
 1

SUPPLEMENT FOR:

Learning strong and weak signals in genomic sequence

alignments to identify functional elements

James Taylor, Svitlana Tyekucheva, David C. King,

Ross C. Hardison, Webb Miller and Francesca Chiaromonte

Center for Comparative Genomics and Bioinformatics,

The Pennsylvania State University

Corresponding authors:

James Taylor
Center for Comparative Genomics and Bioinformatics
506 Wartik Bldg
Pennsylvania State University
University Park PA, 16802
Email: james@bx.psu.edu

Francesca Chiaromonte
Center for Comparative Genomics and Bioinformatics
505 Wartik Bldg
Pennsylvania State University
University Park PA, 16802
Ph: 814 865 7075
Email: chiaro@stat.psu.edu

 2

Extended HKY+Gap model

To make inferences on ancestral base distributions, we must first introduce a model of

nucleotide substitution for estimating the probability of a given substitution event over a

given branch of the phylogenetic tree. We assume a continuous time Markov process in

which a rate matrix Q specifies the instantaneous rate of each substitution event, and

express the rates in Q through a smaller number of parameters. In particular, we use the

parameterization provided by the HKY model of Hasegawa et al. (1985) consisting of

equilibrium probabilities for each base (4 parameters; πA, πC πG, πT), and the ratio between

the rates of transitions and transversions (κ). We extend this model to accommodate gaps

as if they were a fifth nucleotide, introducing an additional equilibrium probability (πGap)

and rate ratio (gaps to transversions σ), yielding the rate matrix:

!
!
!
!
!
!

"

#

$
$
$
$
$
$

%

&

'

'
'

'

'

=

Gap

Gap

Gap

Gap

T

T

T

T

G

G

G

G

C

C

C

C

A

A

A

A

Q

()
()

()

()

()

)

*)

)

()

)

)

*)

()

*)
)

)

()

)
*)

)

We estimate the parameters in Q using the Expectation Maximization algorithm

implemented in the PHAST software package (Siepel and Haussler, 2004). For the

applications presented in this paper, we fix the tree topology as that of Margulies et al.

(2006), and run the estimation on a sample of genome-wide alignments of human,

chimpanzee, macaque, mouse, rat, cow, and dog (for RP and hypersensitive sites), or

human, mouse, opossum, chicken, frog, zebrafish, and pufferfish (for conserved elements

with developmental enhancer activity).

Ancestral base distribution inference

Given an alignment column x = (x1,… xm), the posterior distribution for the base in the

common ancestor of the m species is

!
"

=

},,,,{

)|Pr(

)|Pr(
)|Pr(

GapTGCAz

z

y

zx

yx
xy

#

#
 (S.1)

 3

Felsenstein’s algorithm evaluates the likelihood Pr(x | y) in Equation (S.1) recursively

proceeding bottom-up along the phylogenetic tree through a series of “triangulations”.

For a generic stage, let y0, y1 and y2 be, respectively, the position for the ancestor

currently under consideration (0), and its two immediate descendants (1 and 2). The basic

recursive relation is

!! "" #$#=
2

20

1

10
))2,0(()|)2(Pr())1,0(()|)1(Pr()|)0(Pr(210

y

yy

y

yy
yxyxyx %%

where x(A) indicates the subset of x corresponding to observed species descending from

A , τ(A,B) the length of the branch linking A and B , and ΠyA yB (τ(A,B)) the

corresponding transition probability obtained through

 !
"

=

#
=#=$

0 !

)(
}exp{)(

j

j

j

Q
Q

%
%% (S.2)

The Q in Equation (S.2) and the π’s in Equation (S.1) are, respectively, the rate matrix

and equilibrium distribution of the of the HKY+Gap substitution model described above.

Clustering based on proximity and entropy

Ancestral base distributions are points in the 5D simplex. We group them using a novel

agglomerative clustering algorithm that combines entropy and spatial proximity in the

simplex. At each iteration, a merger is chosen among a set of candidates as to maximize

entropy of the resulting partition. Let G indicate the current partition in groups g each

containing a fraction fg = ng/n of the training column occurrences (that is, ng is the sum of

occurrences of all alignment columns that correspond to ancestral distributions in g, and n

is the overall number of alignment columns in the training data). Also, let C indicate a set

of candidate mergers c, and G(c) the partition in groups g(c) (each containing a fraction

fg(c) of the occurrences) resulting from merger c. We select the merger

 4

!
"

"
=#=

*)(

)()(max)log(*))((such that *
cGg

Cc
cgcg ffcGHc

Because G(c) is “nested” in G, the entropy of the former coincides with the mutual

information between the two so that, at each iteration, selecting a merger to maximize

entropy is the same as selecting a merger to retain maximal information relative to the

current partition. Because it uses entropy, this algorithm tends to create clusters of

similar size, located depending on the frequency of occurrences in the simplex.

 Proximity is used as a constraint; by limiting the set of candidates C in each iteration

to mergers involving “neighboring clusters”, we ensure that clusters remain spatially

contiguous. This can be implemented in several ways, as to give stronger of weaker roles

to proximity vis a vis the entropy maximization. For the applications presented in this

paper, we let a merger c = {g1, g2} be a candidate if

),(minor),(min),(2121 ggdggdggd
GgGg !!

=

Although other choices are possible, we use Euclidian distance and a centroid linkage,

i.e. we define the distance between two clusters as the Euclidean distance between their

centroids. Also, for the applications presented here we implement a pre-clustering step:

before starting the agglomeration we merge ancestral reconstructions corresponding to

alignment columns that occur less than ν times (e.g. 5) in the training data to the closest

ones that occur at least ν times.

Evaluation of encodings through cross validation

To evaluate the classification performance of an encoding during the iterative search, we

use k-repeated h-fold cross validation. The training data is partitioned at random into h

(e.g. 10) folds, a fold is withheld, and two variable order Markov models are estimated

with the remaining positive and negative data. The estimated models are used to produce

log-odds scores for all the data (including the withheld fold). If the sets of scores for

positive and negative data used in training overlap, withheld data is classified into

positive and negative based on the sign of their scores. If the sets do not overlap, the

withheld data is classified as positive if their score is larger than the minimum score of

 5

the positive data, as negative if it is smaller than the maximum score of the negative data,

and as “unclassifiable” if it falls in between. This yields counts of correctly classified,

erroneously classified, and unclassifiable elements in the withheld fold. The process is

repeated for the h folds, and for k (e.g. 10) random partitions of the data. Counts are

averaged in correct classification (success), erroneous classification, and unclassifiable

rates associated with the alphabet.

 Unlike the success rates used to evaluate encodings during the search, the ones

reported in outcome of ESPERR applications, i.e. the success rates obtained on optimal

encodings, are recomputed with leave-one-out cross validation for stability (instead of

withholding folds, the data elements are withheld one at a time).

Sampling of candidate encodings and heuristics for the iterative search

Our search generates candidate encodings, accepts the best based on a figure of merit

(FOM), and repeats until a good encoding is found. The FOM is the cross validation

success rate described above, and does not include “unclassifiable” elements. At each

stage, candidates are generated from the current encoding by either merging two symbols

(groups) or extracting an atom from one of the symbols. When the current encoding is

large, many candidates will perform close to (a poor) best. Thus we evaluate only a

random sampling, e.g. γ=50 mergers and η=20 extractions, which reduces computations

while still producing reasonable moves with high probability. As the current encoding

shrinks, γ represents a larger fraction of the possible mergers, and η random extractions

continue to afford a degree of reversibility to the search.

 Large encodings require more parameters, are more susceptible to over-fitting and

thus score more elements in the unclassifiable range, reducing the FOM. Consequently,

the search strongly prefers small encodings, and it is possible that evaluating single atom

extractions will not be enough to by-pass local optima. We overcome this problem with a

heuristic: if the FOM does not increase over w (e.g. 20) consecutive iterations, we

consider only extractions for e (e.g. 5) consecutive steps, which allows us to move out of

local optima through poorer performing, larger encodings.

 Even with this heuristic, it is still possible for the search to make bad moves which

then take a long time to be reversed. To recover efficiency, we add a “restarting”

 6

heuristic: if we proceed for r (e.g. 50) iterations without reaching an encoding better than

the best seen so far, we restart the search at that best encoding. Termination is similar but

extends to a much larger number of iterations – we stop if we go for 1,000 iterations

without reaching an encoding better than the best seen so far, and adopt that best

encoding as the final one.

Pseudo-code for the randomized search algorithm

The search is initialized using some mapping, either a one-to-one mapping of the training

data symbols (e.g. all alignment columns) or the result of another encoding selection

procedure (e.g. the clustering based on ancestral base distributions). After each iteration,

this will be replaced with the best mapping found in that iteration.

mapping = initialize_mapping()

We keep track of the best mapping seen, and its figure of merit. When the search

terminates this best mapping corresponds to the final encoding.

best_merit_overall = -Inf

best_mapping_overall = None

The search iterates until it has performed 1,000 iterations without any improvement over

the best mapping seen.

while steps_since_best < 1,000:

Within each iteration, we keep track of the best candidate mapping found.

best_merit = -Inf

best_mapping = None

The first set of candidate mappings is created by merging symbols in the current

encoding. We consider a random sample of γ such candidates. For practical reasons

we set a lower bound (e.g. 5) on the encoding size and skip this step if the encoding is

already too small.

if symbol_count > minimum_alphabet_size:

Sample γ pairs from all possible pairs of symbols that could be collapsed.

for pair in sample(all_collapsible_pairs(mapping), γ):

 Generate a new mapping in which that pair of symbols are merged

new_mapping = collapse(current_mapping, pair)

 7

Evaluate the figure of merit when this mapping is applied to the training data.

If it is the best so far for this iteration, save it.

merit = calc_merit(new_mapping)

if merit > best_merit:

best_merit = merit

best_mapping = new_mapping

The second set of candidates is created by extracting atoms which are currently

grouped with other symbols. We consider a random sample of η such candidates.

Again for practical reasons we only break out seeds which occur more than 10 times

in the training data, since they will not comprise any context that can be incorporated

in the model (see VOMM estimation).

for atom in sample(expandable_atoms(mapping), η):

Generate a new mapping with that atom separated.

new_mapping = expand(mapping, atom)

Evaluate the figure-of-merit when this mapping is applied to the training data. If it

is the best so far for this iteration, save it.

merit = calc_merit(new_mapping)

if merit > best_merit:

best_merit = merit

best_mapping = new_mapping

We accept the best mapping from either the collapse or expand steps as the new

mapping for the next iteration

mapping = best_mapping

When the new mapping is better that the best seen so far, we save it and reset the

counters used to trigger the two heuristics and termination.

if best_merit > best_merit_overall:

best_merit_overall = best_merit

best_mapping_overall = best_mapping

steps_since_best = 0

steps_since_restart = 0

steps_since_forced_expansion = 0

 8

We now check if the “restarting” heuristic should be triggered. If we have gone r

iterations without an improvement over the best mapping, we restart from that

mapping and reset the counters for the heuristics.

if steps_since_restart >= r:

steps_since_restart = 0

steps_since_forced_expansion = 0

mapping = best_mapping_overall

Next we check if the “forced expansion” heuristic should be triggered. If we have

gone w iterations without improvement over the best mapping, we force e consecutive

expansion steps. These expansions are part of a single “iteration” and do not affect

the counters (the expansion procedure is otherwise identical to that above).

if steps_since_forced_expansion > w:

steps_since_forced_expansion = 0

for i from 0 to e:

best_merit = 0

best_mapping = None

for atom in sample(expandable_atoms(mapping), η):

new_mapping = expand(mapping, atom)

merit = calc_merit(new_mapping)

if merit > best_merit:

best_merit = merit

best_mapping = new_mapping

mapping = best_mapping

Finally we increment the counters that keep track of when each heuristic is triggered

and when the search terminates.

steps_since_best += 1

steps_since_restart += 1

steps_since_forced_expansion += 1

Variable order Markov models and their estimation

A Markov model of fixed order T on a state space S is usually represented through a #(S)T

by #(S) transition probability matrix, whose entries p(s| s-1…s-T) express the chances of s

conditional to the symbols in the T preceding positions. An alternative and more intuitive

way of representing Markov models is through a tree structure; each node in the tree

 9

correspond to a context of a given length, say a,b of length 2, and contains transition

probabilities p(s|b,a), s in S. The children of such node correspond to contexts extended

forward by one symbol, say a,b,c, and contain transition probabilities p(s|c,b,a), s in S . A

tree comprising all contexts up to length T contains in its leaf nodes all the transition

probabilities required to specify a Markov model of fixed order T. A variable order

Markov model (VOMM) of maximal order T can be thought of as a “pruned” version of

such a tree, where a reduced number of leaf nodes correspond to contexts of variable

lengths with distinct transition probabilities.

 Fitting a VOMM on training data consists of extending contexts, and estimating the

corresponding transition probabilities. We extend contexts using a pruning criterion;

considering each order t from 0 to T, we augment the tree to include a node for each

context s-t…s-1 that occurs more than p (e.g. 10) times in both the positive and the

negative training sets. While this criterion is naïve compared to other VOMM pruning

strategies, it does not require the maximal model (where all contexts are considered) to be

built before pruning, and thus allows quicker model fitting. For each node included in the

tree, we then need to compute the transition probabilities p(s| s-1…s-t), s in S. Of course a

node may not have a full set of children, and there may even be extended contexts

s-t…s-1, s that never occur in the data. To produce non-zero estimates for the

corresponding probabilities, we use a “discount” smoothing rule, which redistributes a

small amount of mass d (e.g. 0.01) through the formula:

Ssssspd
sss

sss
dsssp t

Ss

t

t
t !+"= """

!

""

""
""

#
)...|(

)...|~(#

)...|(#
)1()...|()1(1

~
1

1
1

where #(.| s-1…s-t) indicates number of occurrences after s-t…s-1 (in other words, the rule

reallocates d mass relative to the distribution of the parent context s-(t-1)…s-1). For order

zero (empty context) we set d=0.

 Note that the maximal order is a hard limit on the size of a VOMM, since contexts

can not extend beyond T. Pruning also limits the size of the model, as it determines how

many transition probabilities need to be estimated. Preliminary investigations showed

 10

that our fits are robust to changes in p and d, at least for relatively small values of these

parameters.

Log-odds classification

For classification, we fit two variable order Markov models on the positive and negative

training sets, as described above. Any training or independent alignment segment, say a =

(a1…an) comprising n columns, is then scored with the equation

 !
=

"

"

##
$

%
&&
'

(
=

ni
i

NEGiNEG

i

POSiPOS

aap

aap
a

...1
)(

)(

)|(

)|(
log)(l

where a (i-)POS and a (i-)NEG represent the relevant contexts (symbols in position i-1, i-2…)

under the positive and negative model. ℓ(a) is positive if the patterns in a resemble those

characteristic of the positive training data, and negative if the resemblance is to the

negative training data, so the segment can be classified by the sign of its score.

Receiver Operating Characteristic (ROC) Curves

Let g(x) be a generic score for entities x with known labels l(x)=POS or NEG, and

consider a classification rule that predicts labels based on a threshold y as pl(x)=POS if

g(x) > y (NEG if g(x) < y). Correspondingly, define true positive/negatives and false

positive/negatives associated with y as:

})(,)(:{,})(,)(:{

})()(:{,})()(:{

POSxlNEGxplxFNNEGxlPOSxplxFP

NEGxlxplxTNPOSxlxplxTP

yy

yy

======

======

The sensitivity and specificity associated with y are then given by:

}{#}{#

}{#
,

}{#}{#

}{#

yy

y
y

yy

y
y

FNTP

TP
Sn

FPTN

TN
Sp

+
=

+
=

 11

expressing, respectively, the share of negative predictions that are true negatives, and the

share of positive predictions that are true positives. The ROC Curve plots the locus {Sny;

1-Spy} as the threshold y varies, capturing the underlying trade-off between sensitivity

and specificity of the classifier. ROC curves can be used to compare performance for

different classifiers over ranges of thresholds – as sensitivity and specificity range, in

trade-off, between 0 and 1.

