
Table S1. Percentage of the four nucleotides found at the three codon positions. Figures 

calculated by summing across all non-overlapping genes in all viral genomes examined. 

 

Nucleotide First codon position Second codon position Third codon position 

A 30.6 31.2 26.0 

G 30.9 17.0 22.6 

C 18.6 22.9 21.8 

T 19.8 28.9 29.6 

 

 

Table S2. As Table 2 in main text, but we have excluded all genes that contain potentially 

misleading features such as multiple overlaps, internal frameshifts, splicing, or reverse 

complementation. (The cutoff for homology is 10-3 as in Table 2.) 

 

Overlap Type Gene Type Number Mean PDI Number 

Nucleocapsid 

or Replicase 

Number 

+1/-1 

frameshift 

Primary 6.4*** 14*** Internal Overlap 

Secondary 

31 

1.7* 0* 

24/7** 

3' Overlap 5.0*** 18NS Terminal Overlap 

5' Overlap 

76 

3.5NS 18NS 

34/42NS 

Non-Overlapping NA 322 2.2 57 NA 

 

 



Figure S1. Relationship between gene overlap (arcsin-sqrt) and information length (ln). Gene 

overlap is the angle whose sine is the square root of the overlap as a proportion of the information 

length. Information length is the natural logarithm of genome length plus overlap length. 

Untransformed values for both axes are shown in the inset. Points are means for the following 

taxa. 

1 - Acyrthosiphon pisum virus (n=1); 2 - Arenaviridae (n=11); 3 - Arteriviridae (n=4); 4 - 

Astroviridae (n=6); 5 - Barnaviridae (n=1); 6 - Beet western yellows ST9 associated virus (n=1); 

7 - Benyvirus (n=2); 8 - Birnaviridae (n=5); 9 - Bornaviridae (n=1); 10 - Botrytis virus F (n=1); 

11 - Botrytis virus X (n=1); 12 - Bromoviridae (n=22); 13 - Bunyaviridae (n=20); 14 - 

Caliciviridae (n=13); 15 - Caulimoviridae (n=23); 16 - Cheravirus (n=2); 17 - Chrysoviridae 

(n=1); 18 - Closteroviridae (n=16); 19 - Comoviridae (n=18); 20 - Coronaviridae (n=12); 21 - 

Cystoviridae (n=4); 22 - Diaporthe ambigua RNA virus 1 (n=1); 23 - Dicistroviridae (n=12); 24 - 

Endornavirus (n=1); 25 - Filoviridae (n=4); 26 - Flaviviridae (n=34); 27 - Flexiviridae (n=52); 28 

- Furovirus (n=5); 29 - Fusarium graminearum dsRNA mycovirus-1 (n=1); 30 - Hepadnaviridae 

(n=10); 31 - Hepeviridae (n=1); 32 - Hordeivirus (n=1); 33 - Hypoviridae (n=4); 34 - Idaeovirus 

(n=1); 35 - Iflavirus (n=7); 36 - Leviviridae (n=8); 37 - Luteoviridae (n=17); 38 - Marnaviridae 

(n=1); 39 - Narnaviridae (n=8); 40 - Nodaviridae (n=8); 41 - Ophiovirus (n=3); 42 - 

Orthomyxoviridae (n=5); 43 - Oyster mushroom spherical virus (n=1); 44 - Paramyxoviridae 

(n=28); 45 - Partitiviridae (n=14); 46 - Pecluvirus (n=2); 47 - Picobirnavirus (n=1); 48 - 

Picornaviridae (n=31); 49 - Pomovirus (n=4); 50 - Potyviridae (n=54); 51 - Reoviridae (n=21); 

52 - Retroviridae (n=40); 53 - Rhabdoviridae (n=17); 54 - Sclerophthora macrospora virus A 

(n=1); 55 - Sequiviridae (n=6); 56 - Sobemovirus (n=9); 57 - Tenuivirus (n=2); 58 - Tetraviridae 

(n=4); 59 - Thielaviopsis basicola dsRNA virus 1 (n=1); 60 - Tobamovirus (n=15); 61 - 

Tobravirus (n=3); 62 - Togaviridae (n=16); 63 - Tombusviridae (n=35); 64 - Totiviridae (n=20); 

65 - Tymoviridae (n=12); 66 - Umbravirus (n=4). 

 

 

 

 



         Belshaw et al. Figure S1 

 

 
 



Figure  S2. Observed overlap frequency  distributions (each value is the mean of an homologous 

group): (A) Internal Overlaps. (B) Terminal Overlaps. Histograms represent all genes while lines 

represent a smaller dataset consisting only of genes with no potentially complicating factors such 

as splicing, internal frameshifting or multiple overlaps. Note the absence of very short Internal 

Overlaps in the smaller dataset (these are small overlapped components of larger spliced genes).  

 
 

 



R script for fitness simulation (also given in Archive) 
 
The following three scripts (which need to be cut and pasted) show simulations of the effect of 
increasing the proportion of the genome in an overlap on the fitness effect of mutations. 
 
1. Basic script showing the effect of gene overlap on a multiplicative model of fitness. 
2. Different models of the effect multiple mutations on fitness: comparing multiplicative to 
synergistic etc 
3. Effect of reducing the per genome mutation rate on the effect of gene overlap with the basic 
multiplicative model 
 
 
#---First script: for showing the effect of gene overlap on a multiplicative model of fitness -------- 
 
rm(list=ls())  # Delete all existing variables  
 
m = 0.0001 # mutation rate per bp 
g = 10000 # starting genome size (no overlap) 
s = 0.1 # selection coefficient 
 
fitness = NULL 
prog_fit = NULL # fitness of progeny with increasing numbers of mutations 
total_prog_fit = NULL #  fitness of progeny = sum of frequency of each mutant class of progeny 
multiplied by its fitness 
prop = NULL 
 
class_fitness <- function(n, p) { # function for determining total number of mutations: those that 
fall in regions of gene overlap count twice! 
 prob_over = (p/2)/((1-p)+(p/2)) # probability of mutation falling in region of overlap 
 for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in 
regions of overlap 
  #exp_freq = (exp(-prob_over)*(prob_over^k))/factorial(k) 
  exp_freq = prob_over^k * (1-prob_over)^(n-k) * (factorial(n) / (factorial(k) * 
factorial(n - k))) # relative expected freqencies. factorial(n) / (factorial(k) * factorial(n - k)) is the 
binomial coefficient = number of combinations in which can achieve this number of muattions in 
overlap 
  fitness[k+1] = exp_freq * exp( - s * ( (k*2) + (n-k) ) ) 
 } 
 return(sum(fitness)) 
} 
 
for(i in 0:100) { 
 p = i/100 # just converting p from an integer to a proportion 
 u = m * g * (1 - p/2) # adjust per genome mutation rate to allow for compression due to 
overlap 
 freq = exp(-u) # need frequency of zero class at start 



 prog_fit[1] = freq * 1 # = frequency of progeny with zero mutations multiplied by their 
fitness, which equals one (= exp(- s * 0 )) 
 for(n in 1:10) { # no need to go beyond frequency of progeny with 5 mutations 
(proportion is < 0.001) 
  freq = freq * (u/n) 
  prog_fit[n+1] = freq * class_fitness(n, p) # multiply frequency of each class by its 
fitness 
   
 } 
 total_prog_fit[i+1] = sum(prog_fit) 
 prop[i+1] = p # just for plotting 
} 
 
plot(prop, total_prog_fit, col=1, type="l",xlab="overlap", ylab="fitness", main="", frame.plot = 
FALSE) 
 
#---Second script: for comparing different models for the impact of multiple mutations on fitness  
rm(list=ls())  # Delete all existing variables  
 
m = 0.0001 # mutation rate per bp 
g = 10000 # starting genome size (no overlap) 
s = 0.1 # selection coefficient 
b = 0.01  # second selection coefficient for epistasis 
fitness = NULL 
prog_fit_mult = NULL # fitness of progeny with increasing numbers of mutations 
total_prog_fit_mult = NULL #  fitness of progeny = sum of frequency of each mutant class of 
progeny multiplied by its fitness 
prog_fit_mult2 = NULL # as above, but for alternative model of multiplicative fitness 
interactions 
total_prog_fit_mult2 = NULL #  # as above, but for alternative model of multiplicative fitness 
interactions 
prog_fit_ant_epi = NULL # as above, but for antagonostic epistasis 
total_prog_fit_ant_epi = NULL # as above, but for antagonostic epistasis 
prog_fit_syn_epi = NULL # as above, but for synergistic epistasis 
total_prog_fit_syn_epi = NULL # as above, but for synergistic epistasis 
prog_fit_add = NULL # as above, but for additive fitness 
total_prog_fit_add = NULL # as above, but for additive fitness 
prop = NULL 
 
# basic multiplicative fitness 
class_fitness_mult <- function(n, p) { # function for determining total number of mutations: those 
that fall in regions of gene overlap count twice! 
 prob_over = (p/2)/((1-p)+(p/2)) # probability of mutation falling in region of overlap 
 
 for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in 
regions of overlap 



  bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient = 
number of combinations in which can achieve this number of muattions in overlap 
  exp_freq = prob_over^k * (1-prob_over)^(n-k) * bin_coeff # relative expected 
freqencies 
  fitness[k+1] = exp_freq * exp( - s * ( (k*2) + (n-k) ) ) 
 } 
 return(sum(fitness)) 
} 
 
# alternative multiplicative fitness 
class_fitness_mult2 <- function(n, p) { # function for determining total number of mutations: 
those that fall in regions of gene overlap count twice! 
 prob_over = (p/2)/((1-p)+(p/2)) # probability of mutation falling in region of overlap 
 
 for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in 
regions of overlap 
  bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient = 
number of combinations in which can achieve this number of muattions in overlap 
  exp_freq = prob_over^k * (1-prob_over)^(n-k) * bin_coeff # relative expected 
freqencies 
  fitness[k+1] = exp_freq * (1 - s)^((k*2) + (n-k)) 
 } 
 return(sum(fitness)) 
} 
 
# antagonistic epistasis 
class_fitness_ant_epi <- function(n, p) { 
 b = 0.01  # second selection coefficient for epistasis 
 prob_over = (p/2)/((1-p)+(p/2)) 
 for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in 
regions of overlap 
  bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient = 
number of combinations in which can achieve this number of muattions in overlap 
  exp_freq = prob_over^k * (1-prob_over)^(n-k) * bin_coeff # relative expected 
freqencies 
  fitness[k+1] = exp_freq *  exp(- s * ((k*2) + (n-k))  + b * ((k*2) + (n-k))^2) 
 } 
 return(sum(fitness)) 
} 
 
# synergistic epistasis 
class_fitness_syn_epi <- function(n, p) { 
 b = 0.02  # second selection coefficient for epistasis 
 prob_over = (p/2)/((1-p)+(p/2)) 
 for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in 
regions of overlap 



  bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient = 
number of combinations in which can achieve this number of muattions in overlap 
  exp_freq = prob_over^k * (1-prob_over)^(n-k) * bin_coeff # relative expected 
freqencies 
  fitness[k+1] = exp_freq *   exp(- s * ((k*2) + (n-k))  - b * ((k*2) + (n-k))^2) 
 } 
 return(sum(fitness)) 
} 
 
# additive epistasis 
class_fitness_add <- function(n, p) { 
 prob_over = (p/2)/((1-p)+(p/2)) 
 for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in 
regions of overlap 
  bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient = 
number of combinations in which can achieve this number of muattions in overlap 
  exp_freq = prob_over^k * (1-prob_over)^(n-k) * bin_coeff # relative expected 
freqencies 
  fitness[k+1] = exp_freq *   (1 - (s * ((k*2) + (n-k)))) 
 } 
 return(sum(fitness)) 
} 
 
 
 
for(i in 0:100) { 
 p = i/100 # just converting p from an integer to a proportion 
 u = m * g * (1 - p/2) # adjust per genome mutation rate due to overlap 
 freq = exp(-u) # need frequency of zero class at start 
 prog_fit_mult[1] = freq * 1 # = frequency of progeny with zero mutations multiplied by 
their fitness, which equals one (= exp(- s * 0 )) 
 prog_fit_mult2[1] = freq * 1 
 prog_fit_ant_epi[1] = freq * 1 # same for all fitness functions 
 prog_fit_syn_epi[1] = freq * 1 
 prog_fit_add[1] = freq * 1 
 for(n in 1:10) { # no need to go beyond frequency of progeny with 5 mutations 
(proportion is < 0.001) 
  freq = freq * (u/n) 
  prog_fit_mult[n+1] = freq * class_fitness_mult(n, p) # multiply frequency of each 
class by its fitness 
  prog_fit_mult2[n+1] = freq * class_fitness_mult2(n, p) # multiply frequency of 
each class by its fitness 
  prog_fit_ant_epi[n+1] = freq * class_fitness_ant_epi(n, p) # multiply frequency of 
each class by its fitness 
  prog_fit_syn_epi[n+1] = freq * class_fitness_syn_epi(n, p) # multiply frequency 
of each class by its fitness 



  prog_fit_add[n+1] = freq * class_fitness_add(n, p) # multiply frequency of each 
class by its fitness 
 
   
 } 
 total_prog_fit_mult[i+1] = sum(prog_fit_mult) 
 total_prog_fit_mult2[i+1] = sum(prog_fit_mult2) 
 total_prog_fit_ant_epi[i+1] = sum(prog_fit_ant_epi) 
 total_prog_fit_syn_epi[i+1] = sum(prog_fit_syn_epi) 
 total_prog_fit_add[i+1] = sum(prog_fit_add) 
 prop[i+1] = p # just for plotting 
 
} 
 
plot(prop, total_prog_fit_mult/total_prog_fit_mult[1], col=1, type="l", ylim = range(0.98, 1.02), 
xlab="Prop overlap", ylab="Fitness", main="", frame.plot = FALSE) 
points(prop, total_prog_fit_mult2/total_prog_fit_mult2[1], col=2, type="l") 
points(prop, total_prog_fit_ant_epi/total_prog_fit_ant_epi[1], col=3, type="l") 
points(prop, total_prog_fit_syn_epi/total_prog_fit_syn_epi[1], col=4, type="l") 
points(prop, total_prog_fit_add/total_prog_fit_add[1], col=5, type="l") 
legend(x="topright", legend=c("mult", "mult2", "ant_epi", "syn_epi", "add"), fill= 1:5, bty="n") 
 
#---Third script: for showing the effect of reducing per genome mutation rate on the basic 
multiplicative model  
 
rm(list=ls())  # Delete all existing variables  
 
s = 0.1 # selection coefficient 
fitness = NULL 
k.values = NULL 
prog_fit = NULL # fitness of progeny with increasing numbers of mutations 
total_prog_fit = NULL #  fitness of progeny = sum of frequency of each mutant class of progeny 
multiplied by its fitness 
prop = NULL 
slope = NULL 
mut_rate = NULL 
start_m = 0.0001 # starting mutation rate per bp 
g = 10000 # genome size (no overlap) 
 
class_fitness <- function(n, p) { # function for determining total number of mutations: those that 
fall in regions of gene overlap count twice! 
 prob_over = (p/2)/((1-p)+(p/2)) # probability of mutation falling in region of overlap 
 for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in 
regions of overlap 
  bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient = 
number of combinations in which can achieve this number of muattions in overlap 



  exp_freq = prob_over^k * (1-prob_over)^(n-k) * bin_coeff # relative expected 
freqencies 
  fitness[k+1] = exp_freq * exp( - s * ( (k*2) + (n-k) ) ) 
 } 
 return(sum(fitness)) 
} 
 
for(j in 1:100) { 
 m = start_m/j # reducing mutation rate 
 for(i in 0:100) { 
  p = i/100 # just converting p from an integer to a proportion 
  u = m * g * (1 - p/2)  # adjust per genome mutation rate due to overlap 
  freq = exp(-u) # need frequency of zero class at start 
  prog_fit[1] = freq * 1 # = frequency of progeny with zero mutations multiplied by 
their fitness, which equals one (= exp(- s * 0 )) 
  for(n in 1:5) { # no need to go beyond frequency of progeny with 5 mutations 
(proportion is < 0.001) 
   freq = freq * (u/n) 
   prog_fit[n+1] = freq * class_fitness(n, p) # multiply frequency of each 
class by its fitness 
  } 
  total_prog_fit[i+1] = sum(prog_fit) 
  prop[i+1] = p  
 } 
 saved.lm = lm(total_prog_fit ~ prop) 
 slope[j] = saved.lm$coefficients[2] 
 mut_rate[j] = m 
} 
  
 
plot(mut_rate, slope, col=1,  type="l", xlab="mut rate", ylab="slope", main="", frame.plot = 
FALSE) 
 


