Table S1. Percentage of the four nucleotides found at the three codon positions. Figures

calculated by summing across all non-overlapping genes in all viral genomes examined.

Nucleotide First codon position Second codon position | Third codon position
A 30.6 31.2 26.0
G 30.9 17.0 22.6
C 18.6 22.9 21.8
T 19.8 28.9 29.6

Table S2. As Table 2 in main text, but we have excluded all genes that contain potentially

misleading features such as multiple overlaps, internal frameshifts, splicing, or reverse

complementation. (The cutoff for homology is 10~ as in Table 2.)

Overlap Type Gene Type | Number | Mean PDI Number Number
Nucleocapsid | +1/-1
or Replicase | frameshift
Internal Overlap Primary 31 6.4 147 24/7"
Secondary 1.7 0"
Terminal Overlap | 3' Overlap | 76 507 18™ 34/42™°
5" Overlap 3.5 18™
Non-Overlapping | NA 322 2.2 57 NA

Figure S1. Relationship between gene overlap (arcsin-sqrt) and information length (In). Gene
overlap is the angle whose sine is the square root of the overlap as a proportion of the information
length. Information length is the natural logarithm of genome length plus overlap length.
Untransformed values for both axes are shown in the inset. Points are means for the following
taxa.

1 - Acyrthosiphon pisum virus (n=1); 2 - Arenaviridae (n=11); 3 - Arteriviridae (n=4); 4 -
Astroviridae (n=6); 5 - Barnaviridae (n=1); 6 - Beet western yellows ST9 associated virus (n=1);
7 - Benyvirus (n=2); 8 - Birnaviridae (n=5); 9 - Bornaviridae (n=1); 10 - Botrytis virus F (n=1);
11 - Botrytis virus X (n=1); 12 - Bromoviridae (n=22); 13 - Bunyaviridae (n=20); 14 -
Caliciviridae (n=13); 15 - Caulimoviridae (n=23); 16 - Cheravirus (n=2); 17 - Chrysoviridae
(n=1); 18 - Closteroviridae (n=16); 19 - Comoviridae (n=18); 20 - Coronaviridae (n=12); 21 -
Cystoviridae (n=4); 22 - Diaporthe ambigua RNA virus 1 (n=1); 23 - Dicistroviridae (n=12); 24 -
Endornavirus (n=1); 25 - Filoviridae (n=4); 26 - Flaviviridae (n=34); 27 - Flexiviridae (n=52); 28
- Furovirus (n=5); 29 - Fusarium graminearum dsRNA mycovirus-1 (n=1); 30 - Hepadnaviridae
(n=10); 31 - Hepeviridae (n=1); 32 - Hordeivirus (n=1); 33 - Hypoviridae (n=4); 34 - Idaeovirus
(n=1); 35 - Iflavirus (n=7); 36 - Leviviridae (n=8); 37 - Luteoviridae (n=17); 38 - Marnaviridae
(n=1); 39 - Narnaviridae (n=8); 40 - Nodaviridae (n=8); 41 - Ophiovirus (n=3); 42 -
Orthomyxoviridae (n=5); 43 - Oyster mushroom spherical virus (n=1); 44 - Paramyxoviridae
(n=28); 45 - Partitiviridae (n=14); 46 - Pecluvirus (n=2); 47 - Picobirnavirus (n=1); 48 -
Picornaviridae (n=31); 49 - Pomovirus (n=4); 50 - Potyviridae (n=54); 51 - Reoviridae (n=21);
52 - Retroviridae (n=40); 53 - Rhabdoviridae (n=17); 54 - Sclerophthora macrospora virus A
(n=1); 55 - Sequiviridae (n=6); 56 - Sobemovirus (n=9); 57 - Tenuivirus (n=2); 58 - Tetraviridae
(n=4); 59 - Thielaviopsis basicola dsRNA virus 1 (n=1); 60 - Tobamovirus (n=15); 61 -
Tobravirus (n=3); 62 - Togaviridae (n=16); 63 - Tombusviridae (n=35); 64 - Totiviridae (n=20);
65 - Tymoviridae (n=12); 66 - Umbravirus (n=4).

Overlap (arcsin-sqrt)

Belshaw et al. Figure S1

30.

65 400
54% -
=

" sa® & 200
68. ~—
@V

-
5 _— 3 ..
43* e .
Togt it L e

40.
10 20 30
Mean Genome Length (kb)

5‘
25¢ e
47e 9, %41 5.0) g1®
40 226%e . 7%)
3¢ a5 e 22 10 4® 39.35.5[?6 2850' e
8.0 8.5 9.0 9.5 10.0

Information Length (In(bases))

Figure S2. Observed overlap frequency distributions (each value is the mean of an homologous
group): (A) Internal Overlaps. (B) Terminal Overlaps. Histograms represent all genes while lines
represent a smaller dataset consisting only of genes with no potentially complicating factors such
as splicing, internal frameshifting or multiple overlaps. Note the absence of very short Internal

Overlaps in the smaller dataset (these are small overlapped components of larger spliced genes).

Frequency

I I 1 I 1

500 1000 1500 2000
Overlap (bases)

o

150
)

Frequency
100
1

[T T T 1

0 500 1000 1500 2000
Overlap (bases)

R script for fitness simulation (also given in Archive)

The following three scripts (which need to be cut and pasted) show simulations of the effect of
increasing the proportion of the genome in an overlap on the fitness effect of mutations.

1. Basic script showing the effect of gene overlap on a multiplicative model of fitness.

2. Different models of the effect multiple mutations on fitness: comparing multiplicative to
synergistic etc

3. Effect of reducing the per genome mutation rate on the effect of gene overlap with the basic
multiplicative model

#---First script: for showing the effect of gene overlap on a multiplicative model of fitness --------
rm(list=l1s()) # Delete all existing variables

m = 0.0001 # mutation rate per bp
g = 10000 # starting genome size (no overlap)
s = 0.1 # selection coefficient

fitness = NULL

prog_fit = NULL # fitness of progeny with increasing numbers of mutations

total prog fit=NULL # fitness of progeny = sum of frequency of each mutant class of progeny
multiplied by its fitness

prop = NULL

class_fitness <- function(n, p) { # function for determining total number of mutations: those that
fall in regions of gene overlap count twice!
prob_over = (p/2)/((1-p)+(p/2)) # probability of mutation falling in region of overlap
for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in
regions of overlap
#exp freq = (exp(-prob_over)*(prob_over”k))/factorial(k)
exp_freq = prob_over"k * (1-prob_over)"“(n-k) * (factorial(n) / (factorial(k) *
factorial(n - k))) # relative expected freqencies. factorial(n) / (factorial(k) * factorial(n - k)) is the
binomial coefficient = number of combinations in which can achieve this number of muattions in
overlap
fitness[k+1] = exp_freq * exp(- s * ((k*2) + (n-k)))
}

return(sum(fitness))

}

for(i in 0:100) {

p =1/100 # just converting p from an integer to a proportion

u=m * g * (1 - p/2) # adjust per genome mutation rate to allow for compression due to
overlap

freq = exp(-u) # need frequency of zero class at start

prog_fit[1] = freq * 1 # = frequency of progeny with zero mutations multiplied by their
fitness, which equals one (= exp(- s * 0))
for(n in 1:10) { # no need to go beyond frequency of progeny with 5 mutations
(proportion is < 0.001)
freq = freq * (u/n)
prog_fit[n+1] = freq * class_fitness(n, p) # multiply frequency of each class by its
fitness

}
total prog_fit[i+1] = sum(prog_fit)
prop[i+1] = p # just for plotting

}

plot(prop, total prog_fit, col=1, type="1",xlab="overlap", ylab="fitness", main="", frame.plot =
FALSE)

#---Second script: for comparing different models for the impact of multiple mutations on fitness
rm(list=l1s()) # Delete all existing variables

m = 0.0001 # mutation rate per bp

g = 10000 # starting genome size (no overlap)

s = 0.1 # selection coefficient

b =0.01 # second selection coefficient for epistasis

fitness = NULL

prog_fit mult = NULL # fitness of progeny with increasing numbers of mutations

total prog fit mult=NULL # fitness of progeny = sum of frequency of each mutant class of
progeny multiplied by its fitness

prog_fit mult2 = NULL # as above, but for alternative model of multiplicative fitness
interactions

total prog fit mult2 = NULL # # as above, but for alternative model of multiplicative fitness
interactions

prog_fit_ant epi = NULL # as above, but for antagonostic epistasis

total prog fit ant epi = NULL # as above, but for antagonostic epistasis

prog_fit_syn_epi = NULL # as above, but for synergistic epistasis

total prog fit syn epi = NULL # as above, but for synergistic epistasis

prog_fit add = NULL # as above, but for additive fitness

total prog fit add = NULL # as above, but for additive fitness

prop = NULL

basic multiplicative fitness
class_fitness mult <- function(n, p) { # function for determining total number of mutations: those
that fall in regions of gene overlap count twice!

prob_over = (p/2)/((1-p)+(p/2)) # probability of mutation falling in region of overlap

for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in
regions of overlap

bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient =
number of combinations in which can achieve this number of muattions in overlap
exp_freq = prob_over"k * (1-prob_over)"(n-k) * bin_coeff # relative expected

fregencies
fitness[k+1] = exp_freq * exp(- s * ((k*2) + (n-k)))
}
return(sum(fitness))
}

alternative multiplicative fitness
class_fitness mult2 <- function(n, p) { # function for determining total number of mutations:
those that fall in regions of gene overlap count twice!

prob_over = (p/2)/((1-p)+(p/2)) # probability of mutation falling in region of overlap

for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in
regions of overlap
bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient =
number of combinations in which can achieve this number of muattions in overlap
exp_freq = prob_over"k * (1-prob_over)™(n-k) * bin_coeff # relative expected

fregencies
fitness[k+1] = exp_freq * (1 - s)*((k*2) + (n-k))
}
return(sum(fitness))
}

antagonistic epistasis
class fitness ant epi <- function(n, p) {
b =0.01 # second selection coefficient for epistasis
prob_over = (p/2)/((1-p)+(p/2))
for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in
regions of overlap
bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient =
number of combinations in which can achieve this number of muattions in overlap
exp_freq = prob_over"k * (1-prob_over)(n-k) * bin_coeff # relative expected

fregencies
fitness[k+1] = exp_freq * exp(-s * ((k*2) + (n-k)) +b * ((k*2) + (n-k))"2)
}
return(sum(fitness))
}

synergistic epistasis
class fitness syn epi <- function(n, p) {

b =0.02 # second selection coefficient for epistasis

prob_over = (p/2)/((1-p)+(p/2))

for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in
regions of overlap

bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient =
number of combinations in which can achieve this number of muattions in overlap
exp_freq = prob_over"k * (1-prob_over)"(n-k) * bin_coeff # relative expected

fregencies
fitness[k+1] = exp_freq * exp(-s * (k*2) + (n-k)) - b * ((k*2) + (n-k))"2)
}
return(sum(fitness))
}

additive epistasis
class fitness add <- function(n, p) {
prob_over = (p/2)/((1-p)+(p/2))
for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in
regions of overlap
bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient =
number of combinations in which can achieve this number of muattions in overlap
exp_freq = prob_over"k * (1-prob_over)(n-k) * bin_coeff # relative expected

fregencies
fitness[k+1] =exp_freq * (1 -(s* ((k*2) + (n-k))))
}
return(sum(fitness))
}

for(i in 0:100) {
p =1/100 # just converting p from an integer to a proportion
u=m * g * (1 -p/2) # adjust per genome mutation rate due to overlap
freq = exp(-u) # need frequency of zero class at start
prog_fit mult[1] = freq * 1 # = frequency of progeny with zero mutations multiplied by
their fitness, which equals one (= exp(- s * 0))
prog_fit mult2[1] = freq * 1
prog_fit_ant epi[l] = freq * 1 # same for all fitness functions
prog_fit syn epi[l] = freq * 1
prog_fit add[1] = freq * 1
for(n in 1:10) { # no need to go beyond frequency of progeny with 5 mutations
(proportion is < 0.001)
freq = freq * (u/n)
prog_fit mult[n+1] = freq * class_fitness mult(n, p) # multiply frequency of each
class by its fitness
prog_fit mult2[n+1] = freq * class_fitness mult2(n, p) # multiply frequency of
each class by its fitness
prog_fit ant epi[n+1] = freq * class_fitness ant epi(n, p) # multiply frequency of
each class by its fitness
prog_fit syn epi[n+1] = freq * class_fitness syn_epi(n, p) # multiply frequency
of each class by its fitness

prog_fit add[n+1] = freq * class_fitness add(n, p) # multiply frequency of each
class by its fitness

}

total prog fit mult[i+1] = sum(prog_fit mult)

total prog fit mult2[i+1] = sum(prog_fit mult2)
total prog fit ant epi[i+1] = sum(prog_fit ant epi)
total prog fit syn epi[i+1] = sum(prog_fit syn epi)
total prog fit add[i+1] = sum(prog_fit add)
prop[i+1] = p # just for plotting

}

plot(prop, total prog fit mult/total prog fit mult[1], col=1, type="1", ylim = range(0.98, 1.02),
xlab="Prop overlap", ylab="Fitness", main="", frame.plot = FALSE)

points(prop, total prog fit mult2/total prog fit mult2[1], col=2, type="1")

points(prop, total prog fit ant epi/total prog fit ant epi[1], col=3, type="1")

points(prop, total prog fit syn epi/total prog fit syn epi[l], col=4, type="1")

points(prop, total prog fit add/total prog fit add[1], col=5, type="1")

legend(x="topright", legend=c("mult", "mult2", "ant_epi", "syn_epi", "add"), fill= 1:5, bty="n")

#---Third script: for showing the effect of reducing per genome mutation rate on the basic
multiplicative model

rm(list=l1s()) # Delete all existing variables

s = 0.1 # selection coefficient

fitness = NULL

k.values = NULL

prog_fit = NULL # fitness of progeny with increasing numbers of mutations
total prog fit=NULL # fitness of progeny = sum of frequency of each mutant class of progeny
multiplied by its fitness

prop = NULL

slope = NULL

mut rate = NULL

start m = 0.0001 # starting mutation rate per bp

g = 10000 # genome size (no overlap)

class_fitness <- function(n, p) { # function for determining total number of mutations: those that
fall in regions of gene overlap count twice!
prob_over = (p/2)/((1-p)+(p/2)) # probability of mutation falling in region of overlap
for (k in 0:n) { # go through all possible combinations of 0 -> n mutations falling in
regions of overlap
bin_coeff = factorial(n) / (factorial(k) * factorial(n - k)) # binomial coefficient =
number of combinations in which can achieve this number of muattions in overlap

exp_freq = prob_over"k * (1-prob_over)™(n-k) * bin_coeff # relative expected

freqgencies
fitness[k+1] = exp_freq * exp(- s * ((k*2) + (n-k)))
}
return(sum(fitness))
}

for(j in 1:100) {
m = start_m/j # reducing mutation rate
for(i in 0:100) {
p =1/100 # just converting p from an integer to a proportion
u=m* g *(1-p/2) #adjust per genome mutation rate due to overlap
freq = exp(-u) # need frequency of zero class at start
prog_fit[1] = freq * 1 # = frequency of progeny with zero mutations multiplied by
their fitness, which equals one (= exp(- s * 0))
for(n in 1:5) { # no need to go beyond frequency of progeny with 5 mutations
(proportion is < 0.001)
freq = freq * (u/n)
prog_fit[n+1] = freq * class_fitness(n, p) # multiply frequency of each
class by its fitness
}
total prog_fit[i+1] = sum(prog_fit)
prop[i+1]=p
}
saved.lm = Im(total prog_fit ~ prop)
slope[j] = saved.Im$coefficients[2]
mut_rate[j] =m

_n

plot(mut _rate, slope, col=1, type="1", xlab="mut rate", ylab="slope", main="", frame.plot =

FALSE)

