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Abstract

Gary Wang has developed two datasets using 454 sequencing to iso-
late tens of thousands of HIV integration sites in human cells. Here the
relation of the a collection of variables previously shown to be correlated
with integration targetting, LEDGF responsiveness, and density of GC in
genomic regions surrounding a potential site is studied.
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1 Data Used

1.1 Integration Sites

Integration sites are recovered via 454 sequencing from a pool of integration sites
obtained by infecting a human cell line (Jurkat). Two methods are used to



recover the sites. In the Wang-VSVGgfp-Jurkat-454- Avr subset, a cocktail
of enzymes (AvrIl,Spel,Nhel)is used to digest DNA and sequencing is from the
HIV U3 end, while in the Wang-VSVGgfp-Jurkat-454-Mse subset, the MSEI
enzyme is used to digest DNA and sequencing is from the HIV U5 end.

These results are screened to delete duplicate reports of the same integration
event.

For each integration event, 3 control sites are sampled from among those
genomic sites that are the same distance (in the direction of sequencing) from
the nearest restriction site as the integration site.

Some few sites are not assigned chromosomal position as the BLAT align-
ments match genomic segments whose position is unknown. These are omitted
from the analysis.

The available data for analysis broken down by subset and type of site (actual
insertion or matched genomic control) is as follows:

type
setName insertion match
Wang-VSVGgfp-Jurkat-454-Avr 19921 59763
Wang-VSVGgfp-Jurkat-454-Mse 20564 61692

1.2 Variables Used

A collection of variables found to be associated with HIV integration in previous
studies is included in this analysis along with a collection of variables giving the
proportions of G or C bases in windows of various sizes surrounding the site of
interest.

The variables used and brief abbreviations for them are as follows:

uni.100k Unigene Genes within £50 kilobases
uni.200k Unigene Genes within £100 kilobases
uni.500k Unigene Genes within £250 kilobases
uni.1M Unigene Genes within 500 kilobases
uni.2M Unigene Genes within +1 megabase

low.ex.250k Affymetrix probesets achieving the 50" percentile of expression
within +125 kilobases

med.ex.250k Affymetrix probesets achieving the 75! percentile of expres-
sion within £125 kilobases

high.ex.250k Affymetrix probesets achieving the 87.5t" percentile of expres-
sion within +125 kilobases

low.ex.2M Affymetrix probesets achieving the 50" percentile of expression
within +1 megabase



med.ex.2M Affymetrix probesets achieving the 75" percentile of expression
within +1 megabase

high.ex.2M Affymetrix probesets achieving the 87.5t" percentile of expres-
sion within +1 megabase

cpg.dens.50k Density of CpG sites within £25 kilobases
cpg.dens.250k Density of CpG sites within £125 kilobases
dnasel.100k Density of DNAse I sites within £50 kilobases
dnasel.1M Density of DNAse I sites within +500 kilobases
ensGene.genes Whether site is in an Ensembl gene
refGene.genes Whether site is in a RefSeq gene

LEDGF Whether a LEDGF response was measured.

site summed over each position in twenty bases of flanking sequence (10
upstream and 10 downstream). In order to avoid overfitting and resub-
stitution bias in estimates of association with integration, the score based
on the sum of all twenty bases was computed using leave-one-out cross-
validation

score20bp The loglikelihood for integration versus control
score50bp The loglikelihood as just described, but for 50 bases
scorel00bp The loglikelihood as just described, but for 100 bases
gc20 The proportion of G or C bases within +10 bases

gc50 The proportion of G or C bases within +25 bases not counting those
within +10 bases

gcl00 The proportion of G or C bases within +50 bases not counting those
within +25 bases

gc250 The proportion of G or C bases within £125 bases not counting those
within +50 bases

gc500 The proportion of G or C bases within £250 bases not counting those
within £125 bases

gcl1000 The proportion of G or C bases within £500 bases not counting those
within +250 bases

gc2000 The proportion of G or C bases within 1000 bases not counting
those within +500 bases



gc5000 The proportion of G or C bases within #2500 bases not counting
those within 1000 bases

gcl10000 The proportion of G or C bases within £5000 bases not counting
those within4+2500 bases

gc25000 The proportion of G or C bases within +12.5 kilobases not counting
those within £5000

gc50000 The proportion of G or C bases within 425 kilobases not counting
those within +12.5 kilobases

gcl100000 The proportion of G or C bases within £50 kilobases not counting
those within +25 kilobases

gc250000 The proportion of G or C bases within £125 kilobases not counting
those within +50 kilobases

gc500000 The proportion of G or C bases within £250 kilobases not counting
those within +125 kilobases

gc1000000 The proportion of G or C bases within +0.5 megabases not count-
ing those within £250 kilobases

gc5000000 The proportion of G or C bases within +2.5 megabases not count-
ing those within £0.5 megabases

gc10000000 The proportion of G or C bases within +5 megabases not count-
ing those within £2.5 megabases

A transformation is applied to all variables other than the GC proportions,
the loglikelihood scores, and the gene indicators. The transformation takes
ranks of the values in each data set and then scales them to lie in the interval

(7171)'

2 Predictive Accuracy of Individual Variables

The predictive value of each variable is assessed using the area under the ROC
curve.

The following table gives the areas under the ROC curve and its standard
error.

Avr.area Avr.stderr Mse.area Mse.stderr

ace.100k 0.784 0.002 0.799 0.002
ace.200k 0.778 0.002 0.795 0.002
ace.500k 0.767 0.002 0.784 0.002
ace. 1M 0.756 0.002 0.772 0.002
ace.2M 0.738 0.002 0.756 0.002
uni. 100k 0.757 0.002 0.770 0.002



uni.200k 0.759 0.002 0.773 0.002
uni.500k 0.749 0.002 0.767 0.002
uni. 1M 0.741 0.002 0.759 0.002
uni.2M 0.728 0.002 0.749 0.002
low.ex.250k 0.780 0.002 0.792 0.002
med.ex.250k 0.770 0.002 0.779 0.002
high.ex.250k 0.725 0.002 0.731 0.002
low.ex.2M 0.741 0.002 0.757 0.002
med.ex.2M 0.738 0.002 0.755 0.002
high.ex.2M 0.726 0.002 0.742 0.002
cpg.dens .50k 0.678 0.002 0.696 0.002
cpg.dens. 250k 0.729 0.002 0.750 0.002
dnaseI. 100k 0.744 0.002 0.762 0.002
dnaseI.1M 0.750 0.002 0.769 0.002
LEDGF 0.511 0.001 0.512 0.001
ensGene.genes 0.702 0.002 0.705 0.002
refGene.genes 0.693 0.002 0.697 0.002
score20bp 0.825 0.002 0.820 0.002
scoreb0bp 0.838 0.002 0.836 0.002
scorel00bp 0.837 0.002 0.839 0.002
gc20 0.499 0.003 0.530 0.002
gc50 0.457 0.003 0.491 0.003
gc100 0.466 0.003 0.508 0.003
gc250 0.471 0.003 0.515 0.003
gc500 0.484 0.003 0.525 0.003
gc1000 0.494 0.003 0.530 0.003
gc2000 0.507 0.003 0.535 0.003
gc5000 0.539 0.003 0.566 0.003
gc10000 0.564 0.003 0.595 0.003
gc25000 0.596 0.003 0.625 0.003
gc50000 0.620 0.003 0.649 0.003
gc100000 0.653 0.003 0.682 0.002
gc250000 0.697 0.002 0.722 0.002
gc500000 0.709 0.002 0.734 0.002
gc1000000 0.709 0.002 0.731 0.002
gc5000000 0.685 0.003 0.708 0.002
gc10000000 0.653 0.003 0.668 0.003

As is evident, the local sequence variables have the strongest associations (in
the sense of the largest departures of the ROC curve areas from 0.50), followed
by variables that reflect the density of expressed genes or just genes, then the
density of DNAse I sites, then CpG density and GC proportion at wider window
widths or location in a gene, followed by the remaining variables.

Since these variables tend to be correlated with others in the set, it is help-
ful to determine whether some of these associations are merely the result of
confounding, i.e. that some variables appear to be associated with integration



merely because they are correlated with variables that bear a more proximal
relation to the integration process. To determine whether this may be the case,
we use conditional logit regression as implemented in the the R survival library
[Therneau and Lumley, 2006].

An examination of the GC proportions will appear first followed by consid-
eration of the effects of the other variables.

3 Regression of GC proportions

Below is a table of results from conditional logit regression using the GC propor-
tions. All variables are included in a single regression model for each dataset. A
penalized loglikelihood approach ala ridge regression was used to protect against
unstable results due to the large number of correlated variables being used.

Preliminary 10-fold cross-validation showed the highest log-likelihoods were
obtained when a penalty was chosen that resulted in approximately 17 effective
degrees of freedom — and that value was used, but any choice approaching
the number of regressors seemed to work well. Likewise, the cross-validated
ROC curve areas based on the fitted log-odds for these datasets were highest
for effective degrees of freedom approaching the number of regressors. Likely,
the large number of observations accounts for the stability of these results with
little or no penalization required.

Avr.coef Avr.stderr Avr.p.value Mse.coef Mse.stderr Mse.
gc20 0.854 0.086 2.0e-23 0.752 0.085
gc50 -1.557 0.102 9.6e-53 -1.221 0.101
gc100 -0.907 0.126 5.1e-13 -0.529 0.124
gc250 -1.350 0.166 4.5e-16  -0.508 0.162
gc500 -1.371 0.190 5.5e-13 -0.882 0.186
gc1000 -2.742 0.217 1.7e-36  -2.200 0.211
gc2000 -3.983 0.255 3.4e-55 -4.318 0.248
gc5000 -3.817 0.319 4.4e-33 -4.165 0.311
gc10000 -2.436 0.340 7.9e-13 -2.636 0.338
gc25000 -2.535 0.444 1.2e-08 -2.936 0.443
gc50000 -0.888 0.502 7.7e-02 -0.911 0.498
gc100000 2.035 0.536 1.5e-04 2.924 0.535
gc250000 12.876 0.579 1.4e-109 11.035 0.574
gc500000 8.905 0.578 1.6e-53 10.660 0.581
gc1000000 9.157 0.559 2.0e-60 7.917 0.550
gc5000000 3.559 0.601 3.1e-09 4.231 0.592
gc10000000 -2.554 0.480 1.0e-07 -1.992 0.475

The regression coefficients are partial derivatives of the log-intensity of in-
tegration with respect to the GC proportion variables. Thus, each coefficient
measures the effect of the corresponding variable when all other variables are
held constant. Since the GC proportions are highly correlated, the pattern of
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associations seen between them and integration targetting is not expected to be
mirrored in the regression coefficients.

For both datasets, the same pattern of coefficients is seen. At the narrowest
width (20 bases), higher GC proportion favors integration, but for somewhat
wider widths (50 — 100000 bases) higher AT proportion favors integration, then
at still higher widths (250 kilobases — 5 megabases) higher GC proportion favors
integration, and at the highest width (10 megabases) hihger AT proportion
favors integration.

All in all, how predictive are the GC proportions? The areas under the ROC
curves based on the fitted log-odds for these datasets are 0.788 (AVR) and 0.782
(MSE). Comparing this to the ROC curve areas above for single variables, the
‘combined GC’ values are competitive with the gene density variables.

4 Regression of Other Variables

Here are the results for regressing integration siting on the other variables. Since
the loglikelihood scores pertain to overlapping regions, the score for the 20bp
region is subtracted from thatfor the 50bp region, and that for the 50bp region
is subtracted from that for the 100bp region.

The variables other than the loglikelihood scores were penalized ala ridge re-
gression. Preliminary 10-fold cross-validation showed the highest log-likelihoods
were obtained when a penalty was chosen that resulted in approximately 20 ef-
fective degrees of freedom — and that value was used, but any choice approach-
ing the number of regressors seemed to work well. Likewise, the cross-validated
ROC curve areas based on the fitted log-odds for these datasets were highest
for effective degrees of freedom approaching the number of regressors. Likely,
the large number of observations accounts for the stability of these results with
little or no penalization required.

Avr.coef Avr.stderr Avr.p.value Mse.coef Mse.stderr Mse.p.value

score20bp 0.9631 0.012 0.0e+00 0.927
scorebObp - score20bp 0.9367 0.027 5.9e-270 1.005
scorelO0Obp - scoreb0bp 0.7989 0.034 6.8e-125 0.608
ace.100k 0.6966 0.075 9.0e-21 0.675
ace.200k -0.3756 0.097 1.1e-04 -0.233
ace.500k -0.0043 0.104 9.7e-01 -0.085
ace.1M -0.0247 0.110 8.2e-01 0.051
ace.2M -0.0996 0.110 3.6e-01  -0.187
uni. 100k 0.3992 0.064 3.8e-10 0.293
uni.200k -0.1610 0.082 5.0e-02 -0.113
uni.500k 0.0033 0.092 9.7¢-01 -0.038
uni.1M -0.1219 0.102 2.3e-01 -0.130
uni.2M -0.0340 0.093 7.1e-01 0.045
low.ex.250k 0.4970 0.064 8.3e-15 0.583
med.ex.250k 0.4920 0.065 3.4e-14 0.429
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high.ex.250k 0.1838 0.046 7.0e-05 0.159 0.045
low.ex.2M 0.3256 0.094 5.3e-04 0.213 0.088
med.ex.2M -0.0176 0.097 8.6e-01 -0.018 0.091
high.ex.2M 0.0169 0.064 7.9e-01 0.158 0.062
cpg.dens .50k -0.1128 0.039 4.2e-03 -0.209 0.038
cpg.dens. 250k -0.1168 0.053 2.7e-02 -0.052 0.050
dnaseI.100k 0.3558 0.041 2.2e-18 0.454 0.039
dnaseI. 1M 0.5598 0.060 9.5e-21 0.357 0.057
LEDGF 0.4134 0.096 1.7e-05 0.448 0.090
ensGene.genes 0.5893 0.051 2.0e-31 0.568 0.049
refGene.genes 0.3715 0.049 3.8e-14 0.410 0.047

5 All Regressor Variables

Here is the table of results when all regressor variables are used together. Again,
a penalized loglikelihood was used with the shrinkage parameters set at the same
values as in the regression above.

Avr.coef Avr.stderr Avr.p.value Mse.coef Mse.stderr

score20bp 0.9622 0.013 0.0e+00  0.9393 0.013
scorebObp - score20bp 0.9679 0.033 9.1e-190 0.9234 0.030
scorelOObp - scorebObp 0.7677 0.044 1.8e-67 0.7482 0.042
ace.100k 0.5710 0.066 6.1e-18  0.5449 0.064
ace.200k -0.2192 0.081 6.7e-03 -0.1347 0.078
ace.500k 0.0514 0.085 5.4e-01 -0.0513 0.081
ace.1M 0.0021 0.087 9.8e-01  0.0560 0.084
ace.2M -0.3325 0.089 1.8e-04 -0.3496 0.085
uni.100k 0.3540 0.058 1.4e-09  0.2705 0.056
uni.200k -0.1009 0.072 1.6e-01 -0.0478 0.069
uni.500k 0.0678 0.077 3.8e-01 0.0514 0.075
uni. 1M -0.0331 0.083 6.9e-01 -0.0019 0.080
uni.2M -0.2938 0.078 1.7e-04 -0.2441 0.075
low.ex.250k 0.4782 0.061 4.2e-15  0.5289 0.059
med.ex.250k 0.4663 0.062 4.8e-14  0.4014 0.060
high.ex.250k 0.2044 0.046 1.0e-05 0.2206 0.046
low.ex.2M 0.1353 0.080 9.0e-02 0.0813 0.077
med.ex.2M 0.1197 0.081 1.4e-01  0.1096 0.078
high.ex.2M 0.1130 0.060 5.8e-02 0.1913 0.058
cpg.dens .50k 0.0888 0.043 3.7e-02 0.0194 0.041
cpg.dens. 250k -0.4583 0.056 2.9e-16 -0.3084 0.054
dnaseI.100k 0.5394 0.042 1.7e-38  0.6280 0.040
dnaseI.1M 0.1703 0.061 5.0e-03  0.0940 0.058
LEDGF 0.4197 0.101 3.5e-05 0.4793 0.097
ensGene.genes 0.4931 0.050 1.4e-22  0.4248 0.049
refGene.genes 0.3057 0.049 5.1e-10 0.3585 0.048
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gc20

gc50
gcl100
gc250
gc500
gc1000
gc2000
gc5000
gc10000
gc25000
gc50000
gc100000
gc250000
gc500000
gc1000000
gc5000000
gc1000000

How much improvment does the additional of the GC proportion variables
make to the fit? This can be answered in several ways. First, consider the
increase in the loglikelihood reflected by the analysis of deviance table (deviance
= —2x log-likelihood). The deviance for a (saturated) model that fits perfectly
is zero, so one can speak of proportional reductions in the deviance. Here is the
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analysis of deviance table for the AVR data.

Analysis

of Deviance Table

.132
.175
.221
. 267
.293
.337
.397
.506
.548
. 752
.897
.002
.093
.130
.061
.083
.822

Model 1: Only variables besides GC proportions

Model 2:
Resid.

1 796

2 796

As is evident there is a 10.5 percent reduction in the deviance due to the

All Variables
Df Resid. Dev
58 19286.9
41 17257.5

Df Deviance P(>|Chil)

17

addition of the GC proporitons.
Here is the analysis of deviance for the MSE data.

Analysis

Model 1:
Model 2:
Resid.
1 822
2 822

As is evident there is a 11.8 percent reduction in the deviance due to the

of Deviance Table

2029.5

0.0

Only variables besides GC proportions

All Variables
Df Resid. Dev
30 20505.8
13 18090.5

Df Deviance P(>|Chil)

17

addition of the GC proporitons.
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Likewise, one can consider the improvement in the area under the ROC

curve.
Here are the ROC curve areas for the AVR. data.

AVR ROC areas

Only variables besides GC proportions 0.920
A1l Variables 0.929
Improvement 0.009
Percent of Maximum Improvement 11.130

Here are the ROC curve areas for the MSE data.

MSE ROC areas

Only variables besides GC proportions 0.910
All Variables 0.922
Improvement 0.011
Percent of Maximum Improvement 12.451

So, by either metric — reduction in deviance or increase in area under the
ROC curve — a modest improvement is due to GC proportions.

6 AVR vs MSE

The results for AVR and MSE seem a bit different. Here is a table that
compares the regression coefficients for the model that uses all of the variables:

Avr.coef Mse.coef AVR-MSE std.
.018
.045
.061
.092
.113
117
.121
.123
.081
.099
.107
.115
.109
.085
.086
.065
111
.112
.083

score20bp 0.9622 0.9393 0.023 O
scoreb0bp - score20bp 0.9679 0.9234 0.045 O
scorelOObp - scorebObp 0.7677 0.7482 0.019 O
ace.100k 0.5710 0.5449 0.026 O
ace.200k -0.2192 -0.1347 -0.085 O
ace.500k 0.0514 -0.0513 0.103 O
ace.1M 0.0021 0.0560 -0.054 O
ace.2M -0.3325 -0.3496 0.017 O
uni. 100k 0.3540 0.2705 0.084 O
uni.200k -0.1009 -0.0478 -0.053 O
uni.500k 0.0678 0.0514 0.016 O
uni. 1M -0.0331 -0.0019 -0.031 O
uni.2M -0.2938 -0.2441 -0.050 O
low.ex.250k 0.4782 0.5289 -0.051 O
med.ex.250k 0.4663 0.4014 0.065 O
high.ex.250k 0.2044 0.2206 -0.016 O
low.ex.2M 0.1353 0.0813 0.054 O
med.ex.2M 0.1197 0.1096 0.010 O
high.ex.2M 0.1130 0.1913 -0.078 O

10

err t-stat

.271
.996
.319
.284
.751
.878
.445

0.139

.031
.535
.153
.271
.457
.598
.754
.249
.488
.090
.942



cpg.dens.50k 0
cpg.dens.250k -0
dnaseI. 100k 0
dnaseI. 1M 0
LEDGF 0
ensGene.genes 0
refGene.genes 0
gc20 0
gc50 1
gc100 1
gc250 -1
gc500 -1
gc1000 -3.
gc2000 -3.
gc5000 -4.
gc10000 -1.
gc25000 -2.
gc50000 -0.
gc100000 -2.
gc250000 8.
gc500000 3.
gc1000000 5.
gc5000000 7.
gc10000000 -0.

.0888 0.
.4583 -0.
.5394¢ O
.1703 0
.4197 0.
.4931 0
.3057 0
.8142 -0.
.0856 -0.
.1280 -0.
.0933 -0.
.0678 -0.
0843 -2.
7401 -3.
2306 -4.
6375 -1.
3686 -2.
1027 -0.
1607 -0.
2597 4
5151 6
6719 2.
8248 8
4855 1

0194 0.069 0.059 1.167 2.4e-01
3084 -0.150 0.078 -1.933 5.3e-02
.6280 -0.089 0.058 -1.530 1.3e-01
.0940 0.076 0.084 0.906 3.6e-01
4793 -0.060 0.140 -0.426 6.7e-01
.4248 0.068 0.070 0.971 3.3e-01
.3685 -0.0563 0.069 -0.769 4.4e-01
7832 1.597 0.186 8.579 9.6e-18
5758 1.661 0.234 7.094 1.3e-12
2906 1.419 0.292 4.863 1.2e-06
6600 -0.433 0.357 -1.215 2.2e-01
4015 -0.666  0.409 -1.627 1.0e-01
8267 -0.2568 0.468 -0.551 5.8e-01
85697 0.120 0.550 0.218 8.3e-01
5470 0.316 0.703 0.450 6.5e-01
2920 -0.345 0.771 -0.448 6.5e-01
2701 -0.099 1.063 -0.094 9.3e-01
4486 0.346 1.2565 0.276 7.8e-01
3436 -1.817 1.408 -1.291 2.0e-01
.4049  3.855 1.536 2.509 1.2e-02
.2932 -2.778 1.590 -1.748 8.1e-02
0019  3.670 1.491 2.462 1.4e-02
.3770 -0.552 1.538 -0.359 7.2e-01
L7229 -2.208 1.165 -1.896 5.8e-02

For the most part the coefficients agree well, but gc20, gc50 and gc100

show striking differences.

7 Combined vs Separate Regressions

To make it easier to compare the regression results using all variables in a single
regression in 5 to those in using all but the GC variables in 4 and just the GC
variables in 3, here is a table in which the coefficients in 4 and 3 (labelled with
the suffix sepGC) are subtracted from those in 5 (labelled with the suffix all
while the differences are labelled with the suffix Diff).

Avr.
score20bp 0.
scorebObp - score20bp 0.
scorelOObp - score50bp 0.
ace.100k 0.
ace.200k -0.
ace.500k 0.
ace.1M 0.
ace.2M -0.
uni. 100k 0.

all Mse
962 0.
968 0.
768 0.
571 0.
219 -0.
051 -0.
002 0.
333 -0.
354 0.

.all Avr.sepGC Mse.sepGC Avr.Diff Mse.Diff

939 0.963 0.927 -0.001 0.013
923 0.937 1.005 0.031 -0.082
748 0.799 0.608 -0.031 0.140
545 0.697 0.675 -0.126 -0.130
135 -0.376 -0.233 0.156 0.099
051 -0.004 -0.085 0.056 0.034
056 -0.025 0.051 0.027 0.006
350 -0.100 -0.187 -0.233 -0.162
270 0.399 0.293 -0.045 -0.023



uni.200k
uni.500k
uni. 1M
uni.2M
low.ex.250k
med.ex.250k
high.ex.250k
low.ex.2M
med.ex.2M
high.ex.2M
cpg.dens.50k
cpg.dens. 250k
dnaseI. 100k
dnaseI.1M
LEDGF
ensGene.genes
refGene.genes
gc20

gc50

gcl100

gc250

gc500

gc1000
gc2000
gc5000
gc10000
gc25000
gc50000
gc100000
gc250000
gc500000
gc1000000
gc5000000
gc10000000

.101
.068
.033
.294
.478
.466
.204
.135
.120
.113
.089
.458
.539
.170
.420
.493
.306
.814
.086
.128
.093
.068
.084
.740
.231
.637
.369
.103
.161
.260
.515
.672
.825
.486

.048
.0561
.002
.244
.529
.401
.221
.081
.110
.191
.019
.308
.628
.094
.479
.425
.358
.783
.576
.291
.660
.401
.827
.860
.547
.292
.270
.449
.344
.405
.293
.002
377
.723

.161
.003
.122
.034
.497
.492
.184
.326
.018
.017
.113
.117
.356
.560
.413
.589
.372
.854
.557
.907
.350
.371
.742
.983
.817
.436
.535
.888
.035
.876
.905
.157
.559
.554

.113
.038
.130
.045
.583
.429
.159
.213
.018
.158
.209
.062
.454
.357
.448
.568
.410
.752
.221
.529
.508
.882
.200
.318
.165
.636
.936
911
.924
.035
.660
.917

4.
-1.

231
992

.060
.065
.089
.260
.019
.026
.021
.190
.137
.096
.202
.342
.184
.389
.006
.096
.066
.040
.642
.035
. 257
.304
.342
.243
.413
.799
.166
.785
.196
.617
.390
.486
. 266
.069

Many of the GC coefficients are greatly reduced in magnitude when the other
variables are included in the regression, which suggests that the effects thatt hey
represent are partially accounted for by other variables. Also, the signs of the
coefficients for gc50 and gc100 change for the AVR data, the signs for gc20
change for both datasets (but in opposite directions), and the point at which
a long run of negative effects changes to positive effects shifts from between

gc50000 and gc100000 to between gc100000 and gc250000.

The effects of ace.2M, uni.2M, low.ex.2M, dnasel. 1M are greatly reduced
and reGene.genes and ensGene.genes are somewhat reduced when the GC

variables are included, but the effects of dnaseI.100k become stronger.
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.066
.089
.128
.290
.054
.027
.061
.131
.127
.034
.228
.256
.174
.263
.031
.143
.052
.5635
.645
.238
.152
.481
.627
.458
.382
.344

0.666

.462
.267
.630
.366
.916
.146
.714
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