
Microarray analysis

Overview
We used two methods to analyze our data: a modified Rosetta error model [1-4] and a
maximum likelihood estimate of DNA concentration (MLEDC) method.  To evaluate the
accuracy of each method and to determine the optimal values of certain cutoffs, we
analyzed the binding of the transcription factor GCN4 and compared our results with
previously published lists of genes bound by GCN4 and genes that are not regulated by
GCN4 [3].  We found that the MLDC method performed better than the Rosetta error
model; however this result is due to factors that are specific to our transposon based
method and cannot be generalized to ChIP-Chip data or microarray data.  In this section
we briefly describe the Rosetta error model and the MLDC method, we explain how we
estimated the sensitivity and specificity of each method using the GCN4 as a test case,
and we discuss why the MLDC method outperforms the Rosetta error model.

The Rosetta Model
The Rosetta error model for expression analysis has been described in detail [1, 2, 4],
and a modified version has been used to analyze ChIP-Chip data [3].  We use the latter
and briefly review it here.  The intensity at spot j in microarray i is modeled by the
following expression (using the framework presented by Dror [5]):

Here ijy~  is the intensity of the spot, iv  is the chip normalization factor, ijζ  is a gene

specific hybridization factor, ijt  is the absolute concentration of DNA complementary to

feature j, jf is spot specific additive noise, and ije is additive noise.  ijg  represents the

multiplicative noise.  Different experiments are normalized by scaling all data on the chip
so that the mean intensities are equal (alternatively, spiked in positive controls can be
used to normalize [1]).  The normalized intensity, ijy , then becomes:

Here ijx = ijijtζ and this represents the scaled concentration of DNA complementary to

feature j.  The scaled concentration can be used for this analysis because we are not
interested in the absolute intensity at any given gene, but the difference in intensities
between an experiment and a control at feature j.  Our control condition is the Sir4
fragment expressed by itself (i.e. not fused to a transcription factor).  We are interested
in spots that display an increased intensity relative to the control, or the difference
between the two measurements.  If jy2  is the intensity measured at feature j in an

experiment (e.g. with Sir4 fused to gcn4), and jy1  is the intensity measured at feature j

in the control condition (e.g. with Sir4 alone), then we would like to model:

Which we can write without loss of generality as

Here, jk12 , ije , and mje are
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observations of random variables k and e .   The Rosetta model assumes the probability
distribution functions for these variables are normally distributed with mean zero.  These
assumptions yield good empirical results (a critical discussion of these assumptions can
be found in [1]).

The variance of e  can be estimated from the negative controls in each experiment, and
the variance of k  can be estimated using the method of Pokholok [3].  In this method,
the random variable X is defined:

Here 2
eσ  is the variance of e  and 2

kσ  is the variance of k .  If there was no transposition

event at feature j, then X should be normally distributed with mean zero and variance 1.

An estimate of 2
kσ can be obtained by the following algorithm [the following text is taken

from Pokholok[3] with minor modifications]:  

(a) Select data that follow the noise distribution rather than the signal (e.g. X < 0)

(b) Calculate the X values for all spots given a starting value for 2
kσ  (e.g. 1)

(c) Compare the standard deviation of X for low intensities SDlow (e.g. top 10% of the
list) to the standard deviation of X for higher intensities SDhigh (e.g. 20-30% from top)

(d) Set 2
kσ = 2

kσ  * SDhigh/ SDlow and go back to b for calculation of X values.

Comment: If SDlow > SDhigh, 
2
kσ is too large; if SDlow < SDhigh, 

2
kσ  is too small

(f) Loop (b-d) until the absolute difference between SDlow and SDhigh is close to 0 with
desired precision (e.g. 0.001)

The MLEDC method

The Rosetta error model works well when the distribution of intensities in the control
channel is similar to the distribution of background intensities in the experimental
channel.  However, we observed a significant increase in integration “hot-spots” when no
TF-SIR4 fusion protein is present, rendering the Rosetta error model inadequate.  We
developed a second way to analyze the calling card data.  For a control we labeled
genomic DNA and hybridized it to the microarray reading the green channel.  The
normalized intensity in the green channel can be written as,

Here ijg , ijζ , jf  , and ije  have the same definitions as before, and ijD  is the

concentration of genomic DNA.  We use enough genomic DNA so that every spot yields a
high intensity in the green channel.  This means that the additive noise can effectively be
ignored, so

The hybridization intensity in the red channel is as before:
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The ratio of red intensity to green intensity is,

Since Dij is the same in each experiment and at each genomic location, we can set ijD  =

1 unit for all i,j.  Then,

So, ijR , the ratio of intensity in the red channel to the green channel, is given by the

concentration of DNA in feature i in experiment j plus two additive noise terms.  The
means and standard deviations of both of these variables are very small when compared

to the value of ijR at features where a transposition event has occurred (data not shown).

Thus, at these loci, ijR  is a good estimate of DNA concentration.  Therefore, by ranking

the probes by their average ratio across three experiments and applying a cutoff, we are
able to identify the loci at which a transposition event occurred.  To filter out random
transposition events (i.e. those not directed by the fused transcription factor) we required
that 2 of the 3 replicates displayed a ijR  value greater than an empirically derived cutoff.

The appropriate cutoffs were determined by choosing the value of R that maximizes the
sensitivity of the GCN4 experiments at a specificity of 97.5%.   

Estimating the Sensitivity and Specificity of the Gcn4 calling cards.

To evaluate their CHIP-CHIP experiments, Young and colleagues compiled a list of 75
gcn4 targets as well as 935 genes whose regulatory regions are not likely to be bound by
gcn4 [3].  To be included in the positive list, a gene must have displayed significant gcn4
binding as ascertained by previous ChIP-Chip experiments, displayed an expression
change upon amino acid starvation, and contained a high-scoring gcn4 binding site in its
upstream region.  A gene on the negative list did not bind gcn4 in previous ChIP-Chip
experiments, displayed <2 fold expression change upon amino acid starvation, and did
not contain a high-scoring binding site in its upstream region. When the Rosetta analysis
method was used, we obtained 45% sensitivity at 97.5% specificity.  In contrast, the
MLEDC method achieved 51% sensitivity at 97.5% specificity.  We manually examined
the intensities of the false negative genes in the MLEDC analysis – the majority of these
features displayed little to no fluorescence in the red channel, suggesting that these
features were categorized as negatives because no transposition event had occurred in
these samples and were not due to inaccurate assumptions in our error model.
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