SUPPLEMENT FOR:

Learning strong and weak signals in genomic sequence

alignments to identify functional elements

James Taylor, Svitlana Tyekucheva, David C. King,

Ross C. Hardison, Webb Miller and Francesca Chiaromonte

Center for Comparative Genomics and Bioinformatics,

The Pennsylvania State University

Corresponding authors:

James Taylor

Center for Comparative Genomics and Bioinformatics
506 Wartik Bldg

Pennsylvania State University

University Park PA, 16802

Email: james@bx.psu.edu

Francesca Chiaromonte

Center for Comparative Genomics and Bioinformatics
505 Wartik Bldg

Pennsylvania State University

University Park PA, 16802

Ph: 814 865 7075

Email: chiaro@stat.psu.edu

Extended HKY+Gap model

To make inferences on ancestral base distributions, we must first introduce a model of
nucleotide substitution for estimating the probability of a given substitution event over a
given branch of the phylogenetic tree. We assume a continuous time Markov process in
which a rate matrix Q specifies the instantaneous rate of each substitution event, and
express the rates in Q through a smaller number of parameters. In particular, we use the
parameterization provided by the HKY model of Hasegawa et al. (1985) consisting of
equilibrium probabilities for each base (4 parameters; 7a, 7c 7, 1), and the ratio between
the rates of transitions and transversions (k). We extend this model to accommodate gaps
as if they were a fifth nucleotide, introducing an additional equilibrium probability (7Gap)

and rate ratio (gaps to transversions 0), yielding the rate matrix:
- s KT G T, Og, »
T, = K7, Ot Gap
O=|kr, 7. - =, Omg,
T, Kﬂ;c 'T[G - OTEGap

on ,On.O%; om, -

We estimate the parameters in Q using the Expectation Maximization algorithm
implemented in the PHAST software package (Siepel and Haussler, 2004). For the
applications presented in this paper, we fix the tree topology as that of Margulies et al.
(2006), and run the estimation on a sample of genome-wide alignments of human,
chimpanzee, macaque, mouse, rat, cow, and dog (for RP and hypersensitive sites), or
human, mouse, opossum, chicken, frog, zebrafish, and pufferfish (for conserved elements

with developmental enhancer activity).

Ancestral base distribution inference

Given an alignment column x = (xy,... X»), the posterior distribution for the base in the

common ancestor of the m species is

Pr(x | y)m,

Pr(x|z)m,
z&{4,C,G,T,Gap}

Pr(y | x) = (S.1)

Felsenstein’s algorithm evaluates the likelihood Pr(x | y) in Equation (S.1) recursively
proceeding bottom-up along the phylogenetic tree through a series of “triangulations”.
For a generic stage, let yo, y; and y, be, respectively, the position for the ancestor
currently under consideration (0), and its two immediate descendants (1 and 2). The basic

recursive relation is

Pr(x(0) | y,) = ¥ Pr(x(1) | y)IL, ., (v(O.1))x ¥ Pr(x(2)| y,)IT, _,, ((0.2))

where x(4) indicates the subset of x corresponding to observed species descending from

A, ©A,8) the length of the branch linking 4 and @, and I, . , (7(A4,B)) the
corresponding transition probability obtained through
= (_OT)
I(r) = exp{-O1} = E% (S.2)
7=0 :

The Q in Equation (S.2) and the 7’s in Equation (S.1) are, respectively, the rate matrix

and equilibrium distribution of the of the HKY+Gap substitution model described above.

Clustering based on proximity and entropy

Ancestral base distributions are points in the 5D simplex. We group them using a novel
agglomerative clustering algorithm that combines entropy and spatial proximity in the
simplex. At each iteration, a merger is chosen among a set of candidates as to maximize
entropy of the resulting partition. Let G indicate the current partition in groups g each
containing a fraction f, = n/n of the training column occurrences (that is, ng is the sum of
occurrences of all alignment columns that correspond to ancestral distributions in g, and n
is the overall number of alignment columns in the training data). Also, let C indicate a set
of candidate mergers ¢, and G(c) the partition in groups g(c) (each containing a fraction

fa(c) of the occurrences) resulting from merger c. We select the merger

c* such that H(G(c*)) = - E; Soten 108(fyery) = max
gEqTe*) :

Because G(c) is “nested” in G, the entropy of the former coincides with the mutual
information between the two so that, at each iteration, selecting a merger to maximize
entropy is the same as selecting a merger to retain maximal information relative to the
current partition. Because it uses entropy, this algorithm tends to create clusters of
similar size, located depending on the frequency of occurrences in the simplex.

Proximity is used as a constraint; by limiting the set of candidates C in each iteration
to mergers involving “neighboring clusters”, we ensure that clusters remain spatially
contiguous. This can be implemented in several ways, as to give stronger of weaker roles
to proximity vis a vis the entropy maximization. For the applications presented in this

paper, we let a merger ¢ = {gi, g2} be a candidate if

d(g,,g,) =mind(g,, ind(g,
(81-8,) =mind(g,,g) or mind(g,g,)

Although other choices are possible, we use Euclidian distance and a centroid linkage,
i.e. we define the distance between two clusters as the Euclidean distance between their
centroids. Also, for the applications presented here we implement a pre-clustering step:
before starting the agglomeration we merge ancestral reconstructions corresponding to
alignment columns that occur less than v times (e.g. 5) in the training data to the closest

ones that occur at least v times.

Evaluation of encodings through cross validation

To evaluate the classification performance of an encoding during the iterative search, we
use k-repeated h-fold cross validation. The training data is partitioned at random into 4
(e.g. 10) folds, a fold is withheld, and two variable order Markov models are estimated
with the remaining positive and negative data. The estimated models are used to produce
log-odds scores for all the data (including the withheld fold). If the sets of scores for
positive and negative data used in training overlap, withheld data is classified into
positive and negative based on the sign of their scores. If the sets do not overlap, the

withheld data is classified as positive if their score is larger than the minimum score of

the positive data, as negative if it is smaller than the maximum score of the negative data,
and as “unclassifiable” if it falls in between. This yields counts of correctly classified,
erroneously classified, and unclassifiable elements in the withheld fold. The process is
repeated for the £ folds, and for £ (e.g. 10) random partitions of the data. Counts are
averaged in correct classification (success), erroneous classification, and unclassifiable
rates associated with the alphabet.

Unlike the success rates used to evaluate encodings during the search, the ones
reported in outcome of ESPERR applications, i.e. the success rates obtained on optimal
encodings, are recomputed with leave-one-out cross validation for stability (instead of

withholding folds, the data elements are withheld one at a time).

Sampling of candidate encodings and heuristics for the iterative search

Our search generates candidate encodings, accepts the best based on a figure of merit
(FOM), and repeats until a good encoding is found. The FOM is the cross validation
success rate described above, and does not include “unclassifiable” elements. At each
stage, candidates are generated from the current encoding by either merging two symbols
(groups) or extracting an atom from one of the symbols. When the current encoding is
large, many candidates will perform close to (a poor) best. Thus we evaluate only a
random sampling, e.g. y=50 mergers and 1=20 extractions, which reduces computations
while still producing reasonable moves with high probability. As the current encoding
shrinks, y represents a larger fraction of the possible mergers, and 1 random extractions
continue to afford a degree of reversibility to the search.

Large encodings require more parameters, are more susceptible to over-fitting and
thus score more elements in the unclassifiable range, reducing the FOM. Consequently,
the search strongly prefers small encodings, and it is possible that evaluating single atom
extractions will not be enough to by-pass local optima. We overcome this problem with a
heuristic: if the FOM does not increase over w (e.g. 20) consecutive iterations, we
consider only extractions for e (e.g. 5) consecutive steps, which allows us to move out of
local optima through poorer performing, larger encodings.

Even with this heuristic, it is still possible for the search to make bad moves which

then take a long time to be reversed. To recover efficiency, we add a “restarting”

heuristic: if we proceed for » (e.g. 50) iterations without reaching an encoding better than
the best seen so far, we restart the search at that best encoding. Termination is similar but
extends to a much larger number of iterations — we stop if we go for 1,000 iterations
without reaching an encoding better than the best seen so far, and adopt that best

encoding as the final one.

Pseudo-code for the randomized search algorithm

The search is initialized using some mapping, either a one-to-one mapping of the training
data symbols (e.g. all alignment columns) or the result of another encoding selection
procedure (e.g. the clustering based on ancestral base distributions). After each iteration,
this will be replaced with the best mapping found in that iteration.

mapping = initialize_mapping()

We keep track of the best mapping seen, and its figure of merit. When the search
terminates this best mapping corresponds to the final encoding.

best_merit_overall = -Inf

best_mapping_overall = None

The search iterates until it has performed 1,000 iterations without any improvement over

the best mapping seen.

while steps_since_best < 1,000:

Within each iteration, we keep track of the best candidate mapping found.
best_merit = -Inf

best_mapping = None

The first set of candidate mappings is created by merging symbols in the current
encoding. We consider a random sample of y such candidates. For practical reasons
we set a lower bound (e.g. 5) on the encoding size and skip this step if the encoding is
already too small.

if symbol_count > minimum_alphabet_size:

Sample y pairs from all possible pairs of symbols that could be collapsed.

for pair in sample(all_collapsible_pairs(mapping), 7y):

Generate a new mapping in which that pair of symbols are merged

new_mapping = collapse(current_mapping, pair)

Evaluate the figure of merit when this mapping is applied to the training data.
If it is the best so far for this iteration, save it.
merit = calc_merit(new_mapping)
if merit > best_merit:
best_merit = merit
best_mapping = new_mapping
The second set of candidates is created by extracting atoms which are currently
grouped with other symbols. We consider a random sample of 7 such candidates.
Again for practical reasons we only break out seeds which occur more than 10 times
in the training data, since they will not comprise any context that can be incorporated

in the model (see VOMM estimation).

for atom in sample(expandable_atoms(mapping), 17):

Generate a new mapping with that atom separated.

new_mapping = expand(mapping, atom)
Evaluate the figure-of-merit when this mapping is applied to the training data. If it

is the best so far for this iteration, save it.

merit = calc_merit(new_mapping)
if merit > best_merit:
best_merit = merit
best_mapping = new_mapping
We accept the best mapping from either the collapse or expand steps as the new

mapping for the next iteration

mapping = best_mapping
When the new mapping is better that the best seen so far, we save it and reset the

counters used to trigger the two heuristics and termination.

if best_merit > best_merit_overall:
best_merit_overall = best_merit
best_mapping_overall = best_mapping
steps_since_best = 0
steps_since_restart = 0

steps_since_forced_expansion = 0

We now check if the “restarting” heuristic should be triggered. If we have gone r
iterations without an improvement over the best mapping, we restart from that

mapping and reset the counters for the heuristics.

if steps_since_restart >= r:

steps_since_restart = 0

steps_since_forced_expansion = 0

mapping = best_mapping_ overall
Next we check if the “forced expansion” heuristic should be triggered. If we have
gone w iterations without improvement over the best mapping, we force e consecutive

expansion steps. These expansions are part of a single “iteration” and do not affect

the counters (the expansion procedure is otherwise identical to that above).

if steps_since_forced_expansion > w:
steps_since_forced_expansion = 0
for i from 0 to e:
best_merit = 0
best_mapping = None
for atom in sample(expandable_atoms(mapping), 17):
new_mapping = expand(mapping, atom)
merit = calc_merit(new_mapping)
if merit > best_merit:
best_merit = merit
best_mapping = new_mapping
mapping = best_mapping
Finally we increment the counters that keep track of when each heuristic is triggered

and when the search terminates.
steps_since_best += 1

steps_since_restart += 1

steps_since_forced_expansion += 1

Variable order Markov models and their estimation

A Markov model of fixed order T on a state space S is usually represented through a #(S)"

by #(S) transition probability matrix, whose entries p(s| s.1...s.7) express the chances of s
conditional to the symbols in the 7 preceding positions. An alternative and more intuitive

way of representing Markov models is through a tree structure; each node in the tree

correspond to a context of a given length, say @b of length 2, and contains transition

b,a), s in S. The children of such node correspond to contexts extended

¢ba),sinS. A

probabilities p(s

forward by one symbol, say a,b,c, and contain transition probabilities p(s
tree comprising all contexts up to length 7 contains in its leaf nodes all the transition
probabilities required to specify a Markov model of fixed order 7. A variable order
Markov model (VOMM) of maximal order 7 can be thought of as a “pruned” version of
such a tree, where a reduced number of leaf nodes correspond to contexts of variable
lengths with distinct transition probabilities.

Fitting a VOMM on training data consists of extending contexts, and estimating the
corresponding transition probabilities. We extend contexts using a pruning criterion;
considering each order ¢ from 0 to 7, we augment the tree to include a node for each
context s.,...s.; that occurs more than p (e.g. 10) times in both the positive and the
negative training sets. While this criterion is naive compared to other VOMM pruning
strategies, it does not require the maximal model (where all contexts are considered) to be
built before pruning, and thus allows quicker model fitting. For each node included in the
tree, we then need to compute the transition probabilities p(s| s.;...s-), s in S. Of course a
node may not have a full set of children, and there may even be extended contexts
S.4...5-1, s that never occur in the data. To produce non-zero estimates for the
corresponding probabilities, we use a “discount” smoothing rule, which redistributes a

small amount of mass d (e.g. 0.01) through the formula:

#(s|s_ ...,

p(S | S_l...S_,) = (1 - d) E#(’E | S_l'-'S—t)

+d p(s|s_ s p) seS

where #(.| s.;...s.) indicates number of occurrences after s...s.; (in other words, the rule
reallocates d mass relative to the distribution of the parent context s..1)...s.1). For order
zero (empty context) we set d=0.

Note that the maximal order is a hard limit on the size of a VOMM, since contexts
can not extend beyond 7. Pruning also limits the size of the model, as it determines how

many transition probabilities need to be estimated. Preliminary investigations showed

that our fits are robust to changes in p and d, at least for relatively small values of these

parameters.

Log-odds classification

For classification, we fit two variable order Markov models on the positive and negative
training sets, as described above. Any training or independent alignment segment, say a =

(ai...a,) comprising n columns, is then scored with the equation

Pros(a; | apos
(@)= logl Lo
i Pee(@; | ayge

(i’)Pag and a (i-)]\EG represent the relevant contexts (symbols in position i-1, i-2...)

where a
under the positive and negative model. £(a) is positive if the patterns in a resemble those
characteristic of the positive training data, and negative if the resemblance is to the

negative training data, so the segment can be classified by the sign of its score.

Receiver Operating Characteristic (ROC) Curves

Let g(x) be a generic score for entities x with known labels /(x)=POS or NEG, and
consider a classification rule that predicts labels based on a threshold y as p/(x)=POS if
g(x) >y (NEG if g(x) < y). Correspondingly, define true positive/negatives and false

positive/negatives associated with y as:

TP, ={x: pl(x)=1(x)= POS} , TN, ={x: pl(x)=1(x)= NEG}
FP,={x: pl(x)= POS,I(x)= NEG} , FN, ={x: pl(x)= NEG,I(x)= POS}

The sensitivity and specificity associated with y are then given by:

TN #TR)
THINHFP) T U T HTRIHFN}

P,

10

expressing, respectively, the share of negative predictions that are true negatives, and the
share of positive predictions that are true positives. The ROC Curve plots the locus {Sn,;
1-Sp,} as the threshold y varies, capturing the underlying trade-off between sensitivity
and specificity of the classifier. ROC curves can be used to compare performance for
different classifiers over ranges of thresholds — as sensitivity and specificity range, in

trade-off, between 0 and 1.

11

