
Supplementary Methods 

Data Analysis 

Intensity Pre-Processing 

AB-ratio adjustment Affinity differences between allele ‘A’ and allele ‘B’ are estimated 

for each probe to allow a direct comparison of two DNA samples with different 

genotypes for the given SNP. The PM and MM intensities obtained from each probe are 

denoted as  and A B Al l
i k i k i kP P M, , ,, , l B 1 1l

i k i kM i N k N, , = ,..., , = ,..., ,  and  with  

representing the different samples, k  representing different probe set numbers, l  

representing the probe pair number, and 

1 ll = ,...,N i

( )A B  representing the A(B) allele. A Gaussian 

mixture clustering algorithm was used to extract samples with exactly one ‘A’ allele and 

one ‘B’ allele for each SNP in the 270 HapMap samples. 
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autosome

iP  is the sum of PM signals in autosomal regions for i-th sample used to adjust the 

PM signals among different samples. 

xi,k is a two dimensional vector defined as follows: 
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The normalized PM signals of such samples are assumed to follow a Gaussian 

distribution. 
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where k and m represent the different probe sets and the different clusters which have 

different numbers of ‘A’ alleles and ‘B’ alleles, respectively. The parameters of the 

Gaussian mixture model (wk,m, μk,m, Σk,m) were estimated with a fixed number of 

components using the EM algorithm (Dempster et al. 1977) while the Bayesian 

Information Criterion (BIC) (Schwarz 1978) was used to determine the number of 

clusters. BIC is used in several different stages of the algorithm. It is applicable to 

problems where the fitting is achieved by maximization of a log-likelihood. A heavy 

penalty proportional to the sample size is imposed with increased complexity of the 

model, encouraging a simple model that efficiently captures the intensity variation pattern 

defined by the sequence factors. The K-means algorithm was used to initialize the center 

of each cluster, and the cluster membership was determined based on the class posterior 

probabilities using the Bayes rule. After parameter estimation, the “AB” cluster was 

defined as the one with the minimum average signals that satisfies 
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Finally, the signal ratio of allele A to B of probe k is  
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where  is the set of samples which belong to the cluster . The ratios are used to 

modify the intensity difference between allele ‘A’ and allele ‘B’. When the number of 

samples with ‘AB’ genotype was too small (< 20) to identify the clusters correctly for a 

given SNP, the median of 

ABS ABm

l lA B
i k i kP P, ,/  was used for all samples as  instead. l

kr

The modified signal ratio between two samples was calculated by using the affinity ratios. 

Let  denote the genotype of probe  in sample i . Genotype , { , , }i kg A B A∈ B k A  contains 

at least one A allele but does not contain a B allele, genotype AB  contains at least one A 

allele and at least one B allele, and Genotype B contains at least one B allele but does not 

contain an A allele. Signal ratio between sample  and i j  for probe set  of the -th k l



quartet is calculated as follows:  
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Noise reduction and normalization Signal variation due to properties of the probe and 

restriction fragment sequences was estimated and removed by the GIM algorithm which 

has been described in detail previously (Komura et al. 2006). For this study, GIM was 

improved in several aspects to be more suitable for CNV detection. First, we have found 

that signal intensity variation often correlates with the long range GC content surrounding 

each SNP. Thus, the model now takes into account the GC percentage of 40kbp of 

sequence surrounding each SNP.  Second, robust regression is now applied and robust 

Bayesian Information Criterion (robust BIC) (Qian and Kunsch 1996) is used to 

determine the optimal degree of polynomials in place of least-square regression and BIC 

(Schwarz 1978) which were used in the original algorithm. To reduce computational time, 

we estimated the optimal degree of polynomials for 100 randomly selected sample pairs 

beforehand and used the mode of each parameter for the analysis. Bi-square estimators 



were selected for the robust regression, which minimizes the objective function 
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We set k to 4.685σ (where σ is the standard deviation of the errors), which produces 95% 

efficiency when the errors are normal, and offers protection against outliers. In this 

analysis, the first round of crude copy number estimation used in the original version of 

GIM is omitted since the CNV regions are usually small and have little effect on the 

whole distribution of signal ratios; in addition, the robust regression that has been 

adopted protects against any such random perturbation. The algorithm was applied 

separately to each sample pair, each array (Nsp I and Sty I), each genotype combination 

and each restriction enzyme recognition site.  

 

Scaling was carried out to make different experiments more comparable and to remove 

undesired bias derived from large copy number changes in some chromosomes. The 

median ratio was scaled to unity by dividing all the ratios with the median ratio of all 

autosomal probes, but leaving out the probes from the three chromosomes with the 

highest MAD (median absolute deviation).  Here let  be a signal ratio of i-th probe, ir jC  

be a set of probes on j-th chromosome and  be a set of probes on all autosomes. 

MAD for j-th autosome was calculated as follows:  

autosomeC
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Since chromosomes with high MAD may have large CNV regions, they were removed 

for scaling. Scaling was carried out as follows:  

   
lowMAD

2 2log log median logi i k C
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∈
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where  is the set of autosomal probes excluding the three chromosomes with the 

highest MAD and  is a scaled signal ratio of i-th probe. 

lowMADC

ir′

 



CNV Detection 

Pair-wise comparisons. After signal ratios from Nsp I and Sty I arrays from the same 

sample were merged, SW-ARRAY was used to detect copy number changes in pair-wise 

comparisons. As an initial step, probes with signal ratios >1.4 (or <1/1.4) were reset to 

1.4 (or 1/1.4) in order to reduce the effect of any outliers with extreme values. Signal 

ratios were converted back to their original values for subsequent analysis. Next, the 

background distribution was calculated. For this step, in order to avoid the possible effect 

of large CNVs in a chromosome reducing the overall detection sensitivity, probes were 

selected from the chromosomes with the lowest MAD. These probes were added 

iteratively until the number of probes was sufficiently large (> 39,189 in this case). The 

permutated signal ratios using this set of probes was then used to estimate the background 

distribution. 

 
Detection of Homozygous Deletions Genotype calls in homozygous deletion regions are 

often ‘no calls’ which cannot be used by the algorithm proposed here. Since this would 

lead to significantly reduced resolution, homozygous deletions were detected separately 

using another algorithm that relies on the discrimination score. The discrimination score 

for each allele is defined as  
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where i and k represent the different samples and the different probe sets, respectively. 

Consecutive probes with low discrimination scores are detected by applying SW-

ARRAY to a series of A Bmax( )i k i kD D, ,,  with a cut-off threshold of 0.1929 and 100,000 

permutations. All probes are used irrespective of their genotypes. The signal distribution 

of homozygous deletions was simulated by generating artificial deletions through the 

digestion of sample DNA with the restriction enzyme Xba I prior to using the standard 



500K EA assay. 2ug of genomic DNA was digested for 16 hours with Xba I (NEB) and 

then de-phosphorylated with shrimp alkaline phosphatase (Sigma Aldrich) to prevent re-

ligation at later steps. 250ng of the purified genomic DNA was then used for the standard 

Nsp I WGSA protocol. Intensity signals from probes predicted to reside on Nsp I 

restriction fragments that contain internal Xba I restriction sites were used to train the 

algorithm for the detection of homozygous deletions.  
 

Preliminary CNV extraction from multiple samples CNV regions are inferred based 

on summarization of all pair-wise comparisons. The ‘CNV density’ is defined as the 

fraction of pair-wise comparisons that show the target region as significant between the 

test sample and the reference set: 
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where N is the total number of reference samples (269 in the HapMap analysis), pth is set 

to 0.01,  is a p-value of probe  calculated by SW-ARRAY between sample i  and i j kp , , k j , 

and  is a Heaviside step function: 0 ( )H ⋅
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The CNV confidence score of probe k  is defined as:  
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Here n is the size of the subset that shared the same altered copy number and is tested 

between 1 to 2
N ; α is the cut-off rate of CNVs successfully detected in all single pair-

wise comparisons and accounts for the occasional false-positives and false-negatives. 

 indicates probe  resides inside a CNV region in any of the samples. CNV 

regions are extracted based on the CNV confidence score. The m -th CNV region is 

represented by  which satisfies  

0ks > k

{ }m m m m m m kT k l k r k N= | ≤ ≤ , ∈

  (17) 0
mks ≥ ,



1 0
ml

s − < ,  (18) 

  (19) 1 0
mr

s + < ,

  (20) 1 1 m m M Ml r l r l r< <, , < , ,< <L L

   (21) {m k
m

T k s= | ≥U 0}

 

Mwhere  denotes the total number of candidate CNV regions. CNV regions that span 

centromeres were divided into two regions. Subsequent analysis is done separately for 

each CNV region..

)

    

Copy Number Inference 

Identification of diploid samples The diploid group at any given region is initially 

defined under the assumption that it is the largest group with the same copy number. A 

graph-theory-based method is applied to find these groups. For a given CNV region that 

contains probes from l  to , an undirected graph (G V E= ,r  is constructed where each 

node  represents each sample and each edge v V∈ i je , E∈  between nodes  and iv jv  

indicates that the copy number between the two samples is the same throughout the 

candidate CNV region. In other words, an edge connects node  to  if  iv jv

                       (22) 0 thmax ( ) 0i j kl k r
H p p , ,≤ ≤

− = .

This transforms the problem of finding the diploid group to finding the maximum clique 

in the graph, which is a well-known NP-complete problem and requires unrealistic 

computation time. As an alternative, a heuristic approach was developed that considers 

each node to be a clique of size one, and then merges cliques into larger cliques until 

there are no more possible merges. This requires only linear computational time and finds 

at least one maximal clique not contained in any larger clique; this local optimization 

satisfies the goal of finding as many diploid samples as possible. 

 

The selection of diploid samples becomes more challenging when the candidate CNV 

region is present in high frequency in the reference population and has a complex 



genomic structure.  In such cases, the maximum clique may be the one copy group, which 

should show loss of heterozygosity, or the three copy group, which should show A/B 

ratio’s significantly different from one in the probes with an ‘AB’ genotype. Therefore, 

we use the genotype information to redefine the diploid groups in such complex regions 

to ensure that true diploid samples, which may not be the most frequent group anymore, 

are accurately identified. Therefore if the hetero SNP rate is  < 0.05 for the assigned 

diploid group and the number of the samples classified as > 3 copies is more than 10%, 

or when the absolute log2 AB ratio of the assigned diploid group is > log2(1.197) and the 

number of the samples classified as deletions was more than 10%, we re-selected the 

diploid samples. Re-selection was carried by max clique algorithm after removing the 

diploid set in the previous iteration.  

 

Boundary assignment After the diploid group is defined, diploid densities were 
calculated again as:  
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where  and  are the diploid group and the size of the group respectively. PdipS dipN th is set 

to 0.01. As in the previous section, CNV regions  of the sample i are extracted: ,i mT
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, mi kd α≥ ,                                    (24) 
dip
, 1mi ld α− < ,                                    (25) 
dip
, 1mi rd α+ < ,                                    (26) 

            (27) ,1 ,1 , , , ,i i i m i m i M i Ml r l r l r< <, ,< < <, ,< <L L
dip

, ,{
mi m m i k

m

T k d }α= | ≥U             (28)  

The density is incorporated to infer the boundary of each CNV region for each sample. In 

addition, we assigned β% leftmost and β% rightmost boundary for each CNV region. The 

center of -th CNV region for sample i is defined as  m

                              (29) dip
,argmax

m
m

i m i k
k

c , = d .

The maximum value of the diploid density  reflects the confidence of the CNV 
call. 
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β leftmost ( ) and rightmost (The %β ) boundary of m -th CNV region is defined as 

satisfying the following condition:  
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For cell line artifacts that involved sub-chromosomal changes, the boundary was 

determined by maximizing the difference of the average log2 signal ratio between the test 

sample region and the corresponding reference set region. 

 
 
Copy number estimation Absolute copy number of a CNV in a sample is inferred based 

on the representative signal ratio for each CNV region. Here the median of the ratios to 

the diploid samples are taken as the representative ratio:  
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 where  is a summarized signal ratio of probe k between sample i and j as calculated 

in (9),   and are the samples classified as diploid by the maximum clique 

algorithm and the samples with the same genotype as the i-th sample. Here the 90% 

boundaries were used as a conservative delineation of the region to minimize the effect of 

boundary estimation errors. The signal ratio between the probes with only the same  
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genotype was used to avoid the effect of AB ratio estimation errors. Copy number of the 

region Ci,m is defined as: 
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These thresholds were determined based on the ratio of 2X DNA samples to 1X through 

5X DNA samples (data not shown). 

 

References 
 
Dempster, A.P., N.M. Laird, and D.B. Rublin. 1977. Maximum likelihood from 

incomplete data via the EM algorithm. J. of Royal Statistical Society 39: 1-38. 
Komura, D., K. Nishimura, S. Ishikawa, B. Panda, J. huang, H. Nakamura, S. Ihara, M. 

Hirose, K.W. Jones, and H. Aburatani. 2006. Noise reduction from genotyping 
microarrays using probe level information. In Silico Biology 6. 

Qian, G. and R.H. Kunsch. 1996. On model selection in robust linear regression. 
Technical Report 80, Seminar Fur Statistik, Eidgenossische Technische 
Hochschule (ETH), Zurich, Switzerland. 

Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics 6: 461-464. 
 
 


	Supplementary Methods

