
Sparse Bayesian Classification with the
Relevance Vector Machine

In a pattern recognition setting, the Relevance Vector Machine (RVM) [3]
can be viewed as a simple logistic regression model, with a Bayesian Automatic
Relevance Determination (ARD) prior [1] over the weights associated with each
feature in order to achieve a parsimonious model. Let A = {A, C, G, T} represent
an alphabet of symbols representing the bases adenine, cytosine, guanine and
thymine respectively. The RVM constructs a decision rule from a set of labelled
training data,

D = {(xi, ti)}`
i=1, xi ∈ Ani , ti ∈ {0, + 1},

where the input patterns, xi, consist of strings drawn fromA of varying lengths,
describing the upstream promoter regions of a set of co-regulated genes. The
target patterns, ti, indicate whether the corresponding gene is up-regulated
(class C1, yi = +1) or down-regulated (class C2, yi = 0) under a given treatment.
The RVM constructs a logistic regression model based on a set of sequence
features derived from the input patterns, i.e.

p(C1|x) ≈ σ {y(x;w)} where y(x;w) =
N∑

i=1

wiϕi(x) + w0, (1)

and σ {y} = (1+exp{y})−1 is the logistic inverse link function. In this study a
feature, ϕi(x), represents the number of times an arbitrary substring, si ∈ Ad,
ocurrs in a promoter sequence x. A sufficiently large set of features is used
such that it is reasonable to expect that some of these features will represent
oligonucleotides forming a relevant promoter protein binding site and so provide
discriminatory information for the pattern recognition task at hand. Assuming
a Bernoulii distribution for P (t|x), the likelihood of the training data, D, can
be written as

P (D|w) =
∏̀
i=1

σ {y(xi;w)}ti [1− σ {y(xi;w)}]1−ti (2)

To form a Bayesian training criterion, we must also impose a prior distribution
over the vector of model parameters or weights, p(w). The RVM adopts a
separable Gaussian prior, with a distinct hyper-parameter, αi, for each weight,

p(w|α) =
N∏

i=1

N (wi|0, α−1
i ). (3)

The optimal parameters of the model are then given by the minimiser of the
penalised negative log-likelihood,

log {P (D|w)p(w|α)} =
∑̀
i=1

[ti log yi + (1− ti) log(1− yi)]−
1
2
wT Aw. (4)



where yi = σ {y(xi;w)} and A = diag(α) is a diagonal matrix with non-zero
elements given by the vector of hyper-parameters α = (α1, α2, . . . , αN ). This is
achieved via the efficient Iteratively Re-Weighted Least Squares (IRWLS) algo-
rithm [2]. Next, Laplace’s method is used to obtain a Gaussian approximation
to the posterior density of the weights,

p(w|D,α) ≈ N (w|µ,Σ), (5)

where the posterior mean and covariance are given by

µ = ΣΦT Bt, and Σ =
[
ΦT BΦ + A

]−1

respectively, Φ is an ` × N matrix of features for each promoter in the train-
ing set and B is a diagonal matrix with non-zero elements bii = yi(1 − yi).
The hyper-parameters are then updated in order to maximise their marginal
likelihood, p(D|α), according to the efficient update formula

αnew
i =

γi

µ2
i

where γi = 1− αiΣii. (6)

This process is repeated until an appropriate convergence criterion is met (see
[3] for details). The maximisation of the marginal likelihood, or evidence,
for the hyper-parameters, α, leads to the hyper-parameters associated with
uninformative features becoming very large. This in turn forces the value of
the associated weight essentially to zero, allowing redundant features to be
easily identified and pruned from the model. Given a sufficiently rich set of
sequence features, it seems reasonable to suggest that the features retained
by the RVM may represent (parts of) transcription factor binding sites as
they provide discriminatory information distinguishing between up- and down-
regulated genes.
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