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1 Lists of organisms in each clade
For our analyses we used 105 bacterial genomes divided into 22 different clades with
4 or 5 genomes in each clade. All genomes where downloaded from Genbank at
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi. Table 1 lists the names of the or-
ganisms in each clade, with the reference organism appearing on top.

Clade Name Organism Name
Rhizobiales Agrobacterium tumefaciens C58 UWash

Rhizobium etli CFN 42
Mesorhizobium loti
Sinorhizobium meliloti
Brucella suis 1330

Bacillus Bacillus subtilis
Bacillus anthracis Ames
Bacillus clausii KSM-K16
Bacillus halodurans
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Bacillus licheniformis ATCC 14580
Burkholderia Burkholderia 383

Burkholderia cenocepacia AU 1054
Burkholderia mallei ATCC 23344
Burkholderia thailandensis E264
Burkholderia xenovorans LB400

Chlamydiales Chlamydophila caviae
Chlamydophila felis Fe C-56
Chlamydophila abortus S26 3
Chlamydophila pneumoniae AR39
Chlamydia trachomatis

Clostridum Clostridium acetobutylicum
Clostridium perfringens
Clostridium perfringens ATCC 13124
Clostridium perfringens SM101
Clostridium tetani E88

Corynebacterium Corynebacterium glutamicum
Corynebacterium efficiens YS-314
Corynebacterium diphtheriae
Corynebacterium jeikeium K411

Enterobacteria Escherichia coli K12
Salmonella typhi
Yersinia pestis KIM
Photorhabdus luminescens
Erwinia carotovora atroseptica SCRI1043

Ehrlichia Ehrlichia canis Jake
Ehrlichia chaffeensis Arkansas
Ehrlichia ruminantium Gardel
Ehrlichia ruminantium Welgevonden

Pasteurellales Haemophilus influenzae
Haemophilus ducreyi 35000HP
Pasteurella multocida
Mannheimia succiniciproducens MBEL55E

Helicobacter Helicobacter acinonychis Sheeba
Helicobacter pylori 26695
Helicobacter pylori HPAG1
Helicobacter pylori J99

Lactobacillus Lactobacillus acidophilus NCFM
Lactobacillus delbrueckii bulgaricus
Lactobacillus johnsonii NCC 533
Lactobacillus plantarum
Lactobacillus salivarius UCC118

Mycobacterium Mycobacterium tuberculosis CDC1551
Mycobacterium leprae
Mycobacterium avium paratuberculosis
Mycobacterium MCS
Nocardia farcinica IFM10152

Prochloroccus Prochlorococcus marinus MIT9313
Prochlorococcus marinus CCMP1375
Prochlorococcus marinus MED4
Prochlorococcus marinus NATL2A
Synechococcus sp WH8102

Pseudomonas Pseudomonas syringae
Pseudomonas fluorescens PfO-1
Pseudomonas entomophila L48
Pseudomonas putida KT2440
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Pseudomonas aeruginosa
Ralstonia Ralstonia eutropha JMP134

Ralstonia metallidurans CH34
Ralstonia solanacearum
Bordetella parapertussis
Bordetella pertussis

Rhodopseudomonas Rhodopseudomonas palustris BisB18
Rhodopseudomonas palustris BisB5
Rhodopseudomonas palustris CGA009
Rhodopseudomonas palustris HaA2
Bradyrhizobium japonicum

Rickettsia Rickettsia typhi wilmington
Rickettsia prowazekii
Rickettsia felis URRWXCal2
Rickettsia conorii
Rickettsia bellii RML369-C

Staphylococcus Staphylococcus aureus N315
Staphylococcus aureus MW2
Staphylococcus epidermidis RP62A
Staphylococcus haemolyticus
Staphylococcus saprophyticus

Streptococcus Streptococcus pneumoniae TIGR4
Streptococcus agalactiae 2603
Streptococcus pyogenes
Streptococcus mutans
Streptococcus thermophilus LMG 18311

Synechoccus Synechococcus CC9605
Synechococcus CC9902
Synechococcus sp WH8102
Synechococcus elongatus PCC 6301
Synechocystis PCC6803

Vibrio Vibrio cholerae
Vibrio vulnificus CMCP6
Vibrio vulnificus YJ016
Vibrio parahaemolyticus
Vibrio fischeri ES114

Xanthomonas Xanthomonas campestris
Xanthomonas campestris vesicatoria 85-10
Xanthomonas citri
Xanthomonas oryzae MAFF 311018

Table 1: Names of all the organisms used in our study. Different clades are separated by
horizontal lines. The names by which we refer to each clade are shown on the left. The
reference species in each clade appears at the top of the list of species for each clade

2 Number of operons as a function of the total number
of genes

The recent operon prediction algorithm of [1] uses a Bayesian method to estimate the
probability that two contiguous genes belong to the same operon. We used the operon
predictions that are available for 416 bacterial genomes from http://www.microbesonline.org/operons/,
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and which use a probability of 1/2 as a cut-off. Figure 1 shows the total number of
operons as a function of the total number of genes in the genome for all 416 genomes.
We fitted the operon numbers to a power-law as a function of the total number of genes

Figure 1: The estimated number of operons (vertical axis) as a function of the total
number of genes (horizontal axis) for all 416 currently fully-sequenced genes in the
NCBI database. Each red dot corresponds to one genome. The black line shows a
power-law fit.

in the genome (black line). The fitted line has exponent 1.09.

3 Phylogenetic trees
The inferred phylogenetic trees for all 22 clades are as a supplementary file in Newick
format.

4 R values versus total branch length in the phyloge-
netic tree

For each clade we calculate the total branch length T in its phylogenetic tree by sum-
ming the negative logarithms of the proximities qb over all branches in the tree, i.e.

T = −
∑

b

log(qb). (1)

In figure 2 we show how the average values of R in intergenic and coding regions de-
pend on this total branch length T . As the figure shows, there is a clear correlation
between the average value of R and the total tree length, both in intergenic (red dots)
and in coding regions (purple dots). For intergenic regions there seems to be an approx-
imately linear relationship whereas for coding regions R seems to increase even faster
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Figure 2: Average R values (vertical axis) as a function of total branch length T of
the phylogenetic tree of the clade (horizontal axis). Each dot represents one of the 22
clades. Red dots show the average R value in intergenic regions (averaged over DR,
SR, and NR regions). The purple dots shows the average R values in coding regions.

than linearly. The reason there is this general correlation between R and the length of
the branches in the tree is that for longer branches the evidence of selection is easier
to detect than for short branches, i.e. for very close species most bases are already
conserved due to evolutionary proximity.

5 Evidence of selection as a function of genome size
In this section we use 12 different statistics to investigate if a correlation between
genome size and the amount of evidence for selection in intergenic regions can be
detected. In figure 3 we show 4 different R value statistics as a function of the number
of genes in the genome. In the top left panel of Fig. 3 we show the average value
of R, averaged over all SR and DR regions, directly against the number of genes in
the genome. There is no significant correlation (p-value 0.23). We observed in the
main paper that R values in DR and SR (upstream) regions are substantially higher
than those in NR (downstream) regions, which is most likely the result of regulatory
elements being more abundant upstream of genes than in regions downstream of genes.
Therefore, one might argue that a more ‘accurate’ assessment of the density of regula-
tory sites can be made by comparing the R values in SR and DR regions with those in
NR regions. In the upper-right panel we show the ratio of the average R values in SR
and DR regions and the average R in NR regions as a function of the number of genes
in the genome. Again there is no significant correlation (p-value 0.21). The difference
between R values in SR and DR regions and R values in NR regions also shows no
correlation with genome size (data not shown). Another issue that might complicate
observation of a correlation with genome size is that the rate of turnover of regulatory
sites may be significantly different in different clades. Of course, given that we do
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Figure 3: Various average R statistics as a function of genome size. In each panel each
dot represents one clade. The horizontal axis in each panel shows the total number of
genes in the reference species of the clade. The vertical axes show respectively Top
left: The average value of R in SR and DR regions. Top right: The ratio between the
average value of R in SR and DR regions and the average value of R in NR regions.
Bottom-left: The difference between R in SR and DR regions and the average R in
NR regions, relative to the average R value in coding positions. Bottom-right: The
difference between the average R in SR and DR regions and the average R in NR
regions relative to the total branch length in the tree.
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not know what the TFs in almost all of these genomes bind, it is hard to estimate the
rate of regulatory site turnover directly. However, we would generally expect the rate
of turnover to be smallest if the organisms in the clade occupy very similar niches.
To some extent we can estimate this from the rate of protein evolution. That is, the
amount of conservation at the amino acid level will be higher for organisms living in a
similar niche, compared to those that occupy different niches. In the lower-left panel
of Fig. 3 we show the relative difference [R(SR + DR)−R(NR)] /R(CR) between
R in SR and DR regions and R in NR regions, relative to the average R in coding
positions R(CR). That is, we have normalized the difference between R in upstream
and downstream regions to the R values at coding positions. We again see that there
is no significant correlation (p-value 0.24). Finally, we also saw that R values gener-
ally correlate positively with the sum of the branch lengths in the phylogenetic tree of
the clade. Therefore, one might argue that to obtain properly ‘normalized’ R values
we should divide the R values by the total branch length in the tree. In the bottom-
right panel of Fig. 3 we show the relative difference [R(SR + DR)−R(NR)] /TL
relative to the tree length TL. Here too there is no correlation (p-value 0.29). We also
tried other combinations such as non-normalized differences, or normalized versions
of R(SR + DR) but none gave significant correlations (data not shown).

Finally, note that the R values are calculated compared to what would be expected
based on the phylogenetic tree of the species, which was calculated from the silent
positions in genes. If intergenic regions are subject to different mutational mechanisms
than coding regions than the tree inferred from silent positions may not be appropriate
for intergenic regions. To control for this possibility we also build phylogenetic trees
from the NR regions in the clade and then calculated R values in intergenic regions
using this phylogenetic tree. The results again showed no signs of correlations between
the R values in upstream regions and the genome size (data not shown).

5.1 Substitution rate reduction
In the supplementary methods we detail how we calculate, for each alignment column
C, a statistic Q(C) that quantifies the extent to which the effective substitution rate
in this column is reduced compared to what would be expected from the background
model. This Q statistic is thus an alternative measure for the strength of selection in
an alignment column that doesn’t intrinsically scale with the length of the branches
in the phylogenetic tree. We calculated the values Q(C) for all alignment columns in
all clades and investigated if the average Q values in different regions correlate with
genome size. The results are shown in Fig. 4

In the top-left panel we show the average Q in SR and DR (upstream) regions as
a function of the number of genes in the reference species of the clade. Although by
eye there may appear to be some negative correlation, this correlation is not signifi-
cant (p-value 0.38). Note though that even if the correlation was significant it would
go in the wrong direction, i.e. larger genomes would show less evidence of selection.
In the top-right panel we show the average Q in SR and DR (upstream) regions rela-
tive to the average Q in NR (downstream) regions. As discussed before, we generally
find more evidence of selection in upstream (SR and DR) regions than in downstream
(NR) regions and we interpret this as the result of a higher density of regulatory sites
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Figure 4: Estimated average substitution rate statistics as a function of the number of
genes in the genome. In each panel each dot represents one clade. The horizontal axis
in each panel shows the total number of genes in the reference species of the clade.
The vertical axis in each panel shows: Top-left: The average Q in SR and DR regions
Top-right: The ratio between the average Q in SR and DR regions and the average
Q in NR regions Bottom-left: The difference between the average Q in SR and DR
regions and the average Q in NR regions. Bottom-right: The difference between the
average Q in DR regions and the average Q in SR regions.
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in upstream than in downstream regions. Thus, it can be argued that the abundance of
regulatory sites should be reflected in the relative sizes of Q in upstream and down-
stream regions. However, we see in the upper-right panel that there is no correlation
whatsoever between this relative substitution rate and genome size (p-value 0.40). In-
stead of the ratio of Q values in upstream and downstream regions we can also consider
their difference and this is shown in the bottom-left panel of Fig. 4. Again there is no
evidence of correlation with genome size (p-value 0.38). Finally, we have also ob-
served that DR regions often show more evidence of selection than SR regions. In the
bottom-right panel we show the difference between the average Q value in DR regions
and the average Q value in DR regions as a function of genome size. Here there is a
marginally significant correlation (p-value 0.07), but again this correlation goes in the
wrong direction, i.e. the difference in Q value between DR and SR regions is less in
larger genomes.

5.2 Branch lengths inferred by PAML
Instead of using our methods to estimate the strength of selection we performed an
analogous analysis using PAML. In particular, we looked for correlations between the
number of genes in the genome and the branch lengths inferred by the PAML algorithm
for alignment columns from different regions. The results are shown in Fig. 5

For each clade, we let PAML infer 12 different phylogenetic trees and calculated
the total branch length in each of the trees. One tree was inferred from all alignment
columns in NR regions. We denote its branch length by BL(NR). The second tree
was inferred from all alignment columns in SR regions, and we denote its total branch
length by BL(SR). The third tree was inferred from all alignment columns in DR re-
gions and we denote its total branch length by BL(DR). We denote by BL(SR+DR)
the average of BL(SR) and BL(DR). Finally, 8 different trees were inferred from the
silent positions of each of the 8 fourfold degenerate codons. We denote by BL(syn) the
median of the total branch lengths of these 8 trees.

In the top-left panel we show BL(SR+DR)/BL(syn) for each clade as a function of
the total number of genes in the reference species of that clade. That is, we compare
the branch lengths in upstream regions with those at silent positions. Selection con-
serving regulatory elements in upstream regions would lead to lowered branch lengths
in upstream regions relative to silent positions. As the density of regulatory sites in-
crease the ratio BL(SR+DR)/BL(syn) should thus decrease. However, as the figure
shows, even though the ratio is less than 1 in all clades, there is no observable corre-
lation between these branch lengths and genome size (p-value 0.20). In the top-right
panel we show the ratio BL(SR+DR)/BL(NR), that is the total branch length in up-
stream regions relative to the total branch length in downstream regions. Upstream
regions are expected to contain much more regulatory elements than downstream re-
gions so that it can be argued that the ratio BL(SR+DR)/BL(NR) quantifies the density
of regulatory sites in upstream regions. However, we again observe no correlation with
genome size (p-value 0.41). In the bottom-left panel we look at the relative difference
[BL(NR)-BL(SR+DR)]/BL(syn). Here we look at the difference in branch lengths be-
tween upstream and downstream regions and normalize this using the branch lengths
of the silent positions. Again, no correlation with genome size is observed (p-value
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Figure 5: Statistics of total branch lengths in the phylogenetic trees of different clades,
as inferred by PAML from alignment columns of different regions. Each dot in each
panel represents one clade. The horizontal axis in each panel shows the total number
of genes in the reference species of the clade. The vertical axes in the four panels
show: Top-left: The average total branch lengths BL(SR+DR) in the phylogenetic
trees inferred from the alignment columns of SR and DR regions relative to the total
branch length BL(syn) inferred from alignment columns of silent positions. Top-right:
The average total branch length BL(SR+DR) inferred from SR and DR regions relative
to the total branch length BL(NR) inferred from alignment columns in NR regions.
Bottom-left: The difference of the total branch length for NR regions and the total
branch length for SR and DR regions relative to the total branch length for silent po-
sitions, i.e. [BL(NR)-BL(SR+DR)]/BL(syn). Bottom-right: The difference between
the total branch length for SR regions and for DR regions relative to the total branch
length for silent positions, i.e. [BL(SR)-BL(DR)]/BL(syn).
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0.34). Finally, we look at the difference in total branch length for SR and DR regions
(normalized again by BL(syn)). DR regions generally should have more regulatory
sites than SR regions and their difference can again be argued to reflect the average
density of regulatory elements per gene, but again no correlation with genome size is
observed (p-value 0.40).

In summary, in spite of of using three different methods (R values, reduction in
substitution rates, and branch lengths inferred by PAML), using both silent positions
and NR regions to infer the phylogenetic trees, and using a number of different statistics
for each of these methods, we did not find any indication that the density of regulatory
sites increases with genome size (the total number of genes in the genome). Although
it could be argued that more sophisticated models than the ones we employed might
be able to uncover a subtle correlation it seems highly unlikely that the density of
regulatory sites in intergenic regions changes substantially between the smallest and
largest genomes. For example, the fraction of genes in the genome that are regulatory
genes increases by about a factor of 20 between the smallest and largest genomes. If the
density of regulatory sites would have increased by a similar factor then our methods
would have detected such a increase. Note that our methods do infer more evidence of
regulatory sites upstream then dowstream of genes, they detect the elevated selection
at silent sites immediately downstream of translation start, and they correctly infer the
strong selection on the Shine-Dalgarno sequence immediately upstream of translation
start. It thus seems highly unlikely that a significant increase in the density of regulatory
sites would have gone undetected.

6 R value profiles for all clades
Figures 6 and 7 show the R value profiles for all 22 clades we analyzed. Each figure
shows 12 panels with 11 panels corresponding to the R value profiles in different clades
and one panel corresponding to the profile averaged over all clades.

Note that although individual clades show differences in the details of the R value
profiles, there are a number of features shared by essentially all clades. Selection is
strongest at coding positions, in the order: second positions in codons, first positions
in codons, and third positions in codons. That is, in order of the frequency with which
substitutions at these positions effect the amino acid. Selection at coding positions
drops at the starts and ends of genes. Silent positions away from the starts and ends of
genes evolve according to the background model (R = 1). Selection in intergenic re-
gions is almost always higher than at silent positions and is higher in upstream than in
downstream regions. Generally selection in intergenic regions is highest immediately
upstream of genes and lowest immediately downstream. There is almost always a sharp
peak in selection a few bases upstream of selection start. This peak corresponds to con-
served Shine-Dalgarno sequences. Finally, in all clades there is heightened selection at
silent positions immediately downstream of translation start.
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Figure 6: Evidence of selection (average R value) as a function of position with respect
to translation start (position 0) and end (position 900) in 11 different clades of species,
and averaged over all clades. The left half of each panel shows R values in 150 bps
upstream regions and the initial 300 bps of genes. The right half shows the last 300 bps
of genes plus 150 bps downstream. Average R values at first (red), second (blue), and
third positions of codons within genes are shown, as well as average R values within
intergenic regions and at silent positions (black). The dotted horizontal line shows
R = 1 in each panel, which corresponds to evolution according to the background
model.
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Figure 7: Evidence of selection (average R value) as a function of position with respect
to translation start (position 0) and end (position 900) in 11 different clades of species,
and averaged over all clades. The left half of each panel shows R values in 150 bps
upstream regions and the initial 300 bps of genes. The right half shows the last 300 bps
of genes plus 150 bps downstream. Average R values at first (red), second (blue), and
third positions of codons within genes are shown, as well as average R values within
intergenic regions and at silent positions (black). The dotted horizontal line shows
R = 1 in each panel, which corresponds to evolution according to the background
model.
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7 R value profiles at intra-operonic regions
Figures 8 and 9 show the R value profiles upstream and in genes that are not the first in
their operon. The profiles in particular show the R values in intra-operonic regions and
at the starts of genes that are not the first in the operon. Each figure shows 12 panels
with 11 panels corresponding to the R value profiles in different clades and one panel
corresponding to the profile averaged over all clades.

8 Q value profiles
Apart from the R values we also estimated, for each alignment column, the effective
substitution rate statistic Q, i.e. the observed reduction in substitution rate reduction Q
at this column relative to the substitution rate reduction expected from the background
model (see supporting methods). These profiles are shown in figures 10 and 11.

Comparing figures 10 and 11 with the R value profiles Figs. 6 and 7 we see that all
main characteristics of the R value profiles are reproduced in the Q value profiles. In
fact, the two pairs of figures look very similar. The evidence of selection is highest at
coding positions in the order second positions, first positions, and than third positions
in codons. In most clades substitution rate reduction is lowest at silent positions in
the middle of genes. As in the R profiles substitution rate reduction is higher in up-
stream regions than in downstream regions, generally is highest immediately upstream
of translation start, and lowest immediately downstream of the stop codon. We also
again see the sharp peak a few bases upstream of translation start, corresponding to the
Shine-Dalgarno sequences, in most clades. Finally, the increase in selection at silent
positions immediately downstream of translation start is again observed in essentially
all clades.

8.1 Q value profiles for small, medium-sized, and large genomes
In complete analogy with the relative R value profiles upstream and downstream of
genes shown in Fig. 5 in the main paper we calculated relative Q value profiles in the
upstream regions of small, medium-size and large genomes. These profiles are shown
in Fig. 12

As with the R profiles of Fig. 5 of the main paper the profiles have very similar
shape and there is no clear trend that correlates with genome size.

9 Nucleotide composition profiles
We determined the average base composition at positions from 150 bps upstream of
translation start to 100 bps downstream of translation start in all 22 clades of bacteria.
These nucleotide composition profiles are shown in Figures 13 and 14.

Although there are significant differences in the base composition profiles between
different clades, there are again several features that are universal. For example, in
all clades (except for the two cyanobacteria clades Prochlorococcus and Synechococ-
cus) there is a peak in the frequency of A nucleotides around the translation start. In
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Figure 8: Evidence of selection (average R value) as a function of position with respect
to translation start (position 0) of genes that are not the first in their operon in 11
different clades of species, and averaged over all clades. Each panel shows R values
in 50 bps upstream regions and the initial 250 bps of genes. Average R values at first
(red), second (blue), and third positions of codons within genes are shown, as well as
average R values within intergenic regions and at silent positions (black). The dotted
horizontal line shows R = 1 in each panel, which corresponds to evolution according
to the background model.
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Figure 9: Evidence of selection (average R value) as a function of position with respect
to translation start (position 0) of genes that are not the first in their operon in 11
different clades of species, and averaged over all clades. Each panel shows R values
in 50 bps upstream regions and the initial 250 bps of genes. Average R values at first
(red), second (blue), and third positions of codons within genes are shown, as well as
average R values within intergenic regions and at silent positions (black). The dotted
horizontal line shows R = 1 in each panel, which corresponds to evolution according
to the background model.
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Figure 10: Evidence of selection as measured by reduction in effective substitution rate
(Q values, see supporting methods) as a function of position with respect to translation
start (position 0) and end (position 900) in 11 different clades of species, and averaged
over all clades. The left half of each panel shows Q values in 150 bps upstream regions
and the initial 300 bps of genes. The right half shows the last 300 bps of genes plus
150 bps downstream. Average values at first (red), second (blue), and third positions
of codons within genes are shown, as well as average values within intergenic regions
and at silent positions (black). The dashed lines show Q = 1, corresponding to the
substitution rate expected from the background model.
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Figure 11: Evidence of selection as measured by reduction in effective substitution rate
(Q values, see supporting methods) as a function of position with respect to translation
start (position 0) and end (position 900) in 11 different clades of species, and averaged
over all clades. The left half of each panel shows Q values in 150 bps upstream regions
and the initial 300 bps of genes. The right half shows the last 300 bps of genes plus
150 bps downstream. Average values at first (red), second (blue), and third positions
of codons within genes are shown, as well as average values within intergenic regions
and at silent positions (black). The dashed lines show Q = 1, corresponding to the
substitution rate expected from the background model.
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Figure 12: Relative average Q values upstream and downstream of genes averaged
separately over genomes with less than 2000 genes (green), genomes with between
2000 and 4500 genes (red), and genomes with more than 4500 genes. In order to
compare the shapes of the Q value profiles the values on the vertical axis are scaled to
have a mean of 1 when averaged over the 150 bps upstream and when averaged over
the 150 bps downstream.

particular, within genes the frequency of A nucleotides is maximal at the start of the
gene and decreases over the first 20 nucleotides. G nucleotides have a minimum at the
start of the gene and increase over the first 20 nucleotides. The peak in A nucleotide
frequency extends into the upstream region. A few bps upstream of translation start
a sharp peak in G nucleotides is observed which corresponds to the Shine-Dalgarno
sequence. As mentioned, cyanobacteria are the only clades that do not show these
patterns. Instead of a peak in the frequency of A nucleotides around translation start
the cyanobacteria show a peak in C nucleotides. The cyanobacteria also do not show
the peak in G nucleotide frequency immediately upstream of start. These observations
suggest cyanobacteria use another mechanism for translation initiation than all other
clades. Note that in many clades there seems to be a small but significant minimum in
the frequency of A nucleotides between 10 and 20 codons downstream of translation
start. We currently have no idea what the meaning or the role of this minimum might
be but it seems plausible that it is also related to translation initiation.

In [2] it was shown that, in almost all bacteria DR regions have the highest AT
content followed by SR regions, and then NR regions. As demonstrated in Figs. 13
and 14, we addition find that in all clades the AT content upstream of translation start
is higher than the AT content downstream of translation start.

10 Selection at silent sites immediately downstream of
the start codon

We performed a number of controls to check if the observed elevated selection at silent
sites immediately downstream of translation start can be an artefact of another bias.
Some of these controls are presented below.
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Figure 13: Nucleotide composition profiles from 100 bps upstream of translation start
to 150 bps downstream of translation start for 11 different clades and the average pro-
files over all clades. The vertical axis shows the difference between the frequency of A
(red), C (green), G (blue), and T (yellow) nucleotides at each position and the average
frequency of the corresponding nucleotides in the entire genome.
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Figure 14: Nucleotide composition profiles from 100 bps upstream of translation start
to 150 bps downstream of translation start for 11 different clades and the average pro-
files over all clades. The vertical axis shows the difference between the frequency of A
(red), C (green), G (blue), and T (yellow) nucleotides at each position and the average
frequency of the corresponding nucleotides in the entire genome.
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10.1 Position-dependent codon adaptation index
One hypothesis for the apparent increase of selection immediately downstream of trans-
lation start is that it is caused by an increase in codon bias in this region. For example,
highly expressed genes such as ribosomal genes generally show elevated codon bias
which is likely the result of selection for translation efficiency. It is conceivable that the
initial positions of genes are generally under a stronger selection for efficient transla-
tion than positions further downstream in the genes, which would lead to higher codon
bias and the elevated selection would be the result of an elevated codon bias only.

To test this hypothesis we have computed position-dependent codon adaptation in-
dex CAI(d) [3] profiles as a function of the position relative to the start of the gene.
These profiles are shown in figures 15 and 16. The profiles show that, for almost
all clades, the CAI values go down rather than up near the start and end of the genes.
For the remaining clades an approximately flat CAI profile is observed. These clades
have a codon bias that prefers A nucleotides at the third positions of codons such that
the elevated frequency of A nucleotides immediately downstream of translation start
matches the overall codon bias. In summary, it is clear that the selection immediately
downstream of translation start generally reflects a selection for A nucleotides at these
positions and not a selection to match the codon bias in the species.

10.2 Reannotation of gene starts
Another hypothesis is that the apparent increase in selection immediately downstream
of translation start, and the corresponding lower selection at first and second positions,
is an artifact of the incorrect annotation of gene starts in a subset of the genes. That is, if
the ‘true starts’ of a significant fraction of the genes were downstream of the annotated
ones, then what we consider to be the initial coding positions of these genes are in
fact intergenic positions. Given that the amount of selection at intergenic positions is
higher than at silent positions and lower than at coding positions this would produce
the pattern of a lowered selection at coding positions and an increase in selection at
silent positions, i.e. similar to what we observe.

We implemented a simple procedure, using conservation information, in order to
identify gene starts that have potentially been placed too far upstream. First, we search,
in the multiple alignment, for an alternative start codon (ATG, GTG or TTG) which is
conserved across all species. If such an alternative start exists, we compute the fraction
of conserved amino acids f(i) for all columns i of the alignment, the average f̄s over
the positions from the first to the second start codon, and the average f̄r over the reset
of the protein. In this context the ‘conservation’ fraction f(i) at a position i is the
fraction of amino acids in the other species that match the amino acid of the reference
species. We then calculate the z-statistic

Z =
f̄r − f̄s√
σ2

r + σ2
s

(2)

where σr and σs are the standard errors of the fraction of conserved amino acids in the
region between the first and second codon, and in the rest of the protein respectively.
Whenever Z ≥ 5 and the length of the region between the first and second start is
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Figure 15: Codon adaptation index (CAI) profiles as a function of position relative
to translation start (position 0) and translation end (position 500) for the reference
species of 11 clades and averaged over all reference species. Each panel corresponds
to one reference species. The left half of each panel corresponds to the first 250 codons
downstream of translation start, and the right half to the last 250 codons before the stop
codon.
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Figure 16: Codon adaptation index (CAI) profiles as a function of position relative
to translation start (position 0) and translation end (position 500) for the reference
species of 11 clades and averaged over all reference species. Each panel corresponds
to one reference species. The left half of each panel corresponds to the first 250 codons
downstream of translation start, and the right half to the last 250 codons before the stop
codon.
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Clade Name Genes Starts Stops Orths. start Orths. stop Reannot. frac.
Rhizobiales 5469 849 522 2.26 2.16 171 20%
Bacillus 4224 818 492 1.93 2.12 112 14%
Burkholderia 7805 1916 1551 2.04 1.96 429 22%
Chlamydiales 1046 325 224 2.90 2.80 27 8%
Clostridium 3954 196 152 2.88 2.89 14 7%
Corynebacterium 3072 589 432 1.89 1.79 123 21%
Enerobacteria 4400 1127 706 2.19 2.08 169 15%
Ehrlichia 967 368 301 2.54 2.27 64 17%
Pasteurealles 1735 236 100 1.83 1.96 38 16%
Helicobacter 1660 238 136 2.74 2.60 69 29%
Lactobacillus 1938 224 146 1.89 1.88 34 15%
Mycobacterium 4237 479 302 2.29 2.08 134 28%
Prochlorococcus 2324 294 236 2.81 2.52 57 19%
Pseudomonas 5684 454 341 2.90 2.77 70 15%
Ralstonia 6532 1172 735 1.80 1.81 346 30%
Rhodopseudomonas 4958 1230 893 3.02 2.85 359 29%
Rickettsia 877 308 301 3.12 2.78 44 14%
Staphylococcus 2698 1076 1034 2.63 2.50 55 5%
Streptcoccus 2164 126 72 2.62 2.62 13 10%
Synechococcus 2697 289 166 2.08 1.84 66 23%
Vibrio 3958 713 539 3.09 2.90 213 30%
Xanthomonas 4242 1333 1201 2.45 2.37 460 35%

Table 2: Number of regions used in R value profiles, and number of reannotated re-
gions. For each clade the columns show (from left to right): the total number of genes
in the reference species, the number of regions around gene starts used for building the
R value profiles, the number of regions around gene ends used for building the R value
profiles, the average number of orthologs per gene start region, the average number of
orthologs per gene end region, the number of reannotated gene starts, and the fraction
of gene starts that were reannotated.

less than half of the protein, we reannotate the start of the gene, i.e. move it to the
downstream start position.

Table 2 shows a number of general statistics on our clades such as the total num-
ber of genes in the reference species, the number of regions that were useed for con-
structing the R value profiles and the average number of orthologs per region. It also
shows the number of gene starts that were reannotated in our reannotation control.
The fraction of reannotated gene starts varies from 5% in Staphylococcus to 35% in
Xanthomonas.

Figures 17 and 18 show the original R value profiles together with the R value
profiles using the reannotated gene starts. As the figure shows, although the reanno-
tation decreases the amount of selection immediately downstream of translation start,
and increases the conservation at second and first positions in this region, the changes
are small and significant evidence of selection immediately downstream of translation
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Figure 17: Comparison of R value profile with the original and reannotated gene starts.
The R profiles with the original gene starts are shown as dotted lines whereas the R
profiles with the reannotated gene starts are shown as solid lines. See the caption of
figure 6 for a description of the data shown.
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Figure 18: Comparison of R value profile with the original and reannotated gene starts.
The R profiles with the original gene starts are shown as dotted lines whereas the R
profiles with the reannotated gene starts are shown as solid lines. See the caption of
figure 7 for a description of the data shown.
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start remains. We also observed that, using the reannotated gene starts, intergenic re-
gions now exhibit more evidence of selection at second and first positions then at third
positions (relative to the start codon), which was not the case with the original annota-
tions (data not shown). This suggests that our reannotation has already misclassified a
significant number of coding regions as intergenic.

An alternative way of refuting that the selection immediately downstream of trans-
lation start is a result of misannotated gene starts is to calculate R values for a set of
proteins with well-known amino acid sequences, i.e. with known starts. We built such
a set by collecting all E. coli K12 proteins for which the function has been experimen-
tally determined. Again we observed that the R profiles of this set are very similar to
the R profiles of all genes. In summary, we believe we can exclude the hypothesis that
the observed selection downstream of translation start is an artefact of misannotated
gene starts.

10.3 Shine-Dalgarno peak and downstream selection signal
If the avoidance of secondary structure around gene starts were related to transcription
initiation we would expect to observe this pattern only in genes that are the first in
their operon. In the left panel of Fig. 19 we compare the selection at the first 20 silent
positions immediately downstream of ATG (the ‘downstream signal’) in genes with
small and large upstream regions. Although the downstream signal is often largest
in genes with large upstream regions there is clear evidence of downstream signal in
genes with small upstream regions, which in some cases is even larger than in genes
with large upstream regions.

Figure 19: Left Panel: Difference of the ‘downstream signal’ (average value of R in
the first 20 silent positions downstream of translation start) between genes with small
(< 50 bp) upstream regions and genes with large (> 150 bp) upstream regions as a
function of the downstream signal in genes with large upstream regions. The green
line corresponds to a value of R = 1 in genes with small upstream regions. Right
panel: The downstream signal (vertical axis) as a function of the height (in R value)
of the peak corresponding to the Shine-Dalgarno signal. The green dots correspond to
firmicutes clades. Each dot corresponds to one of the 22 clades in both panels.
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If the downstream signal is associated with translation initiation we might expect a
correlation of this signal with the strength of selection at the Shine-Dalgarno sequences.
As shown in the right panel of Fig. 19, there is in general a linear correlation between
the height of the Shine-Dalgarno peak and the downstream signal. Interestingly, the
firmicutes clades (green dots) deviate from this pattern and show relatively little down-
stream signal and very strongly conserved Shine-Dalgarno sequences. The results in
Fig. 19 strongly suggest that the avoidance of secondary structure around translation
start is the result of a selection pressure for ensuring efficient translation initiation.

11 RNA secondary structure profiles
Figures 20 and 21 show position dependent z-statistics for the average probability of
bases at that position to be unpaired in the RNA secondary structure of the mRNA
around translation start, both compared to the average probability of of being unpaired
in the flanking regions (−50,−31) and (31, 80), and compared to the average proba-
bility of being unpaired in random sequences with the same position-dependent base
composition (see supplementary methods).

We see that for all clades there are peaks in ‘openess’ immediately upstream and
downstream of translation start compared to the flanking regions more to the left and
right (red curves). Note that the G nucleotides of the Shine-Dalgarno sequence and the
start codon itself tend to lead to minima in openess at these positions. In addition, the
blue curves show that the region immediately around translation start shows even more
‘openess’ then random sequences with the exact same base composition. This strongly
suggests that base composition in these regions is the result of a selection for avoiding
secondary structure in essentially all clades.

11.1 Z-values for the region immediately around translation start
We calculated z-values for the average openess in the region (−20, 20) immediately
around translation start, compared with the average openess in the flanking regions
(regions (−50,−31) and (31, 80)) and z-values for the average openess in the region
(−20, 20) compared with the average openess of the same region in random sequences
with the same position-dependent base composition. The results are shown in figure
22.

The figure shows that in all clades there is significantly more openess, i.e. z > 2, in
the region immediately around translation start than in the flanking regions. In addition,
for all but two clades (Mycobacterium and Synechococcus) there is significantly more
openess in the region (−20, 20) then in random sequences with the same position-
dependent base composition.

11.2 5’ UTR lengths in E. coli
For folding the region around translation start we assumed that transcription start oc-
curs 60 bp upstream of translation start, i.e. we include 60 bp upstream of translation
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Figure 20: RNA secondary structure profiles for 11 clades and averaged over all clades.
The horizontal axis in each panel shows the position relative to translation start, from
50 bp upstream to 80 bp downstream. The vertical axes show two z-statistics for the
probability of the nucleotide at that position to be unpaired. The red lines show the
z-statistic of the probability for the position to be unpaired relative to the average prob-
ability over the flanking segments (−50,−31) and (31, 80). The blue lines show the
z-statistics for the position to be unpaired relative to the average probability of the same
position being unpaired in random sequences with the same position-dependent base
composition as observed in the clade.
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Figure 21: RNA secondary structure profiles for 11 clades and averaged over all clades.
The horizontal axis in each panel shows the position relative to translation start, from
50 bp upstream to 80 bp downstream. The vertical axes show two z-statistics for the
probability of the nucleotide at that position to be unpaired. The red lines show the
z-statistic of the probability for the position to be unpaired relative to the average prob-
ability over the flanking segments (−50,−31) and (31, 80). The blue lines show the
z-statistics for the position to be unpaired relative to the average probability of the same
position being unpaired in random sequences with the same position-dependent base
composition as observed in the clade.
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Figure 22: Z-statistics of the RNA secondary structure for the region (−20, 20) imme-
diately around translation start. Each dot in the plot corresponds to one clade. On the
horizontal axis is the z-statistic of the average openess in the region (−20, 20) com-
pared to the average openess in the flanking regions (−50,−31) and (31, 80). On the
vertical axis is the z-statistic of the average openess in the region (−20, 20) compared
to the average openess in random sequences with the same position-dependent base
composition. The grey lines show the value z = 2.

start in the sequence to be folded. The estimate of 60 bp is based on analysis of the
distribution of 5’ UTR lengths in E. coli.

RegulonDB [4] contains a collection of experimentally determined transcription
start sites in E. coli. For each TSS we calculated the distance to the start of the down-
stream ORF and determined the distribution of 5’ UTR lengths. Fig 23 shows the
distribution of 5’ UTR lengths that we observed. Note that the majority of 5’ UTRs is
less than 50 bp long but that there is a fairly long tail including apparent very long 5’
UTRs. Some of these very long 5’ UTRs are possibly due to misidentification of the
downstream gene or other sources of error. If one excludes all 5’ UTRs longer than
150 bps the average length is 60 bp. If one excludes 5’ UTRs longer than 250 bp the
average length is 77 bps.

12 Clusters of TF DNA binding domains
Figure 24 shows the number of different clusters of paralogous transcription factors as
a function of the total number of genes in the genome at different similarity cut-offs.

The figure shows that, at all similarity cut-offs the function can be reasonably well-
fitted by a power law. The fitted intersepts and exponents are

• Intercept −9.656, Exponent 1.845 at a cut-off of 100% similarity.

• Intercept −9.699, Exponent 1.847 at a cut-off of 85% similarity.

• Intercept −9.568, Exponent 1.827 at a cut-off of 65% similarity.
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Figure 23: Distribution of 5’ UTR lengths in E. coli as estimated from the collection of
transcription start sites in RegulonDB [4]. The horizontal axis shows the length of the
5’ UTR and the vertical axis shows the the frequency of 5’ UTRs of the correspond-
ing length. The distribution was smoothed with an exponential kernel (see supporting
methods).

Figure 24: Number of clusters of transcription factors with similar DNA binding do-
mains at cut-offs of 100% amino acid identity (top-left), 85% amino acid identity (top-
right), 65% amino acid identify (bottom-left) and 45% amino acid identity (bottom-
right) as a function of the total number of genes in the genome. Both axes are shown
on logarithmic scales. The black lines are power-law fits.
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• Intercept −8.209, Exponent 1.625 at a cut-off of 45% similarity.

We thus find that at all three higher cut-offs there is very little evidence of TF clustering,
and the amount of clustering does not increase with genome size. At 45% identity there
is some clustering but the exponent is still as high as 1.6 (i.e. far from linear) and at
this low similarity there is little guarantee that the TFs will bind similar motifs.

13 Word Count Ratios
For each clade we produced a list of all 47 sevenmers ordered by the evidence for each
of the sevenmers to be under purifying selection. We then determined the number of
unique sevenmers nt from the top of the list that together account for 5% of all se-
quence segments of length 7 in intergenic regions, and the number of unique segments
nb from the bottom of the list that together account for 5% of all windows in intergenic
regions. Figure 7 in the main paper showed the ratio nt/nb as a function of the total
number of TFs in the genome.

Figure 25: Sequence diversity of the most and least conserved sevenmers as a function
of the number of TFs in the genome. For each genome we ordered all sevenmers
by their evidence for being under purifying selection and collected the most and least
conserved unique sevenmers such that the sevenmers of both sets each account for 5%
of all sequence segments in the genome. The vertical axis shows the ratio between the
number of most conserved and least conserved sevenmers in the corresponding set as
a function of the total number of TFs in the genome (horizontal axis). Both axes are
shown on logarithmic scale. The black line shows a linear fit.

Here figures 25 and 26 show the word count ratios that are obtained when we
collect sevenmers to account for 10% (Fig. 25) or 20% (Fig. 26) of all windows of
length 7 in the intergenic regions. The figure shows that also with these larger numbers
of sevenmers the word-count ratio increases significantly with the number of TFs in
the genome.
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Figure 26: Sequence diversity of the most and least conserved sevenmers as a function
of the number of TFs in the genome. For each genome we ordered all sevenmers
by their evidence for being under purifying selection and collected the most and least
conserved unique sevenmers such that the sevenmers of both sets each account for 5%
of all sequence segments in the genome. The vertical axis shows the ratio between the
number of most conserved and least conserved sevenmers in the corresponding set as
a function of the total number of TFs in the genome (horizontal axis). Both axes are
shown on logarithmic scale. The black line shows a linear fit.

14 Methods

14.1 Power-law fitting
In several places we fit a power-law to a scatter of points, i.e. the number of operons
as a function of the number of genes, the number of TFs as a function of the number of
genes, and the number of TF clusters as a function of the number of genes. To perform
this fit we first log-transform all the data points. Let (xi, yi) denote the log-transformed
data points. The Bayesian straight-line fitting assumes Gaussian noise of unknown size
in both horizontal and vertical components and assumes a rotationally invariant prior
for the slope of the line [5]. In this model the posterior probability P (a|D) that the
slope of the line is a given the data is given by [6]

P (a|D) ∝
(
a2 + 1

)(n−3)/2

(var(y) + a2var(x)− 2acov(x, y))(n−1)/2
, (3)

where n is the number of data points, var(x) is the variance of the x-values

var(x) =
1
n

n∑
i=1

(xi − 〈x〉)2, (4)

var(y) is the variance of the y-values

var(y) =
1
n

n∑
i=1

(yi − 〈y〉)2, (5)
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and cov(x, y) is the covariance

cov(x, y) =
1
n

n∑
i=1

(xiyi − 〈x〉〈y〉). (6)

Note that the optimal line in this procedure corresponds roughly to the line that
minimizes the sum of the squared orthogonal distances of the data points to the line,
which also corresponds to the first principal component of the data.

14.2 Mapping Orthologs
First we collect the list of all (predicted) protein sequences for each genome from the
corresponding genbank file. A list of putative orthologs for each pair of genomes is ob-
tained by running WU-BLAST [7]. As shown in [8], ortholog identification becomes
more accurate if evolutionary distances, estimated by maximum likelihood, are used
instead of BLAST scores. Thus, for each reported hit, we globally align the corre-
sponding pair of proteins using CLUSTALW [9]. To avoid mistaking single domain
matches for orthologs we only retain alignments that cover at least 50% of both pro-
teins. We estimate the evolutionary distance d of the pair using PAML [10] and assign
a score H = − log(d) to the pair.

We number all the proteins in both genomes according to their position on the
chromosome and then identify orthologs by the following iterative procedure:

1. A pair of genes (α, β) are considered orthologs, which we write as α v β, if
they are best reciprocal hits, and there is no other hit with a score larger than
a fraction f of the score of the pair. That is α v β if Hαj < fHαβ for all
j 6= β and Hiβ < fHαβ for all i 6= α. We search for all pairs satisfying
these conditions. After that, for each identified orthologous pair α v β we set
all scores Hαj and Hiβ , i.e. hits to other proteins, to zero. We then repeat the
search for orthologs until no more new orthologs are found.

2. We construct diagonals of consecutive or “anti-consecutive” pairs, i.e. runs of
syntenic orthologous pairs of the form {α v β, (α+1) v (β+1), . . . , (α+n) v
(β + n)} or {α v β, (α + 1) v (β − 1), ..., (α + n) v (β − n)}.

3. We now collect the set of pairs of proteins (i, j) that lie at the start or end of any
of the syntenic runs of orthologs. Note that this includes all pairs of genes that
lie in “gaps” between consecutive syntenic runs. We then perform the ortholog
search on only this subset of pairs.

4. When no more orthologs are found we identify the remaining set of best recip-
rocal pairs, i.e. no longer demanding that all other scores are less than a fraction
f of the best reciprocal pair score.

In the paper we used f = 0.5, i.e. the score of the best pair should be twice as high
as the next best pair. We find that, even for the sets of genomes of relatively closely
related species that we work with, this procedure increases the number of orthologous
pairs found by 10% or more over just using best reciprocal hits. However, the results
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shown in the paper are not affected if a simple best-reciprocal-hit procedure is used for
identifying orthologs instead of our procedure.

14.3 Finding Orthologous Cliques
Having determined all the pairwise orthology relations for all pairs of genomes in a
clade, it is straitforward to find orthologues cliques. An orthologous clique is a set
of genes, one from each organism, such that all genes in the set are orthologs of each
other. First, we assign to each gene an n-dimensional vector (with n the number of
genomes in the clade) where the ith entry in the vector is the identity of the ortholog
in the ith genome (if i is the genome from which the gene itself stems, then the entry
is the identity of the gene itself). For each genome we produce a list of such vectors.
Cliques are identified as those vectors that occur in the list of vectors of all genomes.

14.4 Removing the least and most conserved cliques
We align the DNA sequences of all orthologous cliques using T-coffee [11]. For each
alignment we identify all third positions in codons of the sequence of the reference
species and check what fraction of the aligned bases from the other species in the clade
is conserved. In this way a conservation statistic is assigned to each multiple alignment.
For each clade we sort all multiple alignments by this conservation statistic and remove
the top 10% and bottom 10% of the multiple alignments. These ‘outliers’ will not be
used for our parameter estimation.

14.5 Reconstructing the phylogenetic tree topology
For each clade we concatenated the remaining 80% of the multiple alignments and let
the TREE-puzzle algorithm [12] determine a phylogenetic tree from this concatenated
alignment.

14.6 Determining base composition and Codon Bias
We use 12 different background models, for 12 different classes of positions: intergenic
positions, first, second, and third positions in codons, and silent positions in each of 8
fourfold degenerate codons. For each background model c we need to determine the
vector of equilibrium frequencies wc, with wc

α the frequency of base α in class c.
To estimate the equilibrium frequencies we average over all organisms in the clade.
Base frequencies in intergenic regions are determined from all intergenic regions in
all genomes in the clade. For the coding positions and the silent positions for the 8
fourfold degenerate codons we used all the remaining orthologous cliques, but have
excluded the first and last 20 amino acids in each clique. The latter is done because, as
our results show, there are significant deviations in base composition at the starts and
ends of genes.
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14.7 Estimating pairwise species distances
For each clade, and each pair of species in this clade, we start by collecting the data-set
D of all pairwise aligned third positions in fourfold degenerate codons from the filtered
set of cliques (excluding the first and last 20 amino acids in each protein). We use only
those third positions for which the amino acid is conserved and count the number of
times nc

αβ that base α occurs in the first species and base β in the other in codons of
type c. Further let wc

α and w̃c
α denote the frequency of base α in codons of type c in

the first species and second species respectively. We will approximate the probability
to observe the pair of bases αβ at a codon of type c by the average of the probabilities
(under the F81 model) to start with base α in the first species and evolve to base β in
the second and the probability to start with base β in the second species and evolve
base α in the first. That is, the probability P (α|β, t, wc) that the third position of a
codon of type c will evolve from base β in the second genome to base α in the first
genome assuming distance t between the genomes, is given by

P (α|β, t, wc) = δαβe−t + (1− e−t)wc
α (7)

where wc
α is the fraction of all codons of type c in the first genome that have base α at

the third position. Analogously, the probability to evolve from α in the first genome to
β in the second genome is given by

P (β|α, t, w̃c) = δαβe−t + (1− e−t)w̃c
β . (8)

We now approximate the probability to find the pair of bases αβ at the third positions
of a codon of type c in the alignment of two orthologous proteins from the two genomes
as the average of P (α|β, t, wc)w̃c

β and P (β|α, t, w̃c)wc
α:

P (αβ|t, wc, w̃c) =
(wc

α + w̃c
β)

2
δαβe−t + (1− e−t)wc

αw̃c
β . (9)

Using this expression, the probability P (D|t, w, w̃) of the observed dataset D of
counts nc

αβ is then given by

P (D|t, w, w̃) =
∏

c,α,β

[
(wc

α + w̃c
α)

2
δαβe−t + (1− e−t)wc

αw̃c
β

]nc
αβ

, (10)

where the product is over all 8 fourfold degenerate codons c and 16 base combinations
αβ. We determine the distance t of the pair of species by maximizing this expression
with respect to t. We take the derivative of the logarithm of the expression (10) and set
the result equal to zero. This leads to the following algebraic equation

Ndiff =
∑

c

∑
α

N cons
c,α (W c

α − wc
αw̃c

α)e−t

e−tW c
α + (1− e−t)wc

αw̃c
α

(11)

where N cons
c,α is the number of occurrences of a conserved pair αα among codons of

type c. Ndiff is the total number of pairs with different bases in the two species, and

W c
α =

wc
α + w̃c

α

2
. (12)
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The equation above can be solved by standard numerical techniques since the expres-
sion on the right is a monotonically increasing function of t on the positive real axis.

14.8 Fitting the tree from the pairwise distances
As described above, we have already determined the topology of the phylogenetic tree
for each clade. In addition, we have determined all pairwise distances tij between
each pair of species (ij) for each clade. To determine the distance tb on each of the
branches b in each phylogenetic tree we use the standard least-square fitting with a
fixed tree topology [13]. For completeness we describe the procedure here.

We find the set of distances tb such that, for all pairs ij, the distances tij are best
approximated by the total distance along the branches connecting i and j. That is, we
minimize

F =
∑
ij

tij −
∑

b∈Πij

tb

2

(13)

where Πij is defined as the set of branches connecting nodes i and j of the tree. Taking
the derivative with respect to tb and setting it zero we obtain

0 =
∑
ij

δ(b ∈ Πij)

tij −
∑

b′∈Πij

tb′

 , (14)

where δ(b ∈ Πij) is 1 if branch b is an element of Πij and 0 otherwise. If we define the
vector

∑
ij δ(b ∈ Πij)tij = Ab, and the matrix Vbb′ =

∑
ij δ(b ∈ Πij)δ(b′ ∈ Πij),

then equation (13) becomes

0 = Ab −
∑
b′

Vbb′db′ ⇔ db =
∑
b′

(
V −1

)
bb′

Ab′ . (15)

Thus, the optimal set of branch lengths can be determined by a simple matrix inver-
sion. Notice also that Ab is the sum of all pairwise distances between species that are
connected through b and Vbb′ is the number of pairs of species ij for which the path
that connects them passes through both b and b′.

14.9 Calculating R values
Let c generally denote a class of positions. The background evolutionary model for
positions within class c is given in terms of the base frequencies wc

α for this class, and
the branch lengths tb for each branch b of the phylogenetic tree of the clade. Along a
single branch of the tree, the probability to evolve from ancestral base β to descendant
base α is given by

P (α|β, tb, w
c) = δαβe−tb + (1− e−tb)wc

α. (16)

Let C denote an aligment column for the species of the clade. The probability P (C|bg, c)
to observe alignment column C under the background evolution model of class c is
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given by taking the product of (16) over all branches in the phylogenetic tree, and
summing over the bases at all internal nodes:

P (C|bg, c) =
∑

βi|i∈I

wβr

∏
n 6=r

P (βn|βa(n), tb, w
c), (17)

where βi is the base at node i, I is the set of internal nodes of the tree, a(n) is the
ancestral node of node n, r is the root, and the product is over all nodes except for
the root. The sum over the bases at the internal nodes is calculated using the standard
recursive method introduced by Felsenstein [14]. That is, let Cn

α denote the probability
of the subtree rooted at node n, assuming that the base at node n was α. We then have
the recursion relation

Cn
α =

∏
m∈c(n)

∑
β

P (β|α, tm, wc)Cm
β

 , (18)

where the product is over all nodes m that are in the set of children c(n) of node n, and
tm is the length of the branch leading from n to child m. Note that for leafs n we have

Cn
α = δααn

, (19)

with αn the base at leaf n. Starting from the leafs we can determine the Cn
α at all nodes

recursively. Once we have determined Cr
α of the root r we finally have

P (C|bg, c) =
∑
α

wc
αCr

α. (20)

For each class c the foreground model is calculated by assuming that the nucleotide
frequencies w are not given but unknown. That is, we integrate over all possible vectors
of nucleotide frequencies:

P (C|fg, c) =
∫

P (C|w)P (w|c)dw, (21)

where P (C|w) is the exact same expression as (17) but with the class specific vector
of frequencies wc replaced by the unknown vector of frequences column w, and the
integral is over the simplex wA + wC + wG + wT = 1. Finally, P (w|c) gives the prior
probability distribution that a foreground column in class c will have frequency vectors
w. We choose for P (w|c) a Dirichlet prior, and we set the parameters of this prior to
match the base composition in this class:

P (w|c) =
∏
α

(wα)wc
α−1

Γ(wc
α)

. (22)

Note that to calculate this integral we again have to sum over the bases at all internal
nodes of the tree. Whereas each term in this sum can be integrated analytically using
the general expression ∫ ∏

α

(wα)nα−1dw =
∏

α Γ(nα)
Γ(
∑

α nα)
, (23)
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there is no simple recursive way to calculate the sum and we are forced to sum all terms
explicitly. However, we only need to do this once for each clade.

For each class c and each possible alignment column C we calculate the ratio
R(C|c) between the foreground and background model for this class,

R(C|c) =
P (C|fg, c)
P (C|bg, c)

, (24)

which quantifies the amount of evidence that column C is evolving according to a se-
lection pressure different from the background model for this class. Finally, we analyze
the evidence of selection in different groups of non-coding positions by calculating the
average value of R(C|c) for different groups of positions. In particular, we determine
the average value of R in different types of intergenic regions, the average value of R
within different classes of positions within genes, and the average value of R at a given
locations relative to the start and stop codons of genes.

14.10 R values for positions evolving according to the background
model

For the bulk of silent positions in proteins we observe an average R value of R = 1.
Here we show that this suggests that these positions evolve according to the background
model. Assume that, for a certain class of positions, a fraction f(C) show alignment
column C. The average R value in these positions is then given by

〈R〉 =
∑
C

f(C)
P (C|fg)
P (C|bg)

. (25)

If the positions in this set are evolving according to the background model we have

f(C) = P (C|bg). (26)

Therefore, we have

〈R〉 =
∑
C

f(C)
P (C|fg)
P (C|bg)

=
∑
C

P (C|bg)
P (C|fg)
P (C|bg)

= 1, (27)

where the last equality follows because the foreground distribution P (C|fg) is of course
also normalized. In summary, the fact that R = 1 on average at silent positions suggests
that the fractions f(C) at these positions are close to the background model frequencies
P (C|bg).

14.11 R values in the limit of t → 0

Imagine an alignment column for only two species that are so closely-related that their
phylogenetic distance is essentially zero, i.e. t ≈ 0, and that all nucleotides are con-
served. Obviously there is no useful conservation information whatsoever in this align-
ment and as a consequence our R statistic should be equal at all alignment columns
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and not indicate any evidence of the foreground over the background model, i.e. we
should have R = 1 for all alignment columns.

Let’s assume a given alignment column of class c has α in both sequences. Un-
der the background evolution model the probability of this data is just given by the
frequency wc

α of nucleotide α in this class. Assume that for the foreground evolution
model we integrate over w with Dirichlet prior

P (w) = Γ(λ)
∏
α

(wα)λα−1

Γ(λα)
, (28)

where the λα are the pseudocounts of the prior and λ =
∑

α λα. A simple calculation
shows that the probability of an alignment column with nucleotide α in both species
(at distance t = 0) under this foreground model is given by λα/λ. Therefore we find
that R = 1 if and only if λα ∝ wc

α. That is, the pseudocounts of the prior should be
proportional to the overall frequencies wc

α of the background model. This leaves the
overall scale λ free to determine. The overall scale λ sets the expected bias for columns
in the foreground model with λ = 4 corresponding roughly to a uniform prior. We set
λ = 1 which corresponds roughly to the bias observed in known regulatory sites in E.
coli.

14.12 Calculating substitution rates
The R(C) statistic of a column C calculates the likelihood ratio of the column under
the foreground and background evolutionary model. As the branch lengths in the phy-
logenetic tree grow it generally becomes easier to distinguish if a column is evolving
under the foreground or the background model and R values thus typically grow with
the total branch length of the phylogenetic tree. As the scaling of R with the branch
lengths of the phylogenetic tree may complicate the detection of a correlation between
genome size and selection in intergenic regions we calculated an alternative measure
of the amount of selection on an alignment column which does not scale with branch
length. Instead of assuming that a column evolves either according to a background
model, or according to some unknown WM column, we will instead assume that each
alignment column evolves according to a WM column and infer the effective substitu-
tion rate at this position.

Note that, if a given position evolves according to WM column w, then the overall
rate of substitution at this position depends on the WM column w. That is, given a total
mutation rate of µ, the rate sαβ of substitution from base α to base β is

sαβ = µwβ , (29)

and total rate of substitution away from α is given by

sα =
∑
β 6=α

sαβ = µ(1− wα). (30)

Since wα also gives the equilibrium frequency of occurrence of base α at this position,
the probability to find nucleotide α at this position at a given point in time is wα.
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Therefore, the average rate of substitution in this column is given by

s(w) =
∑
α

µwα(1− wα) = µ

(
1−

∑
α

(wα)2
)

. (31)

The prefactor µ just gives the overall rate at which mutations are introduced, indepen-
dent of w, and the second factor encodes the efect on substitution rate by selection
(and mutational bias) as encoded by WM column w. The stronger this bias in the WM
column w, the lower the mutation rate. We can thus quantify the strength of selection
and mutational bias at this column by a substitution rate reduction SSR(w), which we
define as 1 minus the relative substitution rate s(w)/µ:

SRR(w) = 1− s(w)
µ

=
∑
α

(wα)2. (32)

Given an alignment column C, we can thus calculate an expected overall substitu-
tion rate reduction SRR(C) at this position:

SRR(C) =
∫ ∑

α

(wα)2P (w|C)dw =
∫ ∑

α(wα)2P (C|w)P (w)dw∫
P (C|w)P (w)dw

. (33)

That is, just as we calculated an R value for each alignment column C, we now calcu-
late an expected overall substitution rate at this column SRR(C). Finally, to quantify
the evidence of selection in a column C we defined the Q-statistic Q(C) by normaliz-
ing SRR(C) to the expected SRR(C) given the background model:

Q(C) =
SRR(C)∑

C SRR(C)P (C|bg)
. (34)

and we again calculate average Q values over classes of positions.

14.13 Estimating branch lengths with PAML
We construct pseudo-alignments by concatenating all alignment columns of fourfold
degenerate codons from clique alignments. Since we want to take into account codon
bias, we separate silent sites according to codon type. Similarly, we extract the in-
tergenic alignment columns from gene-intergenic-gene alignments separately for each
type of intergenic region (NR, SR, and DR).

We use these pseudo-alignments as input for PAML, together with the topology of
the phylogenetic tree of the clade which we estimated as described above. We then run
PAML with the following set of options:

1. Evolutionary model: HKY85 which treats transition and transversion events sep-
arately.

2. Kappa: we allow the program to estimate the ratio between transitions and
transversions kappa.
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3. Clock: we do not assume a molecular clock.

4. Alpha: we set parameter alpha to zero, which means that the rate of mutation is
assumed constant across sites.

PAML uses maximum likelihood under the HKY85 model to estimate the branch
lengths in the tree. We take the sum of branch lengths as a measure of the total rate of
substitutions within regions of each type.

14.14 Multiple alignments of syntenic regions
When calculating average R values across intergenic regions and when calculating R
values as a function of their position with respect to the starts and ends of genes, we
want to make sure not to erroneously align intergenic regions that have undergone
rearrangement since the species diverged from their common ancestor. To do this we
consider an intergenic region in a given species orthologous to an intergenic region in
the reference species only if the genes at both ends are orthologous and their orientation
is conserved.

Let X denote an intergenic region in the reference species, let gl and gr denote the
genes in the reference species at the left and right end of the intergenic region X , and
let ol and or be the orientations of the genes gl and gr, i.e. ol = 1 means gene gl is on
the plus strand and ol = −1 means it is on the negative strand. Similarly, let X̃ denote
an intergenic region in another species of the clade with g̃l and g̃r the genes on the right
and left of X̃ , and õl and õr their orientations. The regions X and X̃ are considered
orthologous if one of the following two sets of conditions holds

1. gl is orthologous to g̃l, gr is orthologous to g̃r, ol = õl, and or = õr.

2. gl is orthologous to g̃r, gr is orthologous to g̃l, ol = −õr, and or = −õl.

For each intergenic region X in the reference species we collect all orthologous in-
tergenic regions in the other species of the clade. We then extracted, from each species,
the DNA sequences of the intergenic region plus the two flanking genes. This set of
sequences was then aligned with the T-Coffee algorithm [11] using default parameters.

For the calculation of average R values across intergenic regions of different type
we only considered intergenic regions that were at least 50 bp wide.

14.15 R value profiles
The R value profiles, as shown in figures 6 and 7 were calculated from the gene-
intergenic-gene multiple alignments just described. To obtain the profiles we need
to calculate the average R value of alignment columns at a given positions relative to
the start codon, and alignment columns at a given position relative to the stop codon.
To do this we calculate, for each alignment column in each multiple alignment, the
relative position rl of the nucleotide in the reference species to the start/stop codon of
the gene on the left and relative position rr to the start/stop codon of the gene on the
right (whether these are start or stop codons depends on the orientations of the flanking
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genes for the intergenic region under study). The R value of the column in question is
then added to both averages at positions rl and rr.

In this way two average profiles were created, average R values around the start
codons of genes, and average R values around stop codons of genes. We concatenated
these profiles into a single profile by taking from each profile 150 bps in the intergenic
region and 300 bps in the coding region.

14.16 RNA secondary structure statistics
For each gene in each clade we wanted to determine the secondary structure in the
mRNA immediately around the start codon. It is hard to do this accurately for two
main reasons: First, the secondary structure will depend on the precise transcription
start site, i.e. where the mRNA starts, and this is generally unknown. Second, folding
algorithms can reasonably accurately determine RNA secondary structure in thermo-
dynamic equilibrium but it is likely that the true RNA secondary structure at the start
of the mRNA is determined by an essentially kinetic process in which the RNA starts
folding as the nascent transcript emerges from the RNA polymerase. That is, we are
likely to get a more accurate approximation of the true RNA secondary structure by
folding only an initial piece of the mRNA. As an approximation we chose to position
the hypothesized ‘start’ of each transcript 60 bps upstream of its translation start and
to fold a region of 150 bps long, i.e. up to 90 bps downstream of translation start.

We thus extracted, for each gene in each clade, the region from 60 bps upstream
of the start codon to 90 bps downstream of the start codon and folded it using the
Vienna RNA package [15]. Among the statistics that the Vienna package provides is
the probability pi (or fraction of time in equilibrium) for each nucleotide i to not be
paired to another nucleotide. For each position i, with i running from −60 to +90, we
calculated the average probability 〈pi〉 by averaging pi over all genes,

〈pi〉 =
1
G

G∑
g=1

pi(g), (35)

with pi(g) the probability that position i is open in gene g and G is the total number of
genes in the genome. We also calculated the variance vi as

vi =
1
G

G∑
g=1

pi(g) (1− pi(g)) , (36)

The standard error ei in the estimated 〈pi〉 is then given by

ei =
√

vi

G
. (37)

We now want to compare the probabilities 〈pi〉 at different locations relative to transla-
tion start. To do this we compare 〈pi〉 at each position with the average value of 〈pi〉 in
the regions away from translation start. That is, we define ‘flanking’ regions running
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from [−50,−31] and [31, 80] and calculate the average openess in these areas as

〈pflanking〉 =
1
70

[ −31∑
i=−50

〈pi〉+
80∑

i=31

〈pi〉

]
. (38)

Note that we have excluded the regions [−60,−51] and [81, 90] at the ends of the
sequence that we fold to avoid boundary effects, i.e. the regions at the ends of the
sequence show less base pairing in general.

The standard error eflanking in the estimate of 〈pflanking〉 is

eflanming =
1
72

√√√√[ −31∑
i=−50

(ei)2 +
80∑

i=31

(ei)2
]
. (39)

Finally, we calculate the Z-statistic at each position i as

zi =
〈pi〉 − 〈pflanking〉√
(ei)2 + (eflanking)2

. (40)

Positive zi values indicate that position i tends to be more open than the flanking re-
gions, and negative values indicate that the position tends to be more closed than the
flanking regions.

The openess value pi at different positions are to a large extent driven by base
composition, e.g. the elevated frequency of A nucleotides immediately upstream and
immediately downstream of translation start leads to less secondary structure in these
areas. It is a priori not clear if the base composition is driving the RNA secondary
structure in this area or that a selection for avoiding RNA secondary structure in this
area is driving base composition. To test this we compared the observed openess val-
ues 〈pi〉 with those observed at this position in G randomly generated sequences with
the exact same base composition. That is, if the selection is on the RNA secondary
structure then one might expect that the openess in the regions around translation start
is larger even than the openess in random sequences with the same base composition.

For each clade we created G random sequences where, at each position i, the prob-
ability to put A, C, G, or T match the observed base frequencies at that position. We
then fold all G sequences and calculate 〈pi(rand)〉 for this random data-set as well as
the standard errors ei(rand). Finally, we calculate the Z-statistics

z′i =
〈pi〉 − 〈pi(rand)〉√
(ei)2 + (ei(rand))2

. (41)

Positive z′i values indicate positions at which the openess is larger than in random
sequences with the same base composition.

14.17 Smoothed profiles
All the position dependent profiles that are shown in the main paper and in the support-
ing figures were smoothed to reduce fluctuations on short distance scales. We produced
the smoothed profiles S(x) of a statistic S using a double-exponential kernel:
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S(x) =
1
N

∑
y

S(x− y)e−
|x−y|

α (42)

where N is a normalization factor,

N =
∑

y

e−
|x−y|

α (43)

and α is a length-scale which, for this study, was set to 3. In order to avoid the
mixture of the statistics in intergenic or coding regions, special boundaries were take
into account for summing in (42) and (43). That is, for calculating the smoothed statis-
tic S(x) at a position x that lies within intergenic, the sum on the right runs only over
positions y that are in intergenic as well. Similarly, for calculating the smoothed statis-
tic S(x) at a position x within the coding region, the sum on the right runs only over
positions y that are in the coding region as well.
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