |
 grep '^ *1 ' |
 cut -c9- \
 > seqid-amp.single-hsp.a
head seqid-amp.single-hsp.a
wc -l seqid-amp.single-hsp.a
head seq-amp.blast.bisT.report.m8
wc -l seq-amp.blast.bisT.report.m8

restrict reads that blast too far into amplicons since these are typically homopolymer anchored
join -t$'\t' \
 <(sort seqid-amp.single-hsp.a) \
 <(sort seq-amp.blast.bisT.report.m8)|
 perl -F'\t' -lane 'print $F[0] unless $F[11] > 0.00000001 or $F[9] > 10;'\
 > seqid-amp.single-hsp
head seqid-amp.single-hsp
wc -l seqid-amp.single-hsp

join -t$'\t' \
 <(sort seqid-amp.single-hsp)\
 <(perl -F'\t' -lane 'print join("\t","$F[1]_$F[0]", @F)' blast.bisT.report.m8 |sort) |
 cut -f2- \
 > blast.bisT.report.m8.restricted
head blast.bisT.report.m8.restricted
wc -l blast.bisT.report.m8.restricted

you now have the really good reads in the blast report.
We now need to get the mismatch info (i.e. methylation) from an m1 blast report.

MethylMapper part

blast modded amplicons to ampT-read db
tab2fasta.pl amplicon.bisT.mod.seq > amplicon.bisT.mod.fasta
 blastall -a 4 -p blastn -i amplicon.bisT.mod.fasta -d blastdb/ampT-read -F F -m 1 -W 7 -e 1e-8 -b 1000000 -v 1000000 |cleanBlast.pl - \
 > blast.bisT.report.m1
head blast.bisT.report.m1
wc -l blast.bisT.report.m1

normalize m1 bisT blast
blast.m1.normalize.pl blast.bisT.report.m1 2> /dev/null |
perl -F'\t' -lane 'print unless $F[0] eq $F[1]' \

> blast.bisT.report.m1.norm
head blast.bisT.report.m1.norm
wc -l blast.bisT.report.m1.norm
cut -f2 blast.bisT.report.m1.norm | sort | uniq | wc -l

filter for reads that have single hsps and have a read-amplicon pair
join -t$'\t' \
 seqid-amp.single-hsp \
 <(< blast.bisT.report.m1.norm \
 perl -F'\t' -lane 'print join("\t", "$F[1]_$F[0]", @F)' | sort) \
> blast.bisT.report.m1.norm.read-amp
wc -l blast.bisT.report.m1.norm.read-amp
head blast.bisT.report.m1.norm.read-amp
cut -f3 blast.bisT.report.m1.norm.read-amp | sort | uniq | wc -l

put all the pieces together into one big table
we chose a table b/c we could use pivot tables in excel to get data views with cell format colors
reflecting the methylated (1) or unmethylated (0) values
The other advantage of a table is that allows SAS/R to query the data easily.

create normalized table: amp, read, position, base, U/M
cut -f2,3,4,6,7 blast.bisT.report.m1.norm.read-amp |
 sort -t$'\t' -k 2,2 > amp.read.pos.base.um
cut -f2 amp.read.pos.base.um | sort | uniq | wc -l

create pre-big table
join -t$'\t' -2 2 seqid.tag amp.read.pos.base.um \
 > seqid.tag5.amp.pos.base.um
wc -l seqid.tag5.amp.pos.base.um
numer=$(cut -f1 seqid.tag5.amp.pos.base.um | uniq | wc -l)
echo "$numer/274908*100" = $(echo "$numer/274908*100" | bc -l)

#use e-value to filter out bad reads... here's an example of differet e-value effects upon fractionn
#of reads in a 1/4 plate run on an FLX...

@ bisT blast 1e-8 : 61656/72923*100 = 84.549456275797759280
@ bisT blast 1e-15 : 60539/72923*100 = 83.01770360517257929500
@ bisT blast 1e-20 : 59206/72923*100 = 81.18974809045157220600
@ bisT blast 1e-40 : 43236/72923*100 = 59.28993595984805891100

create pre2-big table by joining in sample info
join -t$'\t' -1 5 -2 2 \
 <(sort -t$'\t' -k 5,5 tag.sample.id.t-n.tag5) \
 <(sort -t$'\t' -k 2,2 seqid.tag5.amp.pos.base.um) \
 > tag5.tag.sample.id.t-n.seqid.amp.pos.base.um
head tag5.tag.sample.id.t-n.seqid.amp.pos.base.um
wc -l tag5.tag.sample.id.t-n.seqid.amp.pos.base.um
wc -l seqid.tag5.amp.pos.base.um

create pre3-big table by joining in locus info
join -t$'\t' -1 1 -2 7 \
 <(sort -t$'\t' -k 1,1 amplicon-bisT.locus) \
 <(sort -t$'\t' -k 7,7 tag5.tag.sample.id.t-n.seqid.amp.pos.base.um) \
 > amp.locus.tag5.tag.sample.id.t-n.seqid.pos.base.um
head amp.locus.tag5.tag.sample.id.t-n.seqid.pos.base.um
wc -l amp.locus.tag5.tag.sample.id.t-n.seqid.pos.base.um

create big table by rearranging fields and sorting... Now the stats folks have a data table
{
echo -e "tag\tsample\tpatient\tT-N\tlocus\tamplicon\tread\tposition\tbase\tmeth-unmeth"

< amp.locus.tag5.tag.sample.id.t-n.seqid.pos.base.um \
 perl -F'\t' -lane 'print join("\t", @F[3,4,5,6,1,0,7,8,9,10])' |
 sort -t$'\t' -k 2,2n -k 6,6 -k 8,8n
} > big.table.tsv
head big.table.tsv
wc -l big.table.tsv

#Simple checks of the data by command line querry...

#tag representation in big table across multiple lines
cut -f1 big.table.tsv | sort| uniq -c > big.table.tag.histo
head big.table.tag.histo
wc -l big.table.tag.histo

#tag representation in big table by read
cut -f1,7 big.table.tsv > big.table.tag.read
wc -l big.table.tag.read
cut -f1,2 big.table.tag.read| sort -k2|uniq -c >big.table.tsv.tag.read.collapse
wc -l big.table.tsv.tag.read.collapse
 <big.table.tsv.tag.read.collapse tr -s ' ' '\t' > big.table.tsv.tag.read.collapse.tab
cut -f3 big.table.tsv.tag.read.collapse.tab|sort| uniq -c >big.table.tag.abundace
cat big.table.tag.abundace

#locus representation in big table by read
cut -f5,7 big.table.tsv > big.table.loc.read
wc -l big.table.loc.read
cut -f1,2 big.table.loc.read| sort -k2|uniq -c >big.table.loc.read.collapse
wc -l big.table.loc.read.collapse
<big.table.loc.read.collapse tr -s ' ' '\t' > big.table.loc.read.collapse.tab
cut -f3 big.table.loc.read.collapse.tab|sort| uniq -c >big.table.loc.abundace
cat big.table.loc.abundace # will be 1 too high because of header

#amplicon representation in big table by read
cut -f6,7 big.table.tsv > big.table.amp.read
wc -l big.table.amp.read
cut -f1,2 big.table.amp.read| sort -k2|uniq -c >big.table.amp.read.collapse
wc -l big.table.amp.read.collapse
 <big.table.amp.read.collapse tr -s ' ' '\t' > big.table.amp.read.collapse.tab
cut -f3 big.table.amp.read.collapse.tab|sort| uniq -c >big.table.amp.abundace
cat big.table.amp.abundace
wc -l big.table.amp.abundace #will be one too high b/c of header

create relative and absolute methylation postion table
CountBisulfite.pl blast.bisT.report.m1 |
 perl -lane '
 if (/Position/) { $foo=$F[0] ;next; } ;
 $F[0] =~ s/NG// ;
 print join("\t", $foo, @F[0,1])' \
 > amp.meth-rel_pos.meth-abs_pos

qc 2
Seq Quality Table
Patient Primer BS Conversion Alignment information
Seq ID Seq L Tag ID Amplicon ID Bis Y Test Bis T test Amplicon Length Alignment Length A_Start A_End R_Start R_End
0 = no tag found 0 = no primer found 0 = fail 0 = fail
(1-23) = tag ID (1-14) = primer ID 1 = pass 1 = pass
#

orig fields
 1 Seq ID
 2 Seq L
 3 Tag ID (patient)
 4 Amplicon ID
 7 Amplicon Length
 5 Bis Y Test
 6 Bis T test
 8 Alignment Length
 9 A_Start
 10 A_End
 11 R_Start
 12 R_End

latest fields
 1 Seq ID
 2 Seq L
 3 Sample ID (patient)
 4 Patient ID
 5 Amplicon ID
 6 Amplicon Length
 7 Bis Y Test
 8 Bis T test
 9 Alignment Length
 10 A_Start
 11 A_End
 12 R_Start
 13 R_End
 14 Amplicon ID (old)
 15 pct_id
 16 mismatches
 17 gaps
 18 E-value
 18 bit_score

all reads seqid
cut -f1 seqid.454id.seq > seqid
wc -l seqid

seqid, length table
cut -f1,3 seqid.454id.seq |
 tab2fasta.pl - |
 length - \
 > seqid.length
tail seqid.length
wc -l seqid.454id.seq

seqid, patient table
those that passed
join -t$'\t' \
 <(sort seqid-passedTags) \

 <(sort seqid.tag) \
 > seqid.tag5.passed
head seqid.tag5.passed
wc -l seqid.tag seqid-passedTags seqid.tag5.passed

those that didn't pass
join -t$'\t' -v 1 <(sort seqid.tag) <(sort seqid-passedTags) |
 sed -re 's/\t.*$/\tNNNNN/' \
 > seqid.tag5.passed.not
head seqid.tag5.passed.not
wc -l seqid.tag seqid-passedTags seqid.tag5.passed.not

join passed and not passed with patient number and patient ID
join -t$'\t' -1 5 -2 2 \
 <(sort -k 5,5 tag.sample.id.t-n.tag5) \
 <(sort -t$'\t' -k 2,2 seqid.tag5.passed seqid.tag5.passed.not) |
 perl -F'\t' -lane 'print join("\t", @F[5,2,3])' |
 sort \
 > seqid.sample
head seqid.sample
wc -l seqid.tag seqid.sample

seqid, amplicon ID, length
combine those with and without an amplicon
{
join -t$'\t' -o 1.1,2.1 -1 2 -2 2 \
 <(sort -k 2,2 seqid.amplicon) \
 <(sort -k 2,2 amplicon.new-old)
join -t$'\t' -v 1 \
 <(cut -f1 seqid.454id.seq | sort) \
 <(cut -f1 seqid.amplicon | sort) |
 sed -e 's/$/\t0/'
} | sort \
 > seqid.ampid
head seqid.ampid
wc -l seqid.ampid
cut -f1 seqid.ampid | sort | uniq | wc -l

join -t$'\t' \
 <(perl -F'\t' -lane 'print join("\t", $F[1], @F)' seqid.ampid | sort) \
 <(paste \
 <(sort -k 2,2 amplicon.new-old) \
 <(sort amplicon.bisT.seq | tab2fasta.pl - | length -) |
 cut -f 1,2,4 | sort) |
 cut -f,2,3,5 |
 sort \
 > seqid.ampid.length
head seqid.ampid.length
wc -l seqid.ampid.length

seqid, bisY pass/fail
{ sed -e 's/$/\t1/' seqid.sans-bisY
 join -t$'\t' -v 1 \
 <(cut -f1 seqid.454id.seq | sort) \
 <(sort seqid.sans-bisY) |
 sed -e 's/$/\t0/'
} | sort \
 > seqid.bisY
head seqid.bisY
wc -l seqid.bisY

generate list
{ cut -f2 blast.bisT.report.m8.restricted |
 sed -e 's/$/\t1/'
 join -t$'\t' -v 1 \
 <(cut -f1 seqid.454id.seq | sort) \
 <(cut -f2 blast.bisT.report.m8.restricted | sort) |
 sed -e 's/$/\t0/'
} | sort \
 > seqid.bisT
head seqid.bisT
wc -l seqid.bisT

seqid, blast report fields

< blast.bisT.report.m8.restricted \
 perl -F'\t' -lane 'print join("\t", @F[1,3,6..9,0,2,4,5,10,11])' \
 > seqid.blast
wc -l seqid.blast
head seqid.blast

#########
joining all the fields together

sort seqid |
 join -t$'\t' -a 1 - <(sort seqid.length) |
 join -t$'\t' -a 1 - <(sort seqid.sample) |
 join -t$'\t' -a 1 - <(sort seqid.ampid.length) |
 join -t$'\t' -a 1 - <(sort seqid.bisY) |
 join -t$'\t' -a 1 - <(sort seqid.bisT) |
 join -t$'\t' -a 1 - <(sort seqid.blast) \
 > seqid.length.sample.ampid.amplength.bisY.bisT.blast
head seqid.length.sample.ampid.amplength.bisY.bisT.blast
wc -l seqid.length.sample.ampid.amplength.bisY.bisT.blast seqid
\cp seqid.length.sample.ampid.amplength.bisY.bisT.blast big.QC.table.tsv

