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In this supplementary document, we provide a detailed account of the algorithm for

reconstructing CARs and of the reconstruction accuracy analysis.

1 The algorithm of inferring CARs

Given information about adjacencies between conserved segments in each modern

species, our goal is to infer segment order in the ancestral genome. To get a clean and

precise statement of the problem we formalize it using graph theory. The algorithm iden-

tifies a most-parsimonious scenario for the history of each individual adjacency, though

the whole-genome prediction is not guaranteed to optimize traditional measures like the

number of breakpoints. We introduce weights to the graph edges to model the reliability

of each adjacency. Finally, we use a greedy heuristic algorithm to find a set of paths in the

graph that cover maximum total weights. These paths correspond to contiguous ancestral

regions (CARs).

Here, we explain the algorithm using a detailed example.

A (1 -2 4 8 9   5 6 -10 -7 -11 12)

B (1 2 3 4 5 6   7 8 -9 10 11 12)

C (1 2 3   4 -5 6   7 9 -8 10 -11 12)

O (1 3 4 -5 6   7 -12 8 11 9 10)
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Figure 1: The phylogeny of genomes A, B, C. Our target ancestor is E, and O is the outgroup.

The bullet symbol, •, separates chromosomes. Branch lengths are above each branch.
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Figure 1 shows the phylogeny of genomes A, B, and C. We want to reconstruct CARs

in E with O as an outgroup.

The predecessor graphs of A, B, and C can be obtained directly from the leaf genomes;

see Figure 2, 3, and 4. There are two special nodes representing the beginning and the

end of a chromosome. The predecessor graphs of internal nodes D and E are as shown in

Figure 5 and 6. The predecessor graph of root F is shown in Figure 7. Figure 8 is the

result after E being adjusted by F. The corresponding successor graph for E is shown in

Figure 9. Then we create the intersection of the predecessor and successor graphs in 8

and 9, giving the graph in Figure 10. Note that in this step we do not intersect edges

connecting the beginning or the end of the chromosome.

In Figure 10, there are ambiguous cases for node 7, 8, 9, 10. We then assign weights

to edges recursively using the approach discussed in the Method section. For example,

w(7, 8) = w(−8,−7) = 0.54. We have wA(7, 8) = 0, wB(7, 8) = 1, wC(7, 8) = 0, and

wD(7, 8) = 0.8
0.3+0.8 = 0.72. So wE(7, 8) = 0.72×0.9

0.3+0.9 = 0.54. Note that edges of weight 1 are

not shown in the picture.

Then we sort all the edges by weight and add them to the graph until every node in the

graph has a unique predecessor and successor. The final edges are indicated by the dark

edges in Figure 11. The paths come in pairs, which corresponds to the two orientations of

each CAR. We select one path from each pair, obtaining for example CARs (1 2 3 4 −5 6)

and (7 8 − 9 10 − 11 12).
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Figure 2: Predecessor graph of A
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Figure 3: Predecessor graph of B
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Figure 4: Predecessor graph of C
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Figure 5: Predecessor graph of D
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Figure 6: Predecessor graph of E
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Figure 7: Predecessor graph of F
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Figure 8: Predecessor graph of E after being adjusted by F
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Figure 9: Successor graph of E
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Figure 10: Intersection of the predecessor graph and successor graph of E
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Figure 11: The resulting CARs
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2 Probabilistic reconstruction accuracy analysis

Breakpoint distance between multichromosomal genomes

Suppose genomes A and B share n conserved elements, located in p chromosomes, and

q chromosomes, respectively. Then, there are a total of n + p adjacencies in A and n + q

adjacencies in B. Using φ to denote the beginning and end of a chromosome, we assign a

score ck (k = 1, . . . , n + p) to every adjacency (aiaj) in A:

ck = c(ai, aj) =



















0 if (aiaj) or (−aj − ai) is in B;

1
2 if ai = φ or aj = φ and both (aiaj) and (−aj − ai) are not in B;

1 otherwise.

Then the breakpoint distance between A and B is defined as:

d(A, B) =

n+p
∑

k=1

ck (1)

For example, A = [1 2•3 −4 5] and B = [5 3•1•2 4] (the bullet symbol, •, separates

chromosomes). In A, we have c(φ, 1) = 0, c(1, 2) = 1, c(2, φ) = 0.5, c(φ, 3) = 0.5,

c(3,−4) = 1, c(−4, 5) = 1, c(5, φ) = 0.5, therefore d(A, B) = 4.5.

Assume each conserved element i (except φ) in the genome g has a predecessor pg(i)

and a successor sg(i). We set P (A, B) to be the number of i where pA(i) 6= pB(i), and

S(A, B) to be the number of i where sA(i) 6= sB(i). We can see that:

P (A, B) + S(A, B) =
1

2
d(A, B)

Since P (A, B) = P (B, A) and S(A, B) = S(B, A), it follows that d(A, B) = d(B, A).

Furthermore, using the breakpoint distance, we can estimate the probability that the

successor (or predecessor) of i is different between genome A and B, i.e.

Pr[sA(i) 6= sB(i)] ≈
d(A, B)

n
(2)

The estimation will be used in the analysis of reconstruction accuracy.

The extended Jukes-Cantor model

We extend the Jukes-Cantor model for analyzing breakpoints. Here we assume that

a genome π with n elements has evolved through a series of rearrangement events with

unknown proportions. Then, for any element f in the genome π = ...fg..., its succes-

sor g is changed to h over a time unit with the same probability α for all h 6= f,−f, g
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[Sankoff and Blanchette, 1999]. Hence, there are 2n− 3 such changes possible. The prob-

ability that g remains as the successor is 1 − (2n − 3)α

Suppose π evolves into τ along a branch with time t. We use Pri[s(f) = g] to denote

the probability that s(f) = g, i.e. g is the successor of f after time i, for g 6= f,−f ,

i = 0, 1, . . . , t. Then for any i, we have,

Pri+1[s(f) = g] = (1 − (2n − 3)α)Pri[s(f) = g] + α(1 − Pri[s(f) = g])

Equivalently,

Pri+1[s(f) = g] − Pri[s(f) = g] = α − α(2n − 2)Pri[s(f) = g]

If we approximate the discrete-time process by a continuous model, we can rewrite the

above equation as:

dPry[s(f) = g]

dy
= α − α(2n − 2)Pry[s(f) = g]

We solve the above first-order linear differential equation,

Pri[s(f) = g] =
1

2n − 2
+

(

Pr0[s(f) = g] −
1

2n − 2

)

e−(2n−2)αi

Therefore, using sπ(f) = g to denote the event that the successor of f is g in π, we have,

Pr[sτ (f) = g|sπ(f) = g] =
1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)αt,

since Pr0[s(f) = g] = Pr[sπ(f) = g] = 1.

Similarly, for any h 6= f,−f, g in genome τ ,

Pr[sτ (f) = h|sπ(f) = g] =
1

2n − 2
−

1

2n − 2
e−(2n−2)αt

Reconstruction accuracy analysis

We reconstruct the CARs in the boreoeutherian ancestor using genomes of human,

mouse, rat, dog, opossum, and chicken. The reconstruction is based on the phylogeny

shown in Figure 12, in which chicken and opossum are the outgroups. The ancestor

genome we want to reconstruct corresponds to E in the phylogeny. This phylogeny is

derived from the phylogeny in Figure 8 in the manuscript.

Under the extended Jukes-Cantor model for breakpoints, the probability of correctly

reconstructing a join in the boreoeutherian ancestor E is equivalent to the probability

P = Pr[g is predicted to be the successor of f |g is the successor of f in E]
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Figure 12: Phylogeny over human (H), mouse (M), rat (R), dog (D), opossum (O), and

chicken (C). The branch lengths are tGC=0.453876, tGP =0.190537, tPO=0.365507, tPE=0.271214,

tED=0.206169, tEN=0.023260, tNF =0.260327, tFM=0.072818, tFR=0.081244, tNH=0.140987.

On a branch xy, we set

pxy = Pr[sy(f) = g|sx(f) = g] =
1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)txyαxy (3)

qxy = Pr[sy(f) = g|sx(f) 6= g] =
1

2n − 2
−

1

2n − 2
e−(2n−2)txyαxy (4)

where txy denotes the length of branch xy and αxy the successor substitution rate on the

branch xy. Note that (2n − 3)qxy = 1 − pxy.

The algorithm, without the help of an outgroup, will uniquely connect f and g in the

output if and only if the following conditions are satisfied:

(U1) g is the successor of f in D; and

(U2) g is the successor of f in H, M , or R. Restriction: if the successor of f in H is not

g, it should not be identical to the successor of f in both M and R.

The restriction above is to exclude the cases that are caused by parallel neighbor

changing. For example, in common ancestor E, sE(f) = g, and in leaf genomes, sD(f) = g,

sR(f) = h, sM (f) = g, sH(f) = h, then, the algorithm will not reconstruct g correctly at

E.

The probability that (U1) holds is

pED =
1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)tEDαED
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The probability that (U2) holds is

Pr[sH(f) = g ∨ sM (f) = g ∨ sR(f) = g|sE(f) = g]

− Pr[sM (f) = g ∧ sR(f) = sH(f) 6= g|sE(f) = g]

− Pr[sR(f) = g ∧ sM (f) = sH(f) 6= g|sE(f) = g]

≈ 1 − Pr[sH(f) 6= g ∧ sM (f) 6= g ∧ sR(f) 6= g|sE(f) = g]

= 1 − ((1 − pEN )(1 − qNH) (qNF (1 − pFM )(1 − pFR) + (1 − qNF )(1 − qFM )(1 − qFR))

+pEN (1 − pNH) (pNF (1 − pFM )(1 − pFR) + (1 − pNF )(1 − qFM )(1 − qFR)))

since parallel neighbor changing rarely occurs. In fact, numerical analysis shows that,

when n is larger than 1000 as in our case,

Pr[sM (f) = g ∧ sR(f) = sH(f) 6= g|sE(f) = g]

and

Pr[sR(f) = g ∧ sM (f) = sH(f) 6= g|sE(f) = g]

are about 0.00001.

Overall, the accuracy without the outgroup information is the product of the proba-

bility that (U1) holds and the probability that (U2) holds. If we define

P6=g = Pr[sH(f) 6= g ∧ sM (f) 6= g ∧ sR(f) 6= g|sE(f) = g] (5)

then the overall probability of (U1) and (U2) can be written as:

pED(1 − P6=g) (6)

For Z = P, E, N, F , we use CSZ(f) to denote the set of the successor candidates con-

structed at Z by the algorithm. With the outgroups C and O, the algorithm reconstructs

g correctly if the following conditions are true:

(X1) The successor of f is g in chicken (C) or opossum (O); and

(X2) The set CSE(f) of the successor candidates constructed at E is a multiple set con-

taining g.

In the following discussion, we also ignore the probability that parallel changes occur.
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The probability for (X1) is, since our model is reversible,

Pr[sC(f) = g ∨ sO(f) = g|sE(f) = g]

= Pr[sO(f) = g|sE(f) = g] + Pr[sO(f) 6= g ∧ sC(f) = g|sE(f) = g]

= Pr[sO(f) = g|sE(f) = g]

+ Pr[sO(f) 6= g ∧ sC(f) = g|sP (f) = g]Pr[sP (f) = g|sE(f) = g]

+ Pr[sO(f) 6= g ∧ sC(f) = g|sP (f) 6= g]Pr[sP (f) 6= g|sE(f) = g]

= pEO + pEP (1 − pPO)pPC + (1 − pEP )(1 − qPO)qPC .

Define

PR=H 6=g = Pr[sM (f) = g ∧ sR(f) = sH(f) 6= g|sE(f) = g],

PM=H 6=g = Pr[sR(f) = g ∧ sM (f) = sH(g) 6= g|sE(f) = g].

The probability that (X2) holds is:

Pr[sD(f) = g ∧ g 6∈ CSN (f)|sE(f) = g] + Pr[sD(f) 6= g ∧ g ∈ CSN (f)|sE(f) = g]

− Pr[sD(f) 6= g ∧ sD(f) ∈ CSN (f) ∧ g ∈ CSN (f)|sE(f) = g]

≈ Pr[sD(f) = g ∧ g 6∈ CSN (f)|sE(f) = g] + Pr[sD(f) 6= g ∧ g ∈ CSN (f)|sE(f) = g]

= pED(P6=g + PR=H 6=R + PM=H 6=g) + (1 − pED)(1 − P6=g − PR=H 6=g − PM=H 6=g)

= 1 − pED − P6=g − PM=H 6=g − PR=H 6=g + 2pED(P6=g + PM=H 6=g + PR=H 6=g)

≈ 1 − pED − P6=g + 2pEDP6=g

In the above calculation, we also ignore PR=H 6=g and PM=H 6=g because both of them tend

to be extremely small. So the probability that both (X1) and (X2) are true is:

[pEO + pEP (1 − pPO)pPC + (1 − pEP )(1 − qPO)qPC ] (1 − pED − P6=g + 2pEDP6=g) (7)

From (6) and (7), the overall probability of accurately reconstructing a join in the

ancestor is:

P ≈ pED(1 − P6=g)

+ [pEO + pEP (1 − pPO)pPC + (1 − pEP )(1 − qPO)qPC ]

× (1 − pED − P6=g + 2pEDP6=g) (8)

In order to calculate P, we also need to estimate αxy for each branch in the phylogenetic

tree. For simplicity, we assume that αFM = αFR and αED = αEN = αNH = αPE =
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αPO = αGP = αGC . Since

Pr[sM (f) = sR(f) = g] =
∑

h 6=f,−f

Pr[sM (f) = g|sF (f) = h]Pr[sR(f) = g|sF (f) = h]

= pFMpFR + (2n − 3)qFMqFR

=

(

1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)tFMαFM

)(

1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)tFRαFR

)

+ (2n − 3)

(

1

2n − 2
−

1

2n − 2
e−(2n−2)tFMαFM

) (

1

2n − 2
−

1

2n − 2
e−(2n−2)tFRαFR

)

=
1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)(tFM+tFR)αFM

Thus,

Pr[sM (f) 6= sR(f)] = 1 − Pr[sM (f) = sR(f)] =
2n − 3

2n − 2

(

1 − e−(2n−2)(tFM+tFR)αFM

)

This implies

αFM = −
1

(2n − 2)(tFM + tFR)
ln

(

1 −
2n − 2

2n − 3
Pr[sM (f) 6= sR(f)]

)

≈ −
1

(2n − 2)(tFM + tFR)
ln

(

1 −
2n − 2

2n − 3
·
d(M, R)

n

)

(9)

Similarly, we have

Pr[sD(f) = sH(f)] =
1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)(tED+tEN+tNH)αED

and

αED ≈ −
1

(2n − 2)(tED + tEN + tNH)
ln(1 −

2n − 2

2n − 3
·
d(D, H)

n
) (10)

Also,

Pr[sH(f) = sM (f)] =
∑

h 6=f,−f

Pr[sH(f) = g|sN (f) = h]Pr[sM (f) = g|sN (f) = h]

= pNHpNM + (2n − 3)qNHqNM

=

(

1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)tNHαNH

) (

1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)(tNF αNF +tFMαFM )

)

+ (2n − 3)

(

1

2n − 2
−

1

2n − 2
e−(2n−2)tNHαNH

)

×

(

1

2n − 2
−

1

2n − 2
e−(2n−2)(tNF αNF +tFMαFM )

)

=
1

2n − 2
+

2n − 3

2n − 2
e−(2n−2)(tNHαNH+tNF αNF +tFMαFM )

11



Hence, we have

αNF ≈ −
1

tNF

(

1

2n − 2
ln

(

1 −
2n − 2

2n − 3
·
d(H, M)

n

)

+ tNHαNH + tFMαFM

)

(11)

In our reconstruction, we have n = 1338 conserved segments. According to (1) we also

have d(M, R) = 727.5, d(D, H) = 452.5, d(H, M) = 564.5. Based on (9)(10)(11), we can

calculate αFM = 19.0576 × 10−4, αED = 4.1693 × 10−4, αNF = 0.2875 × 10−4. Using the

branch lengths shown in Figure 12 we can calculate pxy and qxy following equations (3)

and (4). Finally, the overall probability in (8) is estimated as P ≈ 0.9018.
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