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SUPPLEMENT TO THE MATERIALS SECTION
Upload and processing of ENCODE data

At http://encode-upload.g2.bx.psu.edu, ENCODE members can upload a dataset

in either Browser Extendible Format (BED) or Gene Feature Format (GFF). Users are
required to: (1) provide a short feature name (e.g., Affymetrix_transfrag), (2) select an
ENCODE analysis group (from a list of Chromatin and Chromosomes, Genes and
Transcripts, Multi-species Sequences Analysis, or Transcription Regulation), and (3)
paste an informative description of the dataset. Once data is submitted, this information
is used to generate a filename in standard ENCODE format:
group.feature.date.format (the group and feature parts are taken from the user
input; data is added automatically, and the format is either BED or GFF. The
Galaxy2ENCODE Upload tool ensures that both formats are available: if the user uploads
data in BED format, Galaxy2ENCODE gutomatically generates GFF and vice versa). Next,
the upload tool automatically partitions data against the standard set of protein-coding
genes provided by the GENCODE group. In order of precedence, the categories of
partitions are: (1) coding exons, (2) 5’UTR exons, (3) 3’'UTR exons, (4) intronic proximal
regions (within 5kb of an exon), (5) intergenic proximal regions (between genes and

within 5kb of an exon), (6) intronic distal regions (greater than 5kb from an exon), and (7)

intergenic distal regions (between genes but greater than 5kb from an exon). Finally,
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deposited data are immediately available through Galaxy2ENCODE  (http://
encode.g2.bx.psu.edu) or directly by ftp (ftp://encode:encode@g2.bx.psu.edu).
Accessing the ENCODE data from within Galaxy2ENCODPE s intuitive (Screencast
3). The ENCODE Data tool lists all ENCODE analysis groups (Chromatin and
Chromosomes, Genes and Transcripts, Multi-species Sequence Analysis, Transcription
Regulation, and a set of combined latest datasets). After selecting a group of interest,
the user is presented with a listing of all available datasets for that particular group. The
user is then able to select any number of the datasets at a time and add them to his/her
history pane on the right side of Galaxy2ENCOPE screen. Note that Galaxy2ENCODE stores

all versions of the datasets, with the latest ones highlighted in bold font.

Finding Non-Gencode ESTs (Figure 3; Screencast 15)

First, we upload the coordinates of human ESTs and Gencode genes that fall
within ENCODE regions from the UCSC Table Browser. To simplify the analysis,
redundant ESTs (that appear more than once in the downloaded table) are removed
from this dataset using a combination of Count, Filter, and Compare tools. Both
downloaded tables are gene oriented: each line of the file represents a single EST of a
single gene encoded together with all exons. By definition, a Non-Gencode ESTs must
not have any exons that overlap Gencode exons. To find EST that satisfy this criterion
we must first convert both tables into exon-based tables, where each line represents an
exon rather than a gene. We use the Gene-BED-to-exon-BED tool to achieve this goal.
Once gene tables are converted into exon-based tables, we use the Subtract tool to
remove all EST exons that overlap Gencode exons (Figure 3C). We can use this
information to locate those ESTs where none of the exons overlap Gencode exons in
two steps. First, we count the number of exons per EST before subtraction and after
subtraction. Next, we compare these two numbers. ESTs where the number of exons

stays the same before and after subtraction are Non-Gencode ESTs (Figure 3D). This is
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done using a combination of count, join, filter, and compare tools. Once Non-Gencode
ESTs are identified it is necessary to split them into three categories: intronic, intergenic,
and intertwined. To find intergenic ESTs we can remove all Non-Gencode ESTs that
overlap Gencode genes (Figure 3E) using the Subtract tool. To identify intertwined ESTs,
we find the overlap between Non-Gencode ESTs and Gencode exons using the Intersect
tool. Because we already have intergenic and intertwined ESTs we can easily define
intronic ESTs by subtracting these two categories from the superset, identified in Figure
3D, using the Compare tool. The three sets can be downloaded from the http:/

www.bx.psu.edu/cgi-bin/trac.cgi/wiki/GenomeResearchSupp2006).

Implementation

Galaxy2ENCODE js g completely new compact implementation that combines the
latest open-source technologies with ideas previously developed by our group (Giardine
et al. 2005).

LANGUAGE. The entire system is written in Python, a modern dynamic language
that fully supports the object-oriented paradigm and is widely regarded as an optimal tool
for fast and efficient software development. Thanks to the work of hundreds of
developers worldwide, programs written in Python can be run unaltered on most
platforms, from all variants of Unix to Mac OSX or Windows. Python also has one of the
most extensive default libraries of any programming language.

APPLICATION SERVER. The application server we use for Galaxy2ENCODE
development is called Paste. It is a simple and fully object-oriented web development
framework that allows the creation of “CGl-like” programs with ease. This application
server has been in development for over three years and has a number of production
deployments around the world. The Paste framework provides us with a lightweight,
portable, multithreaded web server that can be started with minimal setup and allows for

a very flexible development environment. We believe that the web server is sufficiently
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robust to handle any load that we can support. The fact that our services are primarily
CPU-bound imposes a limit on how many processes can be queued or run; this number
will always be much smaller than the number of simultaneous users the Paste
framework can possibly serve. At the same time, the simplicity of the server setup will be
tremendously useful in allowing us to replicate the entire functionality of the service with
ease. We can easily start copies of the server on any system that supports Python. This
way we can distribute the computation load on different computers by assigning users to
different servers. The Paste server can be easily integrated with any other web server,
including Apache. If a need for load balancing, virtual hosts, or secure HTTP arises, it
can be easily accomplished by running Paste “behind” Apache and customizing the front
web server to control the HTTP traffic as desired.

DATA STORAGE. GALAXY2ENCODE deals with two kinds of data: (1) data from
external sources and (2) its own annotations attached to each of the results. Both types
of data vary in size and type and are represented as files on the file system. This is
desirable since most tools operate on files and the file system is the most efficient way of
storing large objects. Data can have a number of annotations associated with them,
such as filename, display name, selection information, genome build, which user it
belongs to, etc. The database functionality is very loosely coupled to the actual storage
mechanism and, therefore, we could easily switch databases if the need arises (e.g., to
MySQL or PostgreSQL; in fact, the current production version of Galaxy uses
PostgreSQL). Upon starting, GALAXY2ENCODE creates the database-related storage if it
does not already exist.

EXTERNAL DATA SOURCES. GALAXY2ENCODE connects to external sources using a
simple data-collection API. There are two main categories for data sources: (1) sources
allowing synchronous access (where a data source can start streaming back data as
soon as the user has finished his/her parameter selection) and (2) sources with

asynchronous access that break off the connection and then later provide



GALAXY2ENCODE with a URL pointing to the data. We have commitments from the
developers of several data sources including UCSC, Ensembl (BioMart), and
ENCODEdb to support our data access protocol. GALAXY2ENCODE's external data source
protocols support HTTP calls and remote procedural calls via XML-RPC (for the exact
protocols see the on-line documentation on the GALAXY2ENCODE wiki page).

TESTING. In addition to manually testing each new feature that is put into
GALAXY2ENCODE "\we have developed an automated test suite. This serves two purposes:
it checks that the older parts of GALAXY2ENCODE keep working when new changes are
made, and it enables us to simulate many simultaneous users so we can examine
GALAXY2ENCODE's nerformance under load. The suite is designed to be run constantly
(on a nightly basis) and to automatically warn the developers of any errors. The suite is
implemented as a Python script that submits a series of requests to GALAXY2ENCODE gnd
monitors the responses. It contains tests for all of GALAXY2ENCODE's features: Table
Browser queries, Featured Datasets, Tools, and History retrievals. Needed
improvements to this facility include a more comprehensive set of feature tests, the
ability to check the accuracy of the output, the ability to test the functioning of the user
interface in addition to the GALAXY2ENCODE core, and the ability to determine if a request

is taking too long.



LEGENDS FOR SUPPLEMENTARY FIGURES

Figure S1. Galaxy interface contains four areas: the upper bar, tool frame (left column),
detail frame (middle column), and history frame (right column). The upper bar
contains user account controls as well as help and contact links. The left frame
lists the analysis tools and data sources available to the user. The middle frame
displays interfaces for tools selected by the user. The right frame (the history
frame) shows data and the results of analyses performed by the user. Pictured
here are three history items in different stages of completion: Green background
= ready; Yellow background with rotating hourglass = computation (in this case
upload) in progress; Gray with clock icon = queued (in this case it waits to be
executed until history item 2 is finished uploading. This is because history item 3
will contain results of intersection between item 1 and 2). Every action by the
user generates a new history item, which can then be used in subsequent
analyses, downloaded, or visualized. The Galaxy history page can display results

from multiple genome builds, and a single user can have multiple histories.

Figure S2. Genomic vicinity of intergenic Non-Gencode EST DR731323 (highlighted
with red arrow). Exons of this EST overlap Exonify predictions and are well
conserved in all mammals included in the conservation track of the UCSC
Genome Browser.

Figure S3. Genomic vicinity of intergenic EST DB275065. Exons of this EST do not
overlap with any protein-coding regions (including experimentally verified or

computationally predicted) but coincide with region of high conservation.



Figure S1.
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Figure S3.
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