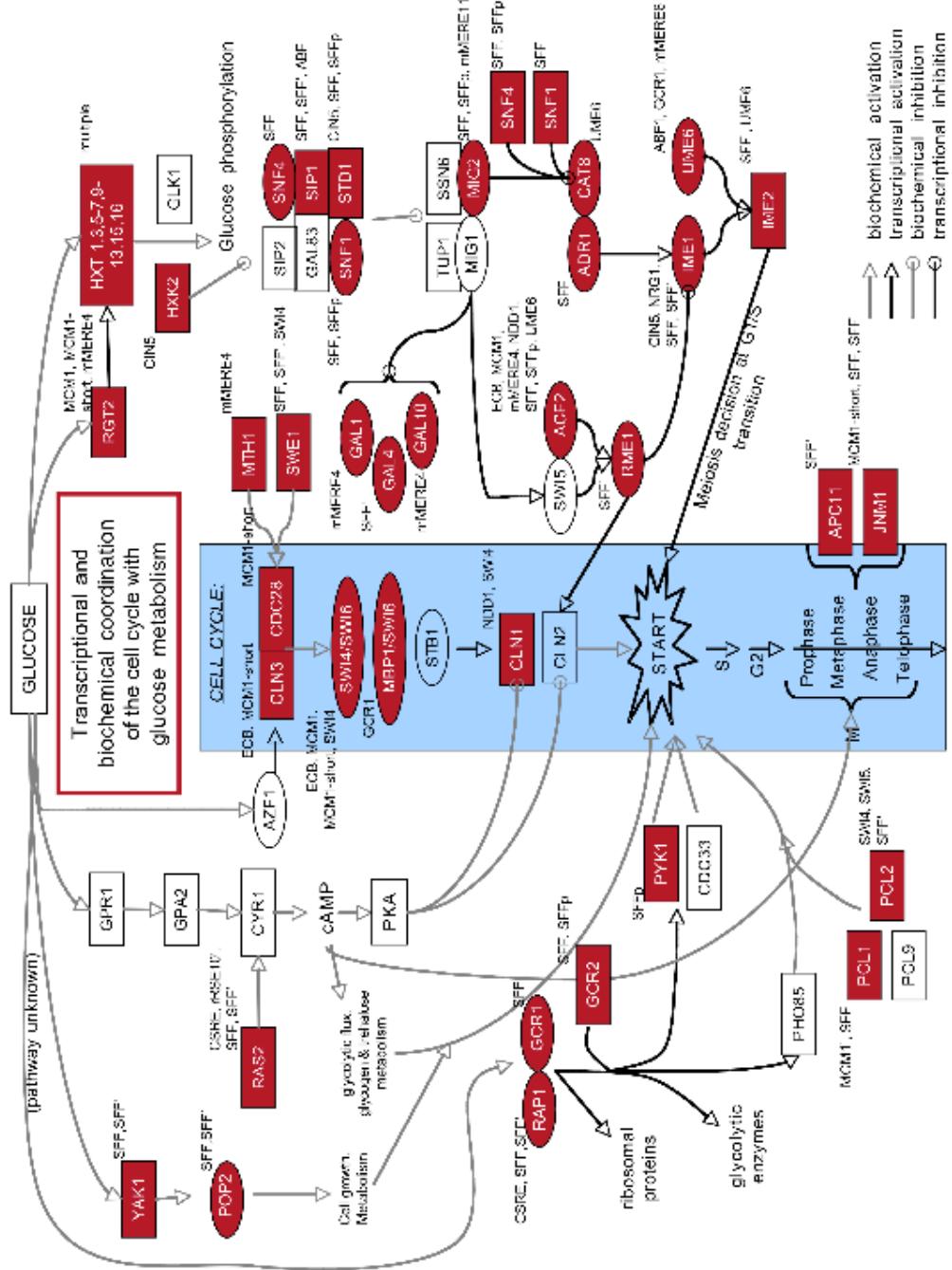


Coordination of the cell cycle with carbohydrate metabolism

In *S. cerevisiae*, cell division rate and flux distribution across metabolic pathways is highly sensitive to the nutrient content of the growth medium (Gelade et al. 2003). The carbon source affects the rate of increase in cellular mass, as well as the rate of progression through the cell cycle (Newcomb et al. 2002; Sillje et al. 1997). Size- and nutrient-dependent modulation of the cell cycle occurs primarily at the G1/S transition, when information about numerous internal and external factors determines whether the cell passes START (thus initiating a new cell division cycle), enters a differentiation pathway (mating or sporulation), or enters a quiescent state. Because *S. cerevisiae* grows preferentially on glucose, it has evolved numerous signaling pathways that sense glucose and reprogram cellular metabolism accordingly (Gelade et al. 2003; Newcomb et al. 2003). That the cell cycle is partially regulated by glucose supply implies that these pathways must also regulate the cell cycle machinery. Recent work has deciphered many details of glucose signaling and cell cycle regulation (selected details summarized in Fig. 6 (Costanzo et al. 2003; Doolin et al. 2001; Frenz et al. 2001; Furuchi et al. 2001; Gelade et al. 2003; Hartwell et al. 1999; Hedges et al. 1995; Ho et al. 1999; Honigberg and Purnapatre 2003; Horak et al. 2002; Hubbard et al. 1994; Koranda et al. 2000; Lesage et al. 1994; Loy et al. 1999; Mead et al. 2002; Muller et al. 2003; Newcomb et al. 2003; Newcomb et al. 2002; Sillje et al. 1997; Williams et al. 2002; Willis et al. 2003; Young et al. 2003; Zhou and Winston 2001)), but the molecular mechanisms underlying their coordination are not completely understood (Gelade et al. 2003; Newcomb et al. 2003). We therefore chose to further analyze the interaction between these categories, as well as interactions between *Cell cycle* and each of *Reserves* and *Glycolysis*.


Using stringent and lenient criteria, SPIN found 15 TFs that coordinate the cell cycle with carbohydrate metabolism. To put these results in context with previously known information, some targets of these TFs that lie at the interface of the processes are highlighted in Fig. S9A. Consistent with current knowledge about nutrient-dependent regulation of the cell cycle, all of these target genes are involved in transcriptional or biochemical regulatory cascades that ultimately influence the timing of the G1/S transition.

Likewise, all of the TFs have documented roles in the cell cycle or in carbon compound metabolism, except for CIN5 and rRSE10. Furthermore, TFs that are known to cooperatively regulate the cell cycle, such as SFF/MCM1, NDD1/MCM1, were found to mediate some of the same interactions. The framework provided in Fig. S9A also helped us identify transcriptional cascades (in which a TF regulates genes that encode other TFs among those examined) within these processes. For example, SFF was found to regulate the *GCR1* gene, and *GCR1* was found to regulate expression of the genes encoding UME6 and MBP1.

This analysis exemplifies the efficiency with which SPIN corroborates and synthesizes information from diverse studies. In addition, the algorithm generates hypotheses about regulatory mechanisms that effect this synthesis at the transcriptional level.

Figure S9A (following page). Coordination of Cell Cycle with carbohydrate metabolism (including Carbon compound and carbohydrate metabolism and Glycolysis and gluconeogenesis, and Metabolism of energy reserves)

The diagram summarizes selected knowledge about the relationship between carbohydrate metabolism and cell cycle regulation, and puts some of our results in the context of this knowledge. For clarity, genes that are traditionally associated primarily to the cell cycle are highlighted in the central blue rectangle. Ovals represent TF-encoding genes, and rectangles represent other genes. Filled ovals and rectangles signify that the corresponding gene is a target of at least one of the TFs we found to coordinate the processes. Black and gray edges reflect transcriptional and biochemical regulatory relationships, respectively, between the gene products; arrows and filled circles indicate activation and repression, respectively.

References

- Costanzo, M., O. Schub, and B. Andrews. 2003. G1 transcription factors are differentially regulated in *Saccharomyces cerevisiae* by the Swi6-binding protein Stb1. *Mol Cell Biol* **23**: 5064-5077.
- Doolin, M.T., A.L. Johnson, L.H. Johnston, and G. Butler. 2001. Overlapping and distinct roles of the duplicated yeast transcription factors Ace2p and Swi5p. *Mol Microbiol* **40**: 422-432.
- Frenz, L.M., A.L. Johnson, and L.H. Johnston. 2001. Rme1, which controls CLN2 expression in *Saccharomyces cerevisiae*, is a nuclear protein that is cell cycle regulated. *Mol Genet Genomics* **266**: 374-384.
- Furuchi, T., H. Ishikawa, N. Miura, M. Ishizuka, K. Kajiya, S. Kuge, and A. Naganuma. 2001. Two nuclear proteins, Cin5 and Ydr259c, confer resistance to cisplatin in *Saccharomyces cerevisiae*. *Mol Pharmacol* **59**: 470-474.
- Gelade, R., S. Van de Velde, P. Van Dijck, and J.M. Thevelein. 2003. Multi-level response of the yeast genome to glucose. *Genome Biol* **4**: 233.
- Hartwell, L.H., J.J. Hopfield, S. Leibler, and A.W. Murray. 1999. From molecular to modular cell biology. *Nature* **402**: C47-52.
- Newcomb, L.L., J.A. Diderich, M.G. Slattery, and W. Heideman. 2003. Glucose regulation of *Saccharomyces cerevisiae* cell cycle genes. *Eukaryot Cell* **2**: 143-149.
- Newcomb, L.L., D.D. Hall, and W. Heideman. 2002. AZF1 is a glucose-dependent positive regulator of CLN3 transcription in *Saccharomyces cerevisiae*. *Mol Cell Biol* **22**: 1607-1614.
- Sillje, H.H., E.G. ter Schure, A.J. Rommens, P.G. Huls, C.L. Woldringh, A.J. Verkleij, J. Boonstra, and C.T. Verrips. 1997. Effects of different carbon fluxes on G1 phase duration, cyclin expression, and reserve carbohydrate metabolism in *Saccharomyces cerevisiae*. *J Bacteriol* **179**: 6560-6565.
- Williams, R.M., M. Primig, B.K. Washburn, E.A. Winzeler, M. Bellis, C. Sarrauste de Menthire, R.W. Davis, and R.E. Esposito. 2002. The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. *Proc Natl Acad Sci U S A* **99**: 13431-13436.
- Willis, K.A., K.E. Barbara, B.B. Menon, J. Moffat, B. Andrews, and G.M. Santangelo. 2003. The global transcriptional activator of *Saccharomyces cerevisiae*, Gcr1p, mediates the response to glucose by stimulating protein synthesis and CLN-dependent cell cycle progression. *Genetics* **165**: 1017-1029.

Young, E.T., K.M. Dombek, C. Tachibana, and T. Ideker. 2003. Multiple pathways are co-regulated by the protein kinase Snf1 and the transcription factors Adr1 and Cat8. *J Biol Chem* **278**: 26146-26158.

Zhou, H. and F. Winston. 2001. NRG1 is required for glucose repression of the SUC2 and GAL genes of *Saccharomyces cerevisiae*. *BMC Genet* **2**: 5.

Zhu, H., M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R.A. Dean, M. Gerstein, and M. Snyder. 2001. Global analysis of protein activities using proteome chips. *Science* **293**: 2101-2105.