
A Supplementary Information

A.1 Network Construction

Here we present a heavily abbreviated discussion of network integration; a lengthier description
can be found in (Srinivasan et al., 2006a) and (Srinivasan et al., 2006b).

We formulate the network integration problem as a binary classifier, where the goal is to distin-
guish functionally linked proteins (L = 1) from non-interacting pairs (L = 0). In this formulation,
a vector of interaction predictors is the input to a binary classifier function, which returns the
integrated probability that two proteins are functionally linked. To calculate the mapping between
raw interaction data and integrated probabilities, the classifier function is trained on a set of known
interactions. Applying this classifier to predict interaction probabilities for all protein pairs in a
genome yields a probabilistic protein interaction network.

We generated the training set of known interactions by using the KEGG (Kanehisa and Goto, 2000)
annotation of individual proteins to produce an annotation of protein pairs. For each pair we
recorded if the proteins had overlapping annotations (L = 1), if both were in entirely nonoverlap-
ping categories (L = 0), and if either protein lacked an annotation code or was marked as unknown
(L =?) (Figure 1(a)). We also calculated four functional genomic predictors: coexpression (Pearson
correlation between expression profiles), coinheritance (Pearson correlation between phylogenetic
profiles), coevolution (Pearson correlation between distance matrices, taken elementwise), and colo-
cation (average chromosomal distance between ORFs). Each of these predictors is defined on a pair
of proteins rather than an individual protein and can be arranged in a four dimensional vector:

~E = (Ecoex, Ecoin, Ecoev, Ecoloc) = (E1, E2, E3, E4)

As shown in Figure 1(b), it is an empirical fact that the distribution of functionally linked
protein pairs is shifted relative to the distribution of functionally unlinked pairs. Intuitively, this
means that each functional genomic evidence type is a predictor of protein interaction. We can
combine these predictors to obtain the integrated probability of protein interaction via Bayes’ rule.
In practice, the quotient formula for the Bayesian posterior is quite sensitive to fluctuations in
the denominator. To deal with this, we use bootstrap aggregation(Breiman, 1996) to smooth the
posterior.

P (L = 1| ~E) =
1
M

M∑
i=1

Pi(~E|L = 1)P (L = 1)

Pi(~E|L = 1)P (L = 1) + Pi(~E|L = 0)P (L = 0)

Thus, for each pair of proteins, we have a value P (L = 1| ~E) which represents the integrated
probability of protein interaction over several data types. These edge weights are the weights in
our aligned networks. For further details, see (Srinivasan et al., 2006a, Srinivasan et al., 2006b).

A.1.1 Comparative Genomics and Network Alignment

An important question is whether the use of comparative genomic methods such as colocation, coin-
heritance, and coevolution during network integration significantly impacts the process of network
alignment. While expression data is truly independent from species to species, methods based on
the distribution of homologs have some degree of potential redundancy. For example, the GyrA and
GyrB proteins in Caulobacter crescentus will have similar lists of sequence homologs to the GyrA
and GyrB proteins in Escherichia coli. Subsequent calculation of phylogenetic profile correlations
(Ecoin) will show that the GyrA and GyrB families are strongly coinherited across the set of all

1

microbes, and in both C. crescentus and E. coli this high coinheritance value will contribute to the
integrated interaction probability of this protein pair.

Within each individual species’ network this is clearly not a problem, as it is clear that coin-
heritance is a predictor of functional interaction(Pellegrini et al., 1999, Srinivasan et al., 2005).
However, when using network alignment to detect conserved modules, the question is whether
interactions partially inferred from comparative genomic methods will show spurious conserva-
tion. The main issue is that if a given pair of proteins has a strong coinheritance, colocation, or
coevolution(Srinivasan et al., 2005) correlation in one species, it is likely to have a similarly strong
correlation in most other species, as the columns of the phylogenetic profile, colocation, and co-
evolution matrices are derived from the pool of sequenced genomes. Highly coexpressed pairs in
one species are not quite so guaranteed to be strongly coexpressed in closely related species, as the
columns of the expression matrices come from different experiments.

In this work, we decided that omitting the comparative genomic predictors of interaction would
artificially reduce our ability to find conserved modules. From a pragmatic standpoint, the ob-
servation that two protein families are globally colocated across the set of microbial genomes is a
notable fact. If two species contain representatives from both of these families, it becomes more
likely that the species contain a conserved module. As the purpose of network alignment is to find
conserved modules, we would be remiss in omitting this comparative genomic signal. That said,
in later work it may be possible to take a middle ground between discarding comparative genomic
predictors of interaction entirely versus completely retaining them in unaltered fashion as inputs
to each integrated network. One possibility is to partition the pool of genomes (e.g. through ran-
dom sampling or phylogenetic considerations) and to calculate “independent” comparative genomic
predictions for each species which we wish to align. However, such a method would be laborious
in that it would require N -way partitioning (and network construction) for an N -way alignment.
Another possibility is to reformulate the network alignment scoring function to include separate
terms for species-specific and comparative genomic interaction predictions. These are interesting
directions for further research.

A.2 Scoring Alignments

There are two components to Græmlin’s scoring framework: node scores and edge scores. Both are
based on the evolutionary interpretation of an alignment, in which each equivalence class represents
a set of proteins descending from a common ancestor. For each component of the scoring function,
we must specify two probabilistic models: the alignment modelM and the random model R.

A.2.1 Node scoring

To score an alignment, Græmlin first scores each equivalence class in the alignment. It uses each
scoring model to assign probabilities to an equivalence class by considering three types of evolution-
ary events: protein sequence mutations, protein insertions and deletions, and protein duplications
and divergences.

Græmlin scores protein sequence mutations using weighted sum-of-pairs scoring. First, for each
pair of proteins v1, v2 in an equivalence class it assigns a score SN (v1, v2) = log PrM(v1,v2)

PrR(v1,v2) , where
PrM is the probability assigned to the pair by the alignment model, and PrR is the probability
assigned by the random model. Both PrM and PrR are probability distributions over BLAST
alignments; each specifies the probability of obtaining every possible BLAST bitscore. For example,
if the bitscore of two proteins is S, the probability of the pair according to the alignment model is
PrM(S−∆ < x < S+∆). Given a complete set of pairwise scores, Græmlin uses the weighted sum-

2

of-pairs score, taken over all pairs of proteins in the equivalence class, as the score of all mutations
in the equivalence class.

To determine the distribution of bitscores for the alignment model, we sampled random pairs of
proteins from within the same COG; for the random model, we sampled completely random pairs
of proteins. We smoothed both models using a monotone regression function in the same manner
as has been done in the past (Kelley et al., 2003).

Græmlin considers protein insertions, deletions, duplications, and divergences explicitly, using
the most parsimonious evolutionary history of an equivalence class. To construct this history, it
uses a dynamic programming algorithm to compute the most likely number of proteins at each
ancestral node in the phylogenetic tree. Next, it assigns protein insertion, deletion, duplication,
and divergence events to branches in the tree. A protein insertion occurs when the number of
proteins increases from 0 to 1 along a branch, and a protein deletion occurs when the number
of proteins decreases from 1 to 0 along a branch. Similarly, protein duplications occur when the
number of proteins increases from a non-zero number along a branch, and divergences occur when
the number of proteins decreases to a non-zero number along a branch.

After determining the number of insertions, deletions, duplications, and divergences in the
history of an equivalence class, Græmlin assigns penalties to each such event e using the function
s(e) = log PrM(e)

PrR(e) . The score of all events is then
∑

i s(ei).
In practice, obtaining the actual probabilities PrM(e) and PrR(e) is difficult, as few suitable

training sets exist. For now, therefore, we empirically derived the necessary parameters. Under
the assumption that the insertion and deletion penalties are symmetric, as are the duplication and
divergence penalties, we must estimate only two parameters: deletion and duplication penalties.
These numbers are analogous to the gap penalty in traditional sequence alignment and control the
importance assigned to the insertion or duplication scores relative to the protein similarity scores.

A.2.2 Edge scoring

Græmlin scores each edge in an alignment based on its weight and the nodes it connects. Both the
alignment and the random models specify the probabilities of observing all possible edge weights
between 0 and 1. For each pair of proteins v1, v2 in the alignment, where v1 and v2 belong to the same
species but different equivalence classes, Græmlin assigns an edge score of log PrM(w−∆<x<w+∆)

PrR(w−∆<x<w+∆) ,
where w is the weight of the (v1, v2) edge and ∆ is a small value.

One minor technical issue that arises is that there may be no edge between v1 and v2. The
networks generated by algorithms like SRINI are complete: they assign a weight to each pair of
proteins. In practice, however, many of these weights are close to zero, because biologically each
of the n proteins typically has only k << n interaction partners. Thus, to avoid unnecessary
computation, we threshold the input networks by removing edges with weights less than some cut-
off m; for the results presented in this paper, we have used m = 0.25 and m = 0.5. If there is no
(v1, v2) edge in the thresholded network, Græmlin can only assume that the edge between the pair
has weight less than m; it therefore gives the edge a score of log PrM(0<x<m)

PrR(0<x<m) .
Because a node with more incident edges will be more likely to have an edge to a random node,

particularly if that random node also has many incident edges, the edge weight distribution function
for the random model PrR depends on the nodes to which an edge is incident. It is parametrized
by the product of their relative expected degrees; the relative expected degree of a node is the sum
of all incident edge weights divided by the total number of nodes in the network. To determine the
specific function, we sampled random pairs of proteins from an un-thresholded network for various
node degrees. We then mapped the parameters to make the distribution roughly linear and fit a
curve using linear regression.

3

The input ESM specifies the distribution function for the alignment model M. Before scoring
an edge, Græmlin must assign a label to each equivalence class, where the set of potential labels is
specified in the ESM. It determines PrM for an edge by using the cell in the ESM that corresponds
to the labels of the nodes connected by the edge. Figure 2 shows the methodology used by both
the random and alignment models for scoring a single edge.

To assign a final score to the edges in an alignment, Græmlin uses the labeling that yields the
highest score. Because the number of labelings scales exponentially with the number of potential
labels, we currently focus on three special but important cases of an ESM: the Complex ESM, the
Pathway ESM, and the Module ESM. Each of these cases permits a tractable labeling algorithm.

A Complex ESM is the simplest ESM, consisting of only one label and therefore allowing for a
trivial labeling algorithm; the distribution PrM is the same for all edges and is biased toward high
edge weights. Using a Complex ESM, Græmlin will score protein complexes highly, similar to past
methods (Koyuturk et al., 2005, Sharan et al., 2005), but will not adequately reward conserved
modules that are not highly connected.

In principle one could train this distribution on known biological modules, but for our tests
we used N (0.5, 0.82) (a Gaussian distribution with mean of 0.5 and standard deviation of 0.8),
obtained empirically. The mean of 0.5 is high enough to reward the presence of edges, without
overly penalizing missing edges; the wide standard deviation allows the sensitivity of Græmlin to
be robust with respect to noisy networks. For example, a narrow deviation restricts alignments
to be essentially completely connected, as a missing edge will incur a high penalty. In contrast,
a wide deviation allows an alignment with missing edges to still register as high scoring, which is
important because protein complexes do not always appear as fully connected.

A Pathway ESM is slightly more complicated than a Complex ESM and allows searches for
conserved linear chains among networks. Such an ESM consists of n labels, where n is the maximum
pathway length for which the ESM can search; row i in the matrix corresponds to the ith node
in the pathway. The sub- and super-diagonal elements of the matrix contain distributions biased
toward high weight edges, which enforces the requirement that adjacent proteins in the pathway
are connected. As with the Complex ESM, we use an empirically derived distribution, in this
case, N (0.8, 0.152); we chose a higher mean and narrower standard deviation than in the case of
protein complexes because when searching for pathways we want to heavily penalize any missing
edges between adjacent proteins. The other matrix cells can contain arbitrary distributions, but
the default Pathway ESM eschews penalizing or rewarding edges between non-adjacent pathway
nodes by using the same distribution as R, resulting in a score of 0 for every such edge.

To avoid searching through all possible labelings when using a Pathway ESM, Græmlin uses a
simple heuristic that is efficient and works well in practice. It begins by assigning label n

2 to the
first equivalence class encountered. It then continues labeling nodes but at each step only considers
unused labels; furthermore, it only considers labels that are adjacent to labels that have already
been used. To find all pathways of length at least p using this algorithm, Græmlin must use n = 2p
labels.

The most specific type of ESM is a Module ESM, which captures an arbitrary topology. Græmlin
uses such an ESM only when aligning a small query network to a larger network. In this case, the
Module ESM contains one label for each protein in the query network, and distributions in the
cells reflect the edges that are present in the query. Græmlin generates a Module ESM using kernel
density estimation to create a histogram for each matrix cell, initializing each with a small number
of pseudocounts.

To allow for a tractable labeling algorithm when using a Module ESM, Græmlin uses a heuristic
to reduce the number of labelings that must be considered. Given an equivalence class to label, it
finds all proteins in the original query network that are homologous to any protein in the equiv-

4

alence class, using high-scoring BLAST hits to determine homology. It then considers only labels
corresponding to those homologs, greedily assigning each protein its highest scoring label.

When performing multiple alignments, Græmlin uses the high-scoring alignments to further
refine a Module ESM. After each phase of progressive alignment, it rebuilds the ESM by generating
one label for each equivalence class. As Græmlin adds more and more species to the alignment,
it uses more and more edges to generate the histograms with kernel density estimation. In this
fashion, the ESM becomes an LSSM, which should begin to approximate the underlying ancestral
module structure.

A.3 Algorithm

Græmlin uses a progressive alignment strategy to perform multiple alignments. At each step, it
selects the two networks that are closest evolutionarily and performs a pairwise alignment, gener-
ating a new network based upon the results. During pairwise alignment it first finds a set of seeds
between two networks and then extends each seed into an alignment. At any given step, the nodes
in the networks may be equivalence classes rather than proteins, but this presents no difficulties.

A.3.1 Seeded alignment using d-clusters

Methodology Græmlin uses d-clusters to find seeds between two networks; a d-cluster is a set
of d nodes taken from one network. Græmlin first generates a set of d-clusters from each network
and then finds all high-scoring pairs of them; two d-clusters are high-scoring if there is some way
of mapping the nodes that scores higher than T . Both d and T are user-specified parameters that
control the speed-sensitivity trade-off presented by the seeding algorithm.

In the first step of the seeding phase, Græmlin creates a set of d-clusters from each network. It
generates one d-cluster for each node v by creating a set consisting of v as well as the d− 1 closest
nodes in the network. Græmlin interprets the length of an edge as the negative logarithm of its
confidence; the distance between two nodes is then the sum of the edge lengths of the shortest path
between them, and the nearest neighbor of a node is the node that is closest to it. Græmlin finds
nearest neighbors using a simple breadth-first-search.

One problem with this approach is that very high degree hubs will be present in many d-clusters,
resulting in substantial overlap and redundancy in seeds. Græmlin avoids this to some extent by
using a heuristic when generating d-clusters: each time it selects a node as part of a d-cluster, it
increases the distance of the node to all of its neighbors. Græmlin will therefore be less likely to
include the node in any future d-clusters and will create d-clusters that are more independent, which,
much like spaced seeds for genomic database searches (Ma et al., 2002, Sun and Buhler, 2005),
often increases search sensitivity.

Also in analogy with spaced seeds, which allow for multiple seeds to be indexed at each position
in a sequence (Li et al., 2003, Sun and Buhler, 2005), Græmlin can generate more than one d-
cluster for each node. Using the above method of increasing edge lengths after each d-cluster is
generated, successive runs of the algorithm will generate different d-clusters each time.

Once it generates a set of d-clusters for each network, Græmlin finds all high-scoring pairs of
d-clusters between the networks. In theory, when comparing a pair of d-clusters, it must examine
all possible mappings of nodes to see if any result in a score larger than T , but to increase speed it
only examines greedy mappings. Græmlin obtains a greedy mapping by successively adding to the
mapping the highest scoring remaining pair of nodes, stopping when no pair can increase the score.
This heuristic has the advantage of being fast while missing very few high-scoring d-cluster pairs.

5

While using greedy mappings to compare d-clusters is fast, examining all potential pairs of
d-clusters is quadratic in the number of nodes in the networks; this is prohibitive when searching
large databases. Græmlin improves upon this bound by building an index from the larger network
as a pre-processing step; it can use this index for many query networks, which is useful when it
performs database searches. The index contains two tables: one table is keyed by node and has
values of all d-clusters to which each node belongs, and the other is keyed by d-cluster and has
values of all nodes belonging to the d-cluster.

When faced with finding all high-scoring matches for a d-cluster in a query, Græmlin first finds
for each node in the d-cluster all homologs in the other network. It considers as potential d-cluster
matches only d-clusters containing those homologs, which, since most nodes have relatively few
homologs, dramatically reduces the number of potential d-cluster matches. While the effectiveness
of this algorithm depends on the requirement that nodes can only be aligned to homologs, it is
easy to extend it to allow for alignments of arbitrary nodes. In a more general setting, rather than
finding all nodes that are homologous to those in the d-cluster, Græmlin considers all nodes scoring
above some threshold T1 with respect to a node in the d-cluster. The value of T1 depends on the
specific values of d and T ; intuitively, it should be on the order of T

d .

Theory While the specific values of d and T are somewhat intuitive, by making some simplifying
assumptions we can statistically quantify their effects on the speed-sensitivity trade-off presented
by Græmlin. Our goal is to assess for various values of d and T the probability that no d-cluster
pair scoring higher than T will be found within an alignment with total score greater than some
threshold S, where S is the raw score above which alignments are high-scoring.

To begin with, we introduce a model of a high-scoring local alignment, in which we assume
that each equivalence class is the same size. Rather than a set of equivalence classes, we can
view the alignment as a set of node random variables, each of which has value equal to the node
score of the corresponding equivalence class. Similarly, we can view each set of edges between two
equivalence classes as an edge random variable. This model is analogous to the concept of an un-
gapped homology used in studies of spaced seeds (Ma et al., 2002). Conditioned on the event that
the alignment scores greater than S, we assume that the node scores and edge scores are separate
i.i.d. random variables; that is, they are conditionally independent identically distributed random
variables. Obviously, these i.i.d distributions depend on the size of the equivalence classes.

Each node random variable ni has score S(ni), and we denote the set of N nodes as M , the set
of d-clusters as D, the sum of the node scores as SN , and the sum of the edge scores as SE . Since
the alignment is the sum of the node scores and edge scores, we presume that SE + SN > S. The
probability that a d-cluster match does not occur within an alignment is then

pmiss = Pr(¬∃c ∈ D s.t.
∑
ni∈c

S(ni) > T |SN + SE > S),

which we refer to as the miss probability.
To simplify matters, we condition only on the node score SN by using a value for it such that a

very high percentage of alignments with total score greater than S have node scores greater than
SN . In addition, we assume that a module of size N has N

d disjoint d-cluster pairs within it. This
enables us to obtain an approximate miss probability in a straightforward manner and effectively
amounts to the assumption that d-clusters are disjoint and completely cover each module.

With the above assumptions, we must calculate the intersection of N
d identical events, each with

6

probability

Pr(
d∑

i=1

S(ni) < T |
∑

ni∈M

S(ni) > SN).

If we denote Yi as a random variable that corresponds to the sum of i variables drawn from the
node distribution, we can write each event as

Pr(
d∑

i=1

S(ni) < T |
∑

ni∈M

S(ni) > SN)

= Pr(Yd < T |YN > SN)

=
Pr(Yd < T ∧ YN > SN)

Pr(YN > SN)

=

∫ T
−∞ Pr(Yd = x ∧ YN−d > SN − x)dx

Pr(YN > SN)

=

∫ T
−∞ Pr(Yd = x) Pr(YN−d > SN − x)dx

Pr(YN > SN)
. (1)

Using normal distributions for the Yi is an adequate approximation for our present purposes.
Because non-orthologs are rarely aligned as part of a high-scoring alignment, we can estimate
µ and σ by sampling many known orthologous pairs of proteins; when nodes consist of equivalence
classes, we must modify this technique slightly to take into account the linear scaling of node scores.

Equation (1) represents a constraint on the values of d and T ; it allows us to evaluate whether
a given pair of values has a miss probability no greater than a user-specified pmiss parameter. We
can also quantify the effect that a pair of values for d and T has on the computational cost of
Græmlin. Each d-cluster pair that it compares takes O(d2) time, and each high-scoring d-cluster
pair initiates a greedy extension. Using λ as a parameter specifying the relative costs of these two
operations, the expected computational cost of a given choice for d and T is proportional to

N1N2 ×
(
d2 + λ Pr(Zd > T)

)
, (2)

where N1 and N2 are the number of d-clusters in each network. Zd is a distribution similar to
Yd except that the node distributions are taken over random pairs of proteins, since here we are
assessing arbitrary pairs of d-clusters and not only d-clusters that are a part of a high-scoring
alignment.

With this in place, we can optimize equation (2) subject to the constraint involving equation (1).
This will give us values for d and T that present approximately the best speed/sensitivity trade-off
subject to a constraint on sensitivity loss due to seeding. Using a constraint of pmiss = .05, we
obtained values of d = 4, T = 7, which we used for all of our tests.

A.3.2 Seed extension

Græmlin uses a greedy algorithm to try to transform each seed between two networks into a high-
scoring alignment. The algorithm proceeds in phases; at each step Græmlin aligns a pair of nodes
that maximally increases the score of the growing alignment.

In the first step in the extension phase, Græmlin aligns two nodes, one from each d-cluster in
the seed. It aligns the pair of nodes resulting in the maximal score, and then places all nodes that
neighbor either of these two nodes, as well as the nodes themselves, into a frontier.

7

Græmlin then examines all pairs of nodes on the frontier, computing for each the change in
score that would result from adding the aligned pair to the alignment. If one or both nodes are
present in the alignment, this entails augmenting one equivalence class or merging two equivalence
classes; if neither is present Græmlin must create a new equivalence class. Græmlin also considers
adding each node by itself to the alignment in case it has no ortholog with which to align. In
both cases, any time an equivalence class is created or modified Græmlin must assign it the label
resulting in the highest score according to the ESM.

If after examining the frontier any scores are positive, Græmlin updates the alignment and
recomputes the frontier by adding to it any nodes that neighbor the newly aligned nodes. It then
iterates the process until no changes can yield an increase in the score of the alignment. As a final
post-processing step, Græmlin removes any equivalence classes from the alignment if it can further
increase the score; this serves to partially rectify any mistakes made early in the greedy process.
Figure 3 shows pseudocode for the basic extension algorithm.

One problem with the greedy extension algorithm is that the size of the frontier grows exponen-
tially as nodes are added to the alignment. Græmlin uses several heuristics to handle this. First,
when considering pairs to add to the alignment, it only considers pairs that have a positive node
score; this dramatically reduces the search space size but prevents Græmlin from aligning functional
orthologs with no sequence homology. Græmlin also does not recompute the score of all pairings on
the frontier at each iteration but rather updates the scores only to reflect the most recent change
in the alignment. Furthermore, it does not update all pairs on the frontier; rather, it stores pairs
in two different echelons, an upper echelon and a lower echelon, and updates only those pairs in
the upper echelon. The upper echelon contains pairs that change the alignment score by a value
greater than some threshold; if at any point the change in score resulting from aligning a pair of
nodes falls below that threshold, Græmlin moves that pair into the lower echelon. It only updates
nodes in the lower echelon if no pairs in the upper echelon can increase the alignment score, at
which point it then continues the extension if possible.

One final issue with the extension phase is that it typically results in many overlapping align-
ments, which is typically not desirable. To handle this, Græmlin accepts a parameter governing the
maximum allowable pairwise overlap of alignments and makes alignments disjoint after all seeds
have been extended. It does this by examining all pairs of alignments overlapping by more than
the accepted threshold and successively removing equivalence classes from one or the other, at each
step choosing the equivalence class resulting in the minimum decrease in score of either alignment.
Græmlin also controls for alignment overlap during the extension phase by checking if the growing
alignment overlaps any already extended alignments by more than the allowable threshold. If it
does, it removes all nodes in the overlapped alignment from the frontier. For example, suppose
high scoring alignment A contains 10 nodes and the overlap threshold is 25%. When Græmlin is
extending alignment B, as soon as it includes in B 3 nodes that are present in A, Græmlin will
remove all nodes from the frontier that are present in alignment A.

As a final note, Græmlin supports simultaneous search with multiple ESMs. It can do this by
running each ESM independently, but it can also prioritize ESMs and ignore parts of the search
space already containing high-scoring alignments found using higher priority ESMs. For example,
Græmlin can first search with a Complex ESM and search with a Pathway ESM only parts of
the networks that do not contain high-scoring protein complexes; this can decrease search times,
particularly if there is a large complex that contains many high-scoring pathways.

8

A.3.3 Progressive multiple alignment

Given a set of interaction networks and a phylogenetic tree relating them, Græmlin builds align-
ments progressively using an extension of the pairwise alignment algorithm. It begins by performing
a pairwise alignment of the two closest species in the tree, A and B. At the parent node, it con-
structs the following networks:

1. Network AB contains all high-scoring alignments of the child networks; in it, there is one
node for each equivalence class in these alignments. In addition, it contains every unaligned
node in the child networks that is connected to at least f nodes of a high-scoring alignment;
f is a parameter that defaults to 3. This heuristic is meant to allow Græmlin to extend the
pairwise alignments as it adds more species to the multiple alignment. Within network AB,
we consider species A and B to be present.

2. Networks A′ and B′ contain all unaligned nodes within networks A and B, including those
nodes that Græmlin appended to AB. Therefore, some nodes appear in AB as well as A′

or B′, but in practice only a small number of nodes are duplicated. Within network A′, we
consider only species A to be present, and within network B′, only species B is present.

Græmlin then progressively works its way up the tree, at each node aligning the networks at
the child nodes. When it reaches a node in the tree that has internal nodes as children, Græmlin
aligns all pairs of networks present at the children. For example, if one internal node contains net-
works {A′, B′, AB} and another contains {C ′, D′, CD}, Græmlin proceeds by performing 9 pairwise
alignments. While the number of networks at an internal node increases exponentially in principle,
the total size of those networks in practice does not increase, because few proteins appear in more
than one network.

At each pairwise alignment step, only the species that are considered present in the networks
participate during scoring. For example, when aligning networks A′ and CD, an equivalence class
does not incur a protein deletion penalty for missing proteins from species B. In this way, Græmlin
can uncover conserved modules whose evolutionary history is not consistent with the phylogenetic
tree. This is particularly important for microbes, for which prevalent horizontal gene transfer of
entire operons can move modules among species that are not phylogenetically near one another.

A.4 Performance evaluation

A.4.1 Circularity of network construction and alignment

A.4.2 Complete results

Tables 1 through 4 show more detailed results of our performance tests.

A.4.3 Further biological results

Module analysis In addition to their identification, Græmlin has the potential to aid in detailed
studies of conserved modules. Figure 4, which shows several alignments of the proteins rfbA, rfbB,
rfbC, and rfbD, provides an example of this. These four proteins help catalyze the production
of dTDP-L-rhamnose from D-glucose-1-phosphate and are involved in several metabolic pathways
(Stevenson et al., 1994); Figure 4A shows the steps of this process. The alignment in Figure 4B
results from performing a pairwise alignment of the proteins in E. coli and S. typhimurium using
a Complex ESM. While it correctly aligns proteins to their orthologs, this alignment does not
yield any information about the details of the pathway. On the other hand, the alignment in

9

Figure 4C, resulting from the use of a Pathway ESM, provides a rough ordering of the proteins.
From the alignment, we can infer that proteins with labels that are adjacent in the ESM directly
interact; while the resulting order is not entirely correct, the alignment predicts two out of the
three interactions correctly. The alignment in Figure 4D, which results from a multiple alignment
including C. crescentus and Synechocystis, recapitulates the order of the pathway exactly; in this
case, the presence of more than two species provides additional information about edge conservation
that reorders the pathway. While this is a simple example, it does indicate that Græmlin has use in
detailed analyses of functional modules, both by its ability to search for pathways and to perform
multiple alignments.

References

Breiman, L., 1996. Bagging predictors. Machine Learning, 24(2):123–140.

Kanehisa, M. and Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res, 28(1):27–30.

Kelley, B. P., Sharan, R., Karp, R. M., Sittler, T., Root, D. E., Stockwell, B. R., and Ideker,
T., 2003. Conserved pathways within bacteria and yeast as revealed by global protein network
alignment. Proc Natl Acad Sci U S A, 100(20):11394–11399.

Koyuturk, M., Grama, A., and Szpankowski, W., 2005. Pairwise local alignment of protein
interaction networks guided by models of evolution. Lecture Notes in Bioinformatics (RECOMB),
3500(9):48–65.

Li, M., Ma, B., Kisman, D., and Tromp, J., 2003. PatternHunter II: highly sensitive and fast
homology search. Genome Inform Ser Workshop Genome Inform, 14:164–175.

Ma, B., Tromp, J., and Li, M., 2002. PatternHunter: faster and more sensitive homology search.
Bioinformatics, 18(3):440–445.

Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., and Yeates, T. O., 1999. Assign-
ing protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl
Acad Sci U S A, 96(8):4285–4288.

Sharan, R., Ideker, T., Kelley, B., Shamir, R., and Karp, R. M., 2005. Identification of protein
complexes by comparative analysis of yeast and bacterial protein interaction data. J Comput Biol,
12(6):835–846.

Srinivasan, B. S., Caberoy, N. B., Suen, G., Taylor, R. G., Shah, R., Tengra, F., Goldman, B. S.,
Garza, A. G., and Welch, R. D., 2005. Functional genome annotation through phylogenomic
mapping. Nat Biotechnol, 23(6):691–698.

Srinivasan, B. S., Novak, A., Flannick, J., Batzoglou, S., and McAdams, H. H., 2006a. Inte-
grated protein interaction networks for 11 microbes. Proceedings of the 10th Annual International
Conference on Research in Computational Molecular Biology (RECOMB 2006), In Press.

Srinivasan, B. S., Novak, A. F., Flannick, J. A., Batzoglou, S., and McAdams, H. H., 2006b.
Network Integration Reveals Hidden Biology in 312 Microbes. (Submitted), .

10

Stevenson, G., Neal, B., Liu, D., Hobbs, M., Packer, N. H., Batley, M., Redmond, J. W., Lindquist,
L., and Reeves, P., 1994. Structure of the O antigen of Escherichia coli K-12 and the sequence of
its rfb gene cluster. J Bacteriol, 176(13):4144–4156.

Sun, Y. and Buhler, J., 2005. Designing multiple simultaneous seeds for DNA similarity search.
J Comput Biol, 12(6):847–861.

11

Xi Annotation
CC1 0025,0030
CC2 0025,0040
CC3 0050
CC4 -

→

Xi Xj L(Xi, Xj)
CC1 CC2 1
CC1 CC3 0
CC1 CC4 ?
CC2 CC3 0
CC2 CC4 ?
CC3 CC4 ?

/ ���VKDUHG�IXQFWLRQDO�FDWHJRU\�

/ ���GLIIHUHQW�IXQFWLRQDO�FDWHJRU\�

/ "��XQNQRZQ�OLQNDJH�

(a) Training Set Generation

−1.0 −0.5 0.0 0.5 1.0

0.
0

1.
0

2.
0

−1.0 −0.5 0.0 0.5 1.0

0.
0

1.
0

2.
0

Coevolution

Correlation between
 Distance Matrices

P
(E

 |
L)

−1.0 −0.5 0.0 0.5 1.0

0.
0

1.
0

2.
0

3.
0

−1.0 −0.5 0.0 0.5 1.0

0.
0

1.
0

2.
0

3.
0

Coexpression

Correlation between
 Expression Profiles

P
(E

 |
L)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Colocation

Average Chromosomal
 Distance

P
(E

 |
L)

−1.0 −0.5 0.0 0.5 1.0

0.
0

1.
0

2.
0

−1.0 −0.5 0.0 0.5 1.0

0.
0

1.
0

2.
0

Coinheritance

Correlation between
 Phylogenetic Profiles

P
(E

 |
L)

(b) Evidence vs. Training Set

Figure 1: Training Sets and Evidence. (a) Genome-scale systematic annotations such as COG, GO
or KEGG give functions for proteins Xi. As described in the text and shown on example data, we
use this annotation to build an initial classification of protein pairs (Xi, Xj) with three categories:
a relatively small set of likely linked (red) pairs and unlinked (blue) pairs, and a much larger
set of uncertain (gray) pairs. (b) We observe that proteins which share an annotation category
generally have more significant levels of evidence, as seen in the shifted distribution of linked (red)
vs. unlinked (blue) pairs. Even subtle distributional differences contribute statistical resolution to
our algorithm.

12

Figure 2: The general methodology for scoring a single edge in an alignment of thresh-
olded networks. A. Græmlin scores an edge of moderate weight by integrating both the random
model distribution function and the alignment model distribution function over a small area cen-
tered at the edge weight. The random model bases its distribution on the degrees of the nodes
connected by the edge, while the alignment model bases its distribution on the labeling of the nodes
and the ESM. B. The procedure for scoring an edge with weight below the minimum edge weight
threshold is similar, but Græmlin now integrates both distributions from 0 to the threshold below
which weights are discarded.

13

ExtendSeed(d1, d2 : pair of nodes)
1 var A← ∅ //the alignment
2 var F ← ∅ //the frontier
3 Create an equivalence class containing d1 and d2, add to A
4 while true
5 do for nodes n in A
6 do Ensure n and all neighbors of n are in F
7 (∆p, A

′
p)← maxn1,n2∈F DeltaPair (n1, n2, A)

8 (∆s, A
′
s)← maxn∈F DeltaSingleton (n, A)

9 if ∆p > 0 or ∆s > 0
10 then if ∆p > ∆s

11 then A← A′p
12 else A← A′s
13 else break
14 return A

DeltaPair (n1, n2 : pair of proteins , A : alignment)
1 var ∆ //the change in score of aligning n1 and n2 in A
2 var A′ //the alignment resulting from aligning n1 and n2

3 switch
4 case n1 ∈ A and n2 ∈ A :
5 [n′] := [n1] ∪ [n2]
6 A′ := A− [n1]− [n2] + [n′]
7 case n1 ∈ A and n2 /∈ A :
8 [n′] := [n1] ∪ n2

9 A′ := A− [n1] + [n′]
10 case n1 /∈ A and n2 ∈ A :
11 [n′] := [n2] ∪ n1

12 A′ := A− [n2] + [n′]
13 case n1 /∈ A and n2 /∈ A :
14 [n′] := n2 ∪ n1

15 A′ := A + [n′]
16 ∆ = Score(A′)− Score(A)
17 return (∆, A′)

DeltaSingleton (n : protein , A : alignment)
1 var ∆ //the change in score of adding n to A
2 var A′ //the alignment resulting from adding n to A
3 A′ := A + [n]
4 ∆ = Score(A′)− Score(A)
5 return (∆, A′)

Figure 3: Pseudocode for extending a seed. The input to the procedure is an aligned pair of
nodes, which Græmlin obtains by aligning the two highest scoring nodes from a pair of d-clusters.
The procedure makes use of two utility functions, which compute the score of adding a pair of
proteins, or a single protein, to the growing alignment.

14

Figure 4: An alignment of the rfb gene cluster. A. The reference KEGG pathway
(Kanehisa and Goto, 2000). B. Using a Complex ESM, Græmlin covers the entire pathway but
provides no information about the ordering of the proteins in the pathway. C. Although not com-
pletely correct, the use of a Pathway ESM gives a rough ordering of the nodes, grouping rfbAand
rfbB as neighbors as well as rfbC and rfbD. D. When Græmlin extends the alignment to four
species, the ordering of the proteins is completely correct. For clarity, C and D show only the edges
between adjacent proteins.

15

KEGGs KEGG Alignments Nodes Align- Nodes Running
Hit Coverage Enriched Aligned ments Misaligned Time

E. coli vs. C. crescentus
MaWISh 11 (20%) 37 % 86 % 378 24 43 % 12 s

Græmlin Pathway 26 (47%) 61 % 78 % 839 59 27 % 116 s
Complex 31 (56%) 60 % 81 % 1191 82 37 % 66 s

E. coli vs. M. tuberculosis
MaWISh 16 (27%) 33 % 82 % 397 56 41 % 14 s

Græmlin Pathway 24 (40%) 45 % 85 % 793 79 30 % 61 s
Complex 29 (48%) 50 % 79 % 888 71 33 % 47 s

E. coli vs. V. cholerae
MaWISh 32 (59%) 49 % 81 % 1556 57 13 % 13 s

Græmlin Pathway 32 (59%) 54 % 71 % 1684 101 12 % 159 s
Complex 38 (70%) 64 % 82 % 2058 113 14 % 164 s

E. coli vs. S. coelicolor
MaWISh n/a n/a n/a n/a n/a n/a n/a

Græmlin Pathway 17 (30%) 62 % 82 % 1105 68 49 % 2,976 s
Complex 25 (44%) 63 % 82 % 1729 96 55 % 1,224 s

Table 1: Results on pairwise alignment of complete networks thresholded at 0.25. For
each pair of species, we performed complete network-to-network alignment using MaWISh and
Græmlin. For each tested method, shown, from left, is the total number of KEGG pathways hit by
an alignment, the fraction of KEGG pathways hit by an alignment, the average coverage of a KEGG
pathway, the percentage of enriched alignments, the total number of aligned proteins, the total
number of significant alignments returned, the fraction of aligned proteins that were misaligned,
and the total running time. We calculated the average coverage of KEGGs with respect to only
those KEGGs that an aligner hit, and measured running time in CPU-seconds.

16

KEGGs KEGG Alignments Nodes Align- Nodes Running
Hit Coverage Enriched Aligned ments Misaligned Time

E. coli vs. C. crescentus

MaWISh 9 (20%) 32 % 72 % 346 67 35 % 3 s

NetworkBLAST
Pathway 6 (14%) 28 % 61 % 233 33 32 %

9,624 s
Complex 12 (27%) 49 % 72 % 466 23 52 %

Græmlin
Pathway 15 (34%) 47 % 68 % 594 55 26 % 21 s
Complex 17 (39%) 45 % 67 % 677 58 27 % 11 s

E. coli vs. M. tuberculosis

MaWISh 7 (13%) 20 % 85 % 202 33 28 % 3 s

NetworkBLAST
Pathway 7 (13%) 24 % 88 % 220 33 30 %

301 s
Complex 7 (13%) 32 % 88 % 262 15 40 %

Græmlin
Pathway 8 (15%) 36 % 89 % 454 58 27 % 11 s
Complex 8 (15%) 39 % 89 % 518 65 23 % 8 s

E. coli vs. V. cholerae

MaWISh 12 (31%) 35 % 64 % 819 131 13 % 3 s

NetworkBLAST
Pathway 10 (26%) 35 % 58 % 774 123 16 %

8,797 s
Complex 11 (28%) 41 % 64 % 1044 48 16 %

Græmlin
Pathway 19 (49%) 48 % 75 % 1342 115 12 % 13 s
Complex 15 (38%) 55 % 74 % 1414 100 11 % 12 s

E. coli vs. S. coelicolor

MaWISh n/a n/a n/a n/a n/a n/a n/a

NetworkBLAST
Pathway 6 (14%) 23 % 46 % 381 2041 60 %

122,168 s
Complex 10 (23%) 67 % 95 % 1637 26272 82 %

Græmlin
Pathway 8 (19%) 58 % 88 % 947 85 47 % 734 s
Complex 9 (21%) 59 % 85 % 1006 78 45 % 829 s

Table 2: Results on pairwise alignment of complete networks thresholded at 0.5. For
each pair of species, we performed complete network-to-network alignment using MaWISh, Net-
workBLAST, and Græmlin; the columns in this table are analogous to those in Table 1. As
NetworkBLAST does not have an option to search separately for pathways and complexes, the
table lists the combined running time of both searches.

17

KEGGs KEGG Nodes Running
Hit Coverage Misaligned Time

E. coli vs. C. crescentus
MaWISh 20 (36%) 33 % 34 % 59 s

Græmlin
Pathway 29 (53%) 63 % 25 % 50 s
Complex 34 (62%) 63 % 34 % 64 s
Module 34 (62%) 62 % 29 % 137 s

C. crescentus vs. E. coli
MaWISh 18 (33%) 40 % 20 % 554 s

Græmlin
Pathway 30 (55%) 45 % 20 % 26 s
Complex 36 (65%) 52 % 27 % 24 s
Module 35 (64%) 56 % 26 % 74 s

E. coli vs. M. tuberculosis
MaWISh 22 (37%) 31 % 30 % 273 s

Græmlin
Pathway 31 (52%) 48 % 29 % 17 s
Complex 31 (52%) 47 % 29 % 17 s
Module 32 (53%) 58 % 27 % 63 s

M. tuberculosis vs. E. coli
MaWISh 20 (33%) 24 % 28 % 628 s

Græmlin
Pathway 25 (42%) 30 % 24 % 26 s
Complex 29 (48%) 40 % 22 % 24 s
Module 32 (53%) 45 % 18 % 76 s

Table 3: Results on alignment of a query network to a database thresholded at 0.25. For
each pair of species, using MaWISh and Græmlin, we successively aligned each KEGG pathway in
the query species to the complete network of the database species. For each tested method, shown,
from left, is the total number of KEGG pathways with a database hit, the fraction of KEGG
pathways with a database hit, the average coverage of a KEGG pathway, the average per query of
the fraction of aligned proteins that were misaligned, and the total running time.

18

KEGGs KEGG Nodes Running
Hit Coverage Misaligned Time

E. coli vs. C. crescentus
MaWISh 15 (34%) 31 % 29 % 37 s

NetworkBLAST Pathway 8 (18%) 32 % 23 % 3,453 sComplex 10 (23%) 49 % 36 %

Græmlin
Pathway 20 (45%) 45 % 16 % 17 s
Complex 20 (45%) 47 % 25 % 3 s
Module 20 (45%) 48 % 23 % 23 s

C. crescentus vs. E. coli
MaWISh 9 (20%) 32 % 15 % 130 s

NetworkBLAST Pathway 10 (23%) 37 % 27 % 4,788 sComplex 10 (23%) 41 % 26 %

Græmlin
Pathway 15 (34%) 39 % 23 % 6 s
Complex 15 (34%) 42 % 19 % 5 s
Module 15 (34%) 42 % 21 % 33 s

E. coli vs. M. tuberculosis
MaWISh 10 (19%) 19 % 26 % 93 s

NetworkBLAST Pathway 12 (22%) 23 % 15 % 3,947 sComplex 12 (22%) 29 % 18 %

Græmlin
Pathway 17 (31%) 31 % 27 % 3 s
Complex 17 (31%) 35 % 25 % 3 s
Module 17 (31%) 35 % 24 % 22 s

M. tuberculosis vs. E. coli
MaWISh 6 (11%) 12 % 11 % 138 s

NetworkBLAST Pathway 10 (19%) 19 % 29 % 5,047 sComplex 7 (13%) 22 % 29 %

Græmlin
Pathway 13 (24%) 25 % 13 % 5 s
Complex 14 (26%) 26 % 13 % 5 s
Module 14 (26%) 27 % 15 % 28 s

Table 4: Results on alignment of a query network to a database thresholded at 0.5. For
each pair of species, using MaWISh, NetworkBLAST, and Græmlin, we successively aligned each
KEGG pathway in the query species to the complete network of the database species; the columns
in this table are analogous to those in Table 3. As NetworkBLAST does not have an option to
search separately for pathways and complexes, the table lists the combined running time of both
searches.

19

