Supplementary Material

1 Sequence Data and Multiple Alignments

The five vertebrate, four insect, two worm, and seven yeast genomes used in the analysis are summarized
in Table S1, and the four genome-wide multiple alignments are summarized in Table S2. All four multiple
alignments are downloadable as supplementary data from http://www.cse.ucsc.edu/~acs/conservation. Con-
tinually updated versions are also browsable and downloadable via the UCSC Genome Browser (http://gen-

ome.ucsc.edu).

2 Prediction of Conserved Elements Using PhastCons

2.1 The Model

Let the nonconserved phylogenetic model be defined as 1, = (Q,m, 7, 3), where Q is a 4 x 4 substitution
rate matrix indicating the instantaneous rate of replacement of each nucleotide for each other nucleotide, m
is a vector of background (equilibrium) probabilities for the four bases, T is a binary tree representing the
topology of the phylogeny, and 3 is a vector of non-negative real numbers representing the branch lengths
of the phylogeny in expected substitutions per site (Siepel and Haussler, 2004a, 2005). The conserved
phylogenetic model, denoted ., is identical to 1,, except for the scaling parameter p; it is defined as
Y, = (Q,m,7,p3). The tree topology T is assumed to be known, and the background distribution 7 is
assumed to be well approximated by the relative frequencies of the four bases in the data set, which can
easily be obtained in a preprocessing step. Therefore, the free parameters of the phylo-HMM are summarized
by the parameter vector @ = (Q, 3, p, 1, V), where u and v define the transition probabilities and initial-state
probabilities of the Markov chain for state transitions (Figure 1).

The rate matrix Q (treated here as a single free parameter, for simplicity) can be defined by any of
several parametric DNA substitution models (see, e.g., Whelan et al., 2001; Felsenstein, 2004). For all results
discussed in this paper, the five-parameter general reversible (REV) (Tavaré, 1986) substitution model was
used. Assuming the REV model and n present-day species (implying an unrooted tree with 2n — 3 branches),
the total number of free parameters is 2n + 5. The tree topologies assumed for each data set were as shown
in Figure 2. The topologies for the vertebrates and insects are fairly well established, and there was only one
topology possible for the two worms; for the yeasts, we used the topology reported by Rokas et al. (2003).

The model used by phastCons can be shown to be a special case of Felsenstein and Churchill’s (1996)



phylo-HMM with two rate categories (states), rates r; = p and ro = 1, stationary distribution (f1, f2) =
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), and autocorrelation parameter A =1 — y — v.

2.2 Parameter Estimation

Let x = (x1,...,21) be a multiple alignment of n rows (sequences) and L columns, whose ith column
has probabilities P(z;|t,) and P(z;|1,,) of being “emitted” by the conserved and nonconserved models,
respectively. Because the ancestral bases associated with z; (i.e., the bases at internal nodes of the tree) are
unknown, these “emission” probabilities are marginal probabilities, obtained by summing over all possible
ancestral bases. Let z = (21, ..., 21) be a path through the phylo-HMM, where z; € {¢,n} indicates whether
the conserved (c¢) or nonconserved (n) state is visited at position . Like the ancestral bases, the path is
unobserved, so to compute the marginal probability of the data given the model (the likelihood of the model),
one must also sum over paths. The joint probability of the data and a specific path is simply a product
over the positions of the alignment of emission probabilities and “transition” probabilities (the probability
of each state z; given the previous state z;_1). The likelihood function is:
L
L(0]x) = P(x|0) = > ] Plailzi, 0)P(zi|2i-1,0) (1)
7z i=1
where we use the notational convention that P(z1]zg) is the probability of beginning with state z;. The
“double marginalization” required to compute the likelihood of a phylo-HMM can be accomplished efficiently
using a combination of Felsenstein’s (1981) “pruning” algorithm and the “forward” algorithm for HMMs
(Felsenstein and Churchill, 1996; Durbin et al., 1998b; see also Siepel and Haussler, 2004a).

In an EM algorithm, a maximum of the likelihood function is found by iteratively maximizing a related
but often more tractable quantity, sometimes called the “expected complete log likelihood.” The algorithm
consists of alternating expectation (E) and maximization (M) steps, which are guaranteed eventually to
result in convergence to a local maximum of the likelihood function (Dempster et al., 1977; Durbin et al.,
1998b). Let the “complete log likelihood,” denoted {(0|x, z), be the log of the joint probability of an observed

alignment and a specific path:

L
1(0)x,z) = log P(x,z|0) = logH P(x]2:,0)P(z;|zi-1,0)
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where X is the set of distinct columns (sometimes called “patterns”) in x, Z is the set of states in the



phylo-HMM (Z = {¢,n}), uy, . is the number of instances in which a column z is emitted by a state z, and
V2,2, 1S the number of instances in which a state z; is followed by a state z2. (The counts u, . and v,, ., are
sufficient statistics for [(0|x,z).) The function f(u,v), dropped in the third step, is equal to mrifza=c

and equal to

+y if z1 = n; it can safely be ignored as long as the length of the alignment L > 1. The
expected complete log likelihood is the expectation of I(0|x,z) considering all possible paths, conditional on
the data and a particular version of the parameter vector (6®)). Using the notation (g to indicate these

conditional expectations, and letting U, . and V., ., be random variables corresponding to the counts u, .

and v, ,,, the expected complete log likelihood is:
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where we show approximate equality only because we have dropped the function f(u,v). (This description
of the EM algorithm follows one given by M. Jordan, book in prep.)

The E step of the algorithm consists of computing the “expected counts” (U, .)g) and (V, z,) g . This
step can be accomplished using a forward/backward procedure, essentially the same as with ordinary HMMs
(Durbin et al., 1998b), but with emission probabilities that are computed by summing over possible ancestral
bases via Felsenstein’s (1981) algorithm. The M step is to compute a new parameter vector 6"V from the
old parameter vector 0" by maximizing the expected complete log likelihood:

0" = arg max Z (Ug,2) gty log P(x|2,0) + Z (Var,20) g log P(22]21,0) (4)

TEX,2€Z 21,20€Z
This maximization problem decomposes into a maximization problem involving only Q, 3, and p (corre-
sponding to the first term inside the argmax of equation 4) and a maximization problem involving only
and v (corresponding to the second term). The second problem has a straightforward solution, which we
show here for completeness, although in practice p and v are not estimated by maximum likelihood but are

determined by constraints on coverage and smoothness (see below).

M(t+1) _ <VC,n>0(t) V(t_H) _ <Vn,c>9(t) (5)
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The first maximization problem is more difficult. The expression to be maximized is a weighted combination
of the log likelihoods of the two phylogenetic models, with weights given by the expected counts (Us.c)ge)
and (Ug,n) g . Because the two phylogenetic models share parameters, this expression does not decompose
further. PhastCons performs this maximization numerically, using the BFGS quasi-Newton algorithm (Press

et al., 1992).



2.3 The Constraint on Smoothness

As noted in the text, the constraint on smoothness depends on a quantity denoted Ly, which is the expected
minimum length of a sequence of conserved sites (in the midst of a stretch of nonconserved sites) required for
a conserved element to be predicted. Because predictions are based on the Viterbi algorithm, L,;, must be
such that the expected log likelihood of staying in the nonconserved state of the phylo-HMM is equal to the
expected log likelihood of switching to the conserved state and back again. If conserved and nonconserved
sites are assumed to be drawn independently from the distributions associated with 1, and 1p,,, respectively,

then L, is determined by the equation:
(Lmin + 1) log(l - V)+Lmin Z P(Ihbc) IOg P(Ihbn)
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where the sums are over all possible distinct alignment columns x. Hence,

logv + log u — log(1 — v) — log(1 — p)
log(1 —v) —log(1 — ) — H(¥.||¢,,)
where H(2 ||,) = >, P(z|p,.)log Ilz((;?‘l;l’z)) is the relative entropy of the distribution associated with ),
with respect to the distribution associated with 1p,,. The key quantity of interest is the product of Ly, with

Lmin = (6)

the relative entropy, LminH (%,||%,,), which we call the phylogenetic information threshold (PIT) because
it can be interpreted as the expected minimum amount of phylogenetic information required to predict
a conserved element. During parameter estimation, this quantity (a function of u, v, ., and v,) was
constrained to be equal for all data sets. A value of LyinH (¢,||9,,) = 9.8 bits was selected, based on the
degree of smoothing that had been chosen manually for the vertebrate data set, with feedback from users of

the conservation track in the genome browser.

2.4 Tuning Parameters

The constraints on coverage and smoothing are met by adjusting two tuning parameters, the expected cover-
age v and the expected length w. The expected coverage v is equal to the probability of the conserved state
of the phylo-HMM at stationarity, or equivalently, the expected fraction of conserved sites at equilibrium.
Its value of v = #—Q’_V is given by the eigenvector corresponding to the largest eigenvalue (which has value 1)
of the transition matrix for the two-state Markov chain. The expected length parameter, w = /%’ is simply

the expected number of steps for which the Markov chain will remain in the conserved state, given that it is

already in that state.



The expected coverage and expected length, if set a priori, completely determine the values of x4 and v,
and hence, completely define the Markov chain associated with the phylo-HMM. (The parameters p and v
could as easily be treated directly as tuning parameters, but we find them to be harder to interpret.) Larger
values of v tend to result in a higher coverage by conserved elements and larger average conservation scores,
and larger values of w tend to result in “smoother” conservation scores (i.e. more similar scores at adjacent
sites) and less fragmented predictions of conserved elements (implying fewer predictions with larger average
lengths). When v and w are fixed, only Q, 3, and p need to be updated in the M step of the EM algorithm,
and the expected counts for state transitions (denoted (V%, .,)o above) need not be computed in the E
step.

It is important to note that v and w are prior rather than posterior quantities—they define properties
of the model only, which influence final (posterior) inferences but which can be overridden by a sufficiently
strong signal in the data. In the absence of any phylogenetic information (e.g., if nothing were aligned to
the reference genome), the posterior probability of conservation at every site (the conservation score) would

equal 7. Thus, v can also be interpreted as the prior probability that each site is conserved.

2.5 Parameter Estimation Subject to Constraints

Parameter estimation subject to constraints was accomplished by trial and error. First, values of the tuning
parameters v and w were selected; then all other parameters were estimated genome-wide using the EM
algorithm, these estimates were averaged, and genome-wide predictions were obtained. The coverage of
coding regions and the PIT were then computed and compared to their target values. If necessary, v and w
were adjusted and the cycle was repeated. Convergence typically required four to six iterations.

The final estimates of the parameters were: v = 0.265 and w = 12.0bp (u = 0.0833, v = 0.0300) for
vertebrates, v = 0.468 and w = 28.1bp (u = 0.0356, v = 0.0313) for insects, v = 0.620 and w = 53.0bp
(1 = 0.0189, v = 0.0308) for worms, and v = 0.400 and w = 23.0bp ( = 0.0435, v = 0.0290) for yeasts.
These parameters, along with the estimated phylogenetic models, implied H (1), ||%,,) = 0.608 bits/site and
Lyin = 16.1bp for vertebrates, H (v, ||¢,,) = 0.725 bits/site and Ly;, = 13.5bp for insects, H (¢ ||1,,) =
0.159 bits/site and Ly, = 60.6bp for worms, and H(,||¢,,) = 0.839 bits/site and L, = 11.7bp for yeasts.

These expected minimum lengths L,;, are not quite small enough to allow most individual conserved
transcription factor binding sites (TFBSs) to be detected, but they should be small enough (with the ex-
ception of worm) to allow small clusters of conserved TFBSs to be detected. As more and more genomes
become available, H(1),.||1,,) will become larger and larger and the same PIT will be achievable with smaller

and smaller values of Lyi,. In the limit, individual alignment columns can be identified as conserved or non-



conserved and the HMM becomes irrelevant.

2.6 Predictions and Scores

PhastCons predicts conserved elements using the Viterbi algorithm, then assigns log-odds scores to each
predicted element. The log-odds score of an element predicted from position i to position j in an alignment
oflength L (1<i<j<L)is

P(mi,"'axjhbc
P(.’E“,]}]"l/}n

545 = log

>) =" Jlog P(axltb,)  log Plalab,)] (7)
k=1

These scores are closely related to the likelihood ratios used by Boffelli et al. (2003).

2.7 Missing Data and Alignment Gaps

In general, only a subset of the other genomes are aligned to any given region of a reference genome, because
of large-scale insertions and deletions, incomplete assemblies, or unalignability due to extreme sequence
divergence. Such missing data was handled by marginalizing over missing bases when computing emission
probabilities (e.g., Siepel and Haussler, 2004a). This strategy is computationally efficient and conceptually
straightforward, requiring no change to the Viterbi, forward/backward, or EM algorithms. It effectively
causes these algorithms to consider, at each site, only the sub-tree corresponding to the set of species for
which data is available. In the presence of missing data, longer sequences of conserved sites are required
for conserved elements to be predicted, and log odds scores tend to decrease. Alignment gaps are currently
also treated as missing data, despite that they contain phylogenetic information and are potentially useful in
helping to distinguish conserved and nonconserved regions (e.g., Ogurtsov et al., 2004; Siepel and Haussler,

2004b). Making better use of alignment gaps is an area for future work.

2.8 Synteny Filtering

Predicted elements in the vertebrate data set were discarded if they did not fall on the syntenic net be-
tween human and mouse—a subset of chained local alignments judged to be “syntenic” in the two species
(Kent et al., 2003). The remaining predictions can be considered with reasonably high confidence to be
based on alignments of orthologous sequence in human and mouse, according to alignment quality and
synteny considerations. (This filter is conservative, and causes some orthologous alignments as well non-
orthologous alignments to be discarded.) The human and mouse genomes were selected because of their

evolutionary distance and assembly quality. A similar filter was applied to the insect predictions; in this case



predictions were discarded if they did not fall on either the D. melanogaster/D. yakuba syntenic net or the

D. melanogaster/D. pseudoobscura syntenic net.

3 Parameter Estimates and Predicted Elements

3.1 Variation in Local Parameter Estimates

As noted in the text, parameter estimation was done separately in approximately 1Mb windows, and in-
dividual estimates were averaged. The estimates of total nonconserved branch length (the sum of the
lengths of all branches in the nonconserved tree) had mean 1.94 and s.d. 0.20 for the vertebrates, mean
1.85 and s.d. 0.14 for the insects, mean 0.614 and s.d. 0.05 for the worms, and mean 2.62 and s.d. 0.20
for the yeasts (units of subst./site). The estimates of p had mean 0.325 and s.d. 0.05 for the vertebrates,
mean 0.240 and s.d. 0.04 for the insects, mean 0.361 and s.d. 0.04 for the worms, and mean 0.320 and s.d.
0.01 for the yeasts. The parameters estimates for individual windows are available as supplementary data

(http://www.cse.ucsc.edu/~acs/conservation).

3.2 Nonconserved Branch Lengths

In many respects, the “nonconserved” models estimated by phastCons (Figure 2) agree well with independent
estimates based on sites that are apparently evolving neutrally. For example, in the vertebrate tree, the
subtree including human, mouse, and rat had total branch length equal to 0.66 substitutions/site, compared
to a recent genome-wide estimate of 0.65 substitutions/site (Cooper et al., 2004). In addition, the ratio of
the distances from the rodent ancestor to human, rat, and mouse was 4.9:1.1:1 compared to Cooper et al.’s
(2004) ratio of 4.8:1.1:1.

The branches between the mammals and the non-mammalian vertebrates (chicken and Fugu), however,
appeared to be substantially underestimated (see, e.g., International Chicken Genome Sequencing Consor-
tium, 2004; Margulies et al., 2005), presumably because because of an alignment-related ascertainment bias
(i.e., regions chicken and Fugu that align to the mammalian genomes are probably not evolving neutrally,
but instead are under at least weak selective pressure). In addition, the mammalian subtree is rooted in
a way that suggests more clock-like substitution rates than have been estimated from neutral DNA. (The
nonconserved phylogeny implies that the ratio of the total distances from mouse and human to their most
recent common ancestor is only about 1.5:1, while the true ratio is probably closer to 3:1; Cooper et al., 2003;
Siepel and Haussler, 2004c.) The reason is apparently that substitution rates in conserved sites are more

clock-like than those in neutral sites (K. Pollard, pers. comm.), and—due to sparse data from “outgroup”



species in nonconserved regions—these sites end up exerting a dominant influence on the estimated position
of the root of the mammalian subtree.

With the fly and yeast data sets, the branch lengths estimated by phastCons also appeared to be reason-
able for close species but “shrunken” for more distant species. In particular, the two species in the worm set,
(C. elegans and C. briggsae), are quite divergent and are considered to be essentially unalignable in neutrally
evolving regions (Kent and Zahler, 2000; Stein et al., 2003). The estimated distance between them of 0.614
subst. /site is probably a substantial underestimate.

More accurate nonconserved (neutral) distances might be obtained by the more traditional method of
fitting a phylogenetic model to “fourfold degenerate” (4d) sites—i.e., sites at which the encoded amino
acid does not depend on which of the four nucleotides is present. This method has certain deficiencies as
well—e.g., distances can be underestimated because of purifying selection at 4d sites (due to codon bias or
noncoding constraints) and some shrinkage of distance estimates can still occur (due to “saturation” at 4d
sites)—but because alignments of coding regions are generally quite good estimates based on 4d sites should
be less sensitive than ours to alignment biases.

To gauge the extent to which the nonconserved phylogenies estimated by phastCons reflect neutral
evolution, we compared these phylogenies to ones estimated from 4d sites. For each set of multiple alignments,
we extracted all columns corresponding to third codon positions of known genes such that all species present
had identical bases in the first and second codon positions and those bases defined fourfold degenerate
codons. (Missing data was allowed—i.e., each codon did not need to be present in all species.) We then
fitted a phylogenetic model to these columns using the phyloFit program in the PHAST package (REV
substitution model). The resulting trees are shown in Figure S1, in comparison to the nonconserved trees
estimated by phastCons.

The estimated branch lengths of the two sets of trees are fairly similar for shorter branches, but as
expected, the longer branches are substantially shorter when estimated by phastCons than when estimated
from 4d sites, sometimes by a factor of two or more. Interestingly, the branch lengths between human,
mouse, and rat in the vertebrate tree are shorter when estimated from 4d sites than when estimated by
phastCons, probably mostly because of constraint at 4d sites, but perhaps also because of accelerated
evolution in noncoding regions, e.g., due to positive selection or non-equilibrium base- or word-composition
in transposons upon insertion. The opposite effect occurs with the five most closely related yeast species:
they are found to be more distant from one another in 4d sites than in phastCons “nonconserved” regions.
This may occur because phastCons is underestimating the fraction of the yeast genomes that is conserved—

because conserved sites are mixed in with nonconserved sites, the branch lengths in nonconserved regions



are shrunken (see below).

There are clearly some distortions in the nonconserved trees estimated by phastCons, but there are also
probably some distortions in the ones estimated from 4d sites. In any case, the key question is not whether
the phylo-HMM estimated by phastCons perfectly characterizes the substitution processes in conserved and
nonconserved regions, but whether it discriminates effectively between these regions. It is possible, for
example, that the long branches underestimated by phastCons have little effect on its predictions, because
long branches tend to be uninformative, and because the proportion of missing data tends to be high for
distant species. Below we experimentally examine the effect on the predicted elements of distortions in the

nonconserved phylogenies, and find, indeed, that these distortions do not have a pronounced effect.

3.3 Lengths and Scores of Predicted Conserved Elements

The lengths of predicted elements for all four data sets were approximately geometrically distributed, with
average values of 103.8bp for the vertebrates, 120.6bp for the insects, 268.8bp for the worms, and 99.6bp
for the yeasts. Elements ranged in length from 5bp! to maximum lengths of 4922bp for the vertebrates,
6095bp for the insects, 12646bp for the worms, and 4005bp for the yeasts. The differences in the lengths
of the elements predicted for the four data sets primarily reflect differences in the amount of phylogenetic
information available rather than biologically interesting characteristics of functional elements in the different
species sets. More phylogenetic information at each site (e.g., due to more species, higher alignment coverage,
or greater total branch length) allows the detection of shorter elements and makes long elements more likely
to be broken up, resulting in an overall decrease in the average lengths of predicted elements (see above).

While it is difficult to compare element lengths across species groups, they can be meaningfully com-
pared within a group. Subsets of vertebrate conserved elements that primarily overlap (>50% of bases)
known CDSs, UTRs, introns or intergenic (unannotated) regions, or ARs have noticeably different length
distributions (Figure S2A). Elements in ARs tend to be shortest (median length 50bp), elements in introns
and intergenic regions tend to be slightly longer (median length 64bp), elements in UTRs tend to be longer
still (median length 70bp), and elements in CDSs tend to be longest (median length 87bp). (The length
distributions for 5" and 3’ UTR elements were similar, as were those for intronic and intergenic elements.) In
addition, the length distribution for CDS elements has a distinctive shoulder, reflecting the fact that most
vertebrate exons have lengths in the range of 100-150bp.

The distributions of log-odds scores are similar to the distributions of element lengths, due to a strong

correlation between lengths and scores (r? = 0.77), but the distributions of length-normalized scores (Figure

IThe lengths of predicted elements were measured in the coordinate frame of the reference genome. There were a few dozen

elements of <5bp, but all appeared to be longer in the coordinate frame of the multiple alignment due to insertions or deletions.



S2B) accentuate the differences between the various classes of conserved elements. Elements in ARs are
typically not only shorter but less highly conserved (i.e., lower scoring) than elements in introns and intergenic
regions, which are less highly conserved than UTR elements, which are less highly conserved than CDS
elements. Note that the log-odds scores tend to decrease with increasing “missing data” in the alignments
(i.e., due to the absence or unalignability of sequences orthologous to the reference genome); this partly
explains the low scores of ARs and other conserved elements in introns and intergenic regions, because these
sequences are typically not present or not alignable in non-mammalian vertebrates such as chicken and fish.

Consistent with these differences in length and score distributions, the composition of the set of conserved
elements is dependent on element score (Figure S3). In particular, the fractions of conserved elements in
coding regions, UTRs, and other mRNAs generally increases with element score, while the fractions in introns
and unannotated regions generally decrease with score. Note that the fraction in 3" UTRs is particularly
large among the highest scoring elements (see text). The percentage of bases in ARs also decreases sharply
with element score (results not shown).

In the fly, worm, and yeast data sets, the distributions of lengths and length-normalized scores, and the
dependence of element composition on score, were similar to those for the vertebrates, except that the UTR
distributions for fly and worm were strongly influenced by the fact that the UTRs in these species tend to

be much shorter than vertebrate UTRs (data not shown).

3.4 Functional Enrichment of Genes Associated with HCEs

Several well-studied human genes overlapped by HCEs are shown in Table S3, and functional enrichments
of insect, worm, and yeast genes overlapped by HCEs in coding regions are shown in Table S4. These tables

are referred to and discussed briefly in the text.

3.5 Vertebrates HCEs and Segments Rich in Conserved Noncoding Sequence

About 1.5% of bases in known coding regions fall in phastCons high-CNF segments, similar to the fraction
of bases in coding regions genome-wide. Thus, these segments are not significantly depleted for genes, in
contrast to human /chicken high-CNF segments, which showed nearly an eight-fold depletion. This difference
may be partly due to mammal-specific regulatory elements proximal to coding regions, e.g., in promoter re-
gions, UTRs, or introns, because the elements predicted by phastCons need not be present in non-mammalian
vertebrates.

For twelve phastCons high-CNF segments, the level of non-coding conservation with chicken is below

the genome average. Interestingly, those twelve show a distinctly higher G4C fraction than the phastCons
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high-CNF segments having high conservation with chicken (>45% vs. <40%). Some of these segments
appear to represent regions with mammal-specific conservation, such as one on chromosome X that contains
PLAC1, a gene not found in chicken or Fugu which has placenta-specific expression (Cocchia et al., 2000).
Others appear related to weaknesses in the chicken assembly. Conversely, all of the human/chicken high-CNF
segments have above-average CNF,.. The four human-chicken high-CNF segments with the lowest CNF,
(<6%; i.e., less than twice the genome-wide average of 3.4%) contain or are contained in the trans-dev genes
DACH2, IRX1, SALLS3, and ZFHX}.

To test whether HCEs were correlated with phastCons high-CNF segments, the high-CNF segments were
redefined such that the HCEs were excluded when computing the CNF,.. The new set was reduced in
number from 101 to 69 and reduced in genome-wide coverage from 2.1% to 1.6% (average length 645kb
and CNF,. 13.3%). However, this new set still included or overlapped 13% of all HCEs and 18% of in-
tronic/intergenic HCEs—S8-fold and 13-fold enrichments, respectively (the set included 1.5% of all bases and
1.4% of intronic/intergenic bases).

It is possible that the observed correlation between phastCons HCEs and phastCons high-CNF segments is
partly a consequence of mutation rates, because (unlike human/chicken high-CNF segments) the phastCons
high-CNF segments appear to have a slightly suppressed rate of neutral substitution, as estimated from
human/mouse ancestral repeats (ARs) (tar = 0.439 subst. /site [s.d. 0.027] in phastCons high-CNF segments;
tar = 0.464 subst. /site [s.d. 0.023] genome-wide). However, this apparent difference in mutation rates is small
compared to the difference in substitution rates estimated by phastCons for conserved and nonconserved
regions (Figure 2). Also, it could be an artifact of an increased fraction within high-CNF segments of

constrained (functional) sites in ARs. This issue remains unresolved.

4 Robustness of Results to Procedure for Parameter Estimation

Many variations are possible on the methods used to estimate the parameters of the model and to calibrate
the model across species groups. In this section, a few alternative approaches are discussed and are shown
to yield generally similar results to those presented in the main part of the paper. Some deficiencies of these

alternative methods are also discussed.

4.1 Full Maximum Likelihood Estimation

Perhaps the most natural and straightforward approach to parameter estimation would be to estimate all
parameters, including the HMM state-transition parameters u and v, from the data by maximum likelihood.

This approach avoids the need for a priori constraints on coverage and smoothness and does not require
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any assumptions about similarities across species groups in the way coding regions (or any other functional
elements) evolve.

Maximum likelihood estimates of pu and v, corresponding values of w and -y, and various properties of
conserved elements predicted using these estimates are shown in Table S5 (rows labeled “MLE”), along
with corresponding results for other parameter estimation methods (see below). These results were obtained
by averaging parameter estimates based on approximately 1Mb windows, then making predictions genome-
wide based on these global averages, as described in the text. For the insect, worm, and yeast data sets,
the parameter estimates were based on the entire genome-wide alignments, but in the interest of time, the
vertebrate parameter estimates were based not on the entire data set but on a random sample of 100 1Mb
windows. (The predictions were still done genome-wide.)

The maximum likelihood estimates of p and v turn out not to be ideal for our purposes, particularly
for the larger and less gene-dense genomes (i.e., the vertebrates and insects). As shown in Table S5, the
m.l.e.’s of u and v are quite small relative to estimates based on other methods, resulting in large values
of the expected-length parameter w and a tendency to predict small numbers of long conserved elements.
For example, compared to the method described in the text (represented by the “65%” rows in Table S5),
maximum likelihood parameter estimation yields, in vertebrates, roughly half as many conserved elements
with roughly twice the average length. The quantity L, the expected minimum length of a sequence of
conserved sites required to predict a conserved element, is also nearly twice as large. Associated with large
values of w is a high degree of “smoothing” in the conservation plot. We have found that the conservation plot
and predicted conserved elements based on the m.l.e. method do not match biologists’ intuition about what is
conserved and what is not conserved: surprisingly long sequences of apparently conserved sites can receive low
conservation scores and not be predicted as conserved elements, and surprisingly long sequences of apparently
nonconserved sites, in the midst of conserved sites, can receive high conservation scores and be included in
predicted conserved elements. This “oversmoothing” from maximum likelihood estimation appears to occur
because the geometric length distributions of conserved and nonconserved elements implicitly assumed by
the model do not match the data well. Particularly in large, gene-sparse genomes, an abundance of very long
nonconserved sequences and an abundance of conserved elements of intermediate length (see Figure S2A)
presumably push both p and v downward, into a region of the parameter space that has higher likelihood
but is of less biological relevance. This effect is strongest for the vertebrates, but a similar effect occurs with
the insects, and there is a slight tendency for reduced numbers of predictions and/or longer average lengths
with the worms and yeasts as well.

The maximum likelihood estimates of the coverage parameter v also differ somewhat from estimates
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based on the method described in the text (the “65% CDS coverage” method), but the differences are less
pronounced than with w (Table S5). Because « acts as a prior in the 65% coverage method, differences
between the m.l.e.’s for v and the values used in our main analysis might be taken to imply unjustified
biases toward greater or lower coverage, and hence, toward higher false positive or false negative error rates
(see below). However, the effects of these differences on the overall (posterior) coverage and the coverage of
coding regions are fairly small with the vertebrate and insect data sets. With the worm data set, the coverage
constraint on coding regions did force v and the posterior coverages to be considerably higher than under
the maximum likelihood method, perhaps implying a somewhat elevated false positive rate. Because of the
clear “oversmoothing” effect of the m.l.e.’s, however, it is difficult to put too much stake in these differences.
With the yeast data set, the coverage constraint may have produced a bias in the other direction, toward
reduced coverage and an elevated false negative rate.

Interestingly, despite the oversmoothing effect of the m.l.e.’s, the composition of conserved elements by
annotation type is essentially the same under both maximum likelihood estimation and the 65% coverage
method (Figure S4). This comparison suggests that our conclusions about the fractions of conserved elements

in coding vs. noncoding regions and about differences in these fractions across species groups are fairly robust.

4.2 Alternative Coverage Constraints

The target coverage of 65% was chosen essentially arbitrarily, using Chiaromonte et al.’s (2003) human/mouse
analysis as a guideline. One might ask what happens to the predicted elements if an alternative target is
chosen. To gauge the sensitivity of our results to the target coverage, we repeated the parameter estimation
and prediction steps for all groups using alternative targets of 55% and 75%. As in the m.l.e. analysis,
parameter estimation was done genome-wide (by averaging estimates for 1Mb windows) except for the
vertebrates, where a random sample of 100 1Mb windows were used; predictions were made genome-wide for
all species groups. The estimation procedure and smoothing constraint (PIT = 9.8 bits) were as described
in the text.

For all species groups, the tuning parameter v (expected coverage) must be steadily increased to reach
target coverages increasing from 55% to 65% and then to 75%, as would be expected (Table S5). Less
obviously, the tuning parameter w (expected length) also must be increased, causing an accompanying
increase in the average length of predicted conserved elements. (This appears to be due to a decrease in
H(4.||1,,) as v increases.) The overall coverage of each reference genome by conserved elements changes
significantly as the target CDS coverage is increased from 55% to 75%, e.g., from 2.8% to 8.1% in vertebrates

and from 36.9% to 53.1% in insects. The composition of the set of conserved elements, however, generally
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does not change dramatically (Figure S5). Indeed, for the insect, worm, and yeast data sets, the composition
of conserved elements is remarkably insensitive to the target coverage. The greatest change occurs with the
vertebrate data set, where the fraction of bases in coding regions is smallest, and hence, the sensitivity of the
composition of the set to false positive or false negative predictions (or to the definition of what constitutes
a conserved element) in noncoding regions is greatest. Nevertheless, in all cases the vast majority (64.2% to
78.1%) of vertebrate conserved elements are found to lie outside the exons of known or suspected protein-
coding genes. The finding that the fraction of conserved bases that fall in coding regions increases from

vertebrates to insects to worms to yeasts also does not seem to be highly sensitive to the target coverage.

4.3 Prediction Based on Local Parameter Estimates

For our main analysis, we have used a global parameter estimation scheme, fitting a model to each complete
data set and then using it genome-wide for prediction. Potentially important factors, however, such as G+C
content and the neutral rate of substitution, are known to vary across the genomes of vertebrates and other
species (e.g., Mouse Genome Sequencing Consortium, 2002; Hardison et al., 2003; International Chicken
Genome Sequencing Consortium, 2004; Stein et al., 2003). Variation in evolutionary rates is of particular
concern—by assuming uniform substitution rates across each reference genome, we might effectively be
applying different thresholds for conservation in different regions, and the predicted conserved elements
might be enriched for slowly mutating regions.

To test whether our results were strongly influenced by failing to take such variation into account, we
estimated parameters separately in 100 randomly selected 1Mb intervals from the vertebrate data set (using
the 65% coverage target), then, instead of averaging these estimates, we predicted conserved elements in
each interval using the locally estimated parameters. Thus, the predicted conserved elements reflected local
G+C content and neutral substitution rates.

These predictions based on local parameter estimates were generally similar to predictions based on global
parameter estimates, with about 90% overlap at the base level. The coverage of the “local” predictions (4.6%)
was similar to but slightly lower than that of the “global” predictions (4.9%; these values are prior to synteny
filtering); the same was true of the coverage of coding regions (64.7% vs. 68.4%). The composition of the
elements by annotation type was not substantially different.

One problem with using locally estimated parameters is that they may cause the sensitivity to conserved
bases in coding regions (which tend to be G4+C rich) to depend on the G+C richness and/or overall gene-
density of the local region. Errors in the estimates due to sparse data can also be a problem, because the

model is relatively parameter rich. These factors presumably account for a portion of the differences observed
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between the local and global predictions. In general, it is more difficult with a local estimation scheme to
ensure that predictions and conservation scores are comparable from one region to another. For this reason,
we chose to use global parameter estimates for our main analysis.

It is worth noting that we observe a significant negative correlation (r2 = 0.28), in non-overlapping 1Mb
windows across the human genome, between the estimated rate of substitution between human and mouse
in ancestral repeats (tar) and the fraction of bases of the human genome that fall in predicted conserved
elements. This correlation might be taken to imply that variation in the neutral rate of substitution has a
significant effect on the threshold for conservation. An alternative explanation, however, might be that there
is a negative correlation between tar and the density of legitimate functional elements, perhaps both because
functional elements in highly mutable regions will have a stronger tendency to be lost during evolution, and
because ARs in the vicinity of functional elements are more likely to contain functional elements themselves.
Whether or not such a correlation exists is difficult to know without much more complete annotation of

functional elements.

4.4 Prediction Based on Fourfold Degenerate Sites

As noted above, there are some distortions—probably mostly due to ascertainment biases from alignment—in
the nonconserved trees estimated by phastCons. To test whether these distortions have a significant influence
on the set of predicted conserved elements and on the main conclusions of the paper, we predicted a new set
of conserved elements for each species group, replacing the nonconserved model estimated by phastCons with
a model estimated from 4d sites. (To avoid base-composition biases, we used only the branch lengths and
not the [extremely G+C rich] background distribution estimated from 4d sites; the tuning parameters were
left unchanged.) Table S6 compares these conserved elements to ones based on the 65%-coverage target.

In general, the use of the 4d model, with the longer branches to distant species, tends to increase the
sensitivity (and decrease the specificity) to conserved elements—the longer branches in the nonconserved
phylogeny make moderately conserved sequences more likely to be considered conserved. In addition, the
relative entropy H (v,||4,,) increases substantially with the 4d model, resulting in shorter expected minimum
lengths Ly, and, generally, in shorter average lengths of actual predicted elements. With the exception of
the vertebrates, these factors combine to produce somewhat higher coverage by conserved elements, of the
entire genome and of coding regions in particular.

Oddly, however, the use of the 4d model causes the total coverage to drop for the vertebrates. Despite
the drop in overall coverage, the CDS coverage stays roughly the same, so that the fraction of conserved

bases in coding regions increases from 18% to 24%. This shift toward coding bases in conserved elements
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apparently occurs because (1) the decreased branch lengths in the primate/rodent subtree cause moderately
conserved sequences present only in these species, which are primarily in noncoding regions, to be less likely
to be considered conserved; and (2) the increased branch lengths to chicken and Fugu cause moderately
conserved sequences present in all or most species, which are primarily in coding regions, to be more likely
to be considered conserved. The longer average length of conserved elements for the vertebrates, despite the
reduced Ly, is probably a consequence of this shift toward coding sequences.

For the insects, worms, and yeasts, the increase in coverage suggests that the calibration procedure
described in the text may be causing the fractions of these genomes that are conserved to be underestimated,
by some 4% for the insects, 10% for the worms, and 12% for the yeasts, consistent with some other indications
noted above. (Interestingly, for the insects and yeasts, the coverage levels based on the 4d model agree fairly
well with those based on the m.l.e.’s.) Nevertheless, for the insects and yeasts, the fraction of conserved
elements in coding regions stays roughly the same, indicating (as above) that by erring on the side of
specificity (rather than sensitivity) in our main analysis, we have not substantially altered the composition
of the set of conserved elements. The fraction of conserved elements in coding regions increases somewhat
for the worms under the 4d model, apparently because the short nonconserved branch lengths and high
degree of smoothing imposed by our main estimation procedure cause more potentially conserved bases to
be omitted from conserved elements in noncoding regions than in coding regions.

In summary, our analysis based on 4d sites provides some indication that the procedure for parameter
estimation reported in the main text may have led to underestimates of the fractions of insect, worm,
and yeast genomes that are conserved, by roughly 4-12%. It also suggests the possibility that we have
overestimated the fraction of vertebrate genomes that is conserved, but the evidence for this is weaker:
it depends on the “true” neutral branch lengths for the primate/rodent subtree being closer to the ones
estimated from 4d sites than to the larger estimates obtained from ancestral repeats and other noncoding
regions, which is perhaps unlikely. Regardless, the composition of conserved elements by annotation type
does not seem to be too strongly influenced by our methods for parameter estimation. Based on the 4d-site
analysis, we still find vertebrates to have the lowest fraction of conserved elements in coding regions, followed

by insects, then worms, then yeasts.

4.5 Sensitivity of HCEs to Methods

We have focused above on the sensitivity of the entire set of conserved elements on the parameter estimation
methods, and have ignored the subset of highly conserved elements (HCEs), which are the focus of much

of the paper. The reason for this emphasis is that, as might be expected, the set of HCEs is much less
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sensitive to parameter estimation methods than is the complete set of elements: most differences between
the sets discussed above occur among elements that are moderately conserved. The set of HCEs does change
somewhat from one method to another, mostly because differences in the degree of “smoothing” cause certain
HCEs to be broken up in some cases and certain HCEs to be merged in others. The overall properties of the

set of HCEs, however, appear to be highly robust.

4.6 False Positive and False Negative Rates

The issues examined above ultimately come down to questions of false negative and false positive rates:
which methods do best at identifying elements that truly are conserved and at avoiding identifying elements
that truly are not conserved? The difficulty in addressing these questions comes from the fact that we have
no annotations of regions agreed to be conserved or nonconserved, nor even a consensus on what it means to
be (or not be) “conserved.” Even setting aside issues of mutation vs. selection, there are clearly gradations
of conservation (i.e., of unexpectedly high similarity across species), and there is a large “gray area” of
sequences that might reasonably be called conserved by one definition but not by another. Evaluating false
negative rates is particularly difficult, because even known functional elements such as protein-coding or
RNA genes contain many bases that are not conserved, and we do not in general have good information on
exactly which bases these are. Thus, we have no set of known conserved sites against which to test our false
negative rate (sensitivity).

We can, however, perform a very simple test of false positive rates (specificity) by asking the question:
given a synthetic multiple alignment that approximates neutrally evolving DNA, what fraction of sites are
predicted, by any given method, to be in conserved elements? This fraction should be representative of a
certain kind of false positive rate: the rate of predictions that are completely “wrong,” i.e., the rate at which
predictions are made that consist completely of nonconserved sites. The results of this test will not, however,
reflect false positive bases in the middle or at the extremities of legitimate conserved elements (see below),
and they will not address the issue of sites in the conservation “gray area.”

This test was performed for each species group, using a nonparameteric method based on 4d sites. Syn-
thetic data sets were created by independently drawing alignment columns (with replacement) from a large
collection of columns extracted from 4d sites, then concatenating these columns into multiple alignments.
For each species group, a synthetic alignment of 1 million columns was created. False positive rates were
then estimated by running phastCons on each synthetic alignment, using the parameters estimated from
real data by three different methods: full maximum-likelihood estimation and estimation based on targets

of 65% and 75% coverage of coding regions. Note that, while some fraction of 4d sites is presumably con-
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served, if this fraction is reasonably small, then the probability of encountering a sequence of such sites in
the synthetic data set that is sufficiently long to support the prediction of a conserved element should be
very small. Furthermore, the test will be conservative in that it should provide an upper bound on the false
positive rate. (This will be true as long as no 4d sites, or very few 4d sites, evolve faster than the neutral
rate; conceivably, hot spots of mutation or context-dependent substitution could produce some fast-evolving
4d sites.)

As shown in Table S7, the false positive rates estimated in this way turn out to be quite low—Iless than
0.4% in all cases but one (the insect group with the 75% coverage target, for which the rate was about
1%). As expected, the false positive rates are somewhat higher for the 75% coverage target than for the
65% coverage target. They tend to be very low under maximum likelihood estimation, apparently because
of the high degree of “smoothing” imposed by the m.l.e.’s, which causes longer sequences of conserved sites
to be required for a conserved element to be predicted. Clearly, however, these estimates do not tell the
whole story. For example, as the degree of smoothing increases, the rate at which completely erroneous
elements are predicted will decrease, but the rate at which short sequences of nonconserved bases will
erroneously be incorporated into larger conserved elements will increase. Nevertheless, this test indicates
that completely “wrong” predictions—i.e., apparent conserved elements that arise simply from random
variation in nonconserved sites—are probably a negligible factor in our analysis.?

There are various problems with extending this simulation-based analysis to estimate false negative rates
or false positive rates at the edges or in the middle of predicted elements. To address such questions, one
would need to include conserved elements in the synthetic data sets, which would require making assumptions
about the distribution of conserved alignment columns, the distribution of lengths of conserved elements,
and the degree to which conserved elements tend to cluster together. We have little data on which to base
these assumptions, especially if we want to avoid the circularity of basing them on results obtained with our
own methods or methods similar to them.

One simple computation we can do is to find the expected maximum length of a sequence of nonconserved
sites within a (sufficiently large) predicted conserved element—a kind of complement to Ly, that we will

call Ly .x. Proceeding as in the derivation of Li,, we obtain:

I logv 4 log p — log(1 — v) — log(1 — p) (8)
T log(1— p) —log(1—v) — H(,,[14,)

where H(,||¢.) = >, P(z|y,,)log i((il‘ﬁ”)) is the relative entropy of the distribution associated with the

nonconserved model 1,, with respect to the distribution associated with the conserved model .. Values

2Note that this analysis—because it depends on an independence assumption—does not rule out the possibility that our

results are significantly impacted by, say, cold spots of mutation, or local regions of hyper-efficient repair.
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of Lyax are shown in Table S8 for all four species groups and for three estimation methods. In general,
Lpax is somewhat smaller than Ly, (cf. Table S5) but it is still substantial in size—e.g., sequences of as
many as (an expected) 11 nonconserved bases could be included in a predicted conserved element for the
vertebrate group and the 65% coverage target. In theory, even if there were no completely wrong predictions
(as described above), the false positive rate at the base level could approach %, or about 40% for
the vertebrates and the 65% coverage target. In practice, however, this rate is likely to be much lower.

If there were sufficient data to determine whether or not individual bases were conserved, and if every
base in a conserved element was required to be conserved, then false positive bases within conserved elements
could be eliminated. It is not clear, however, that this would be ideal. For example, if conserved elements
could not contain nonconserved bases, then most conserved elements in coding regions would be only two
bases long. Perhaps it is better to tolerate some nonconserved bases, so that conserved elements correspond
more directly to what we tend to think of as functional elements (e.g., protein-coding exons, RNA genes,
and transcription-factor binding sites). Thus, some of the “false positives” implied by having Ly,.x > 0 (and
some of the “false negatives” implied by having Ly, > 1) may actually be desirable. Still, the optimal value
for Lyax may well be smaller than the current values—perhaps 4 or 5 bases. It will be possible to achieve

smaller values of L. as more sequence data becomes available.

4.7 Inherent Differences Between Species Groups

Decreased levels of sensitivity and/or specificity are inevitable in species-poor groups (such as worm) as
compared to species-rich groups (such as yeast). What happens under the calibration method used for the
main analysis is that species-poor groups—or more generally, groups with low phylogenetic information—
require higher levels of smoothing (larger Ly, and Lpax), which causes more short conserved elements to
be missed and more short intervals of nonconserved sites to be pulled into predicted conserved elements.
Essentially, the conserved elements are redefined from one group to another, in an attempt to compensate for
differences in numbers of species, phylogenetic difference, missing data, etc. For this reason, all comparisons
between groups in our analysis must be interpreted with caution.

Apart from what is predicted to be conserved across species, what is actually conserved is also a function
of evolutionary divergence. All other things being equal, species sets with more and more ancient most recent
common ancestors will tend to have smaller and smaller sets of conserved elements, because of turnover of
functional elements over evolutionary time (Smith et al., 2004). Thus, the correlation between conservation
and function is partly determined by the extent to which such turnover has occurred, and differences in

conserved elements between groups could reflect differences in turnover as well as differences in functional
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elements. This issue may particularly influence apparent differences in the fraction of conserved bases in
coding versus noncoding regions. It is likely that turnover of certain noncoding functional elements, such as
transcription factor binding sites, occurs at a higher rate than turnover of protein-coding sequences. As a
result, the fraction of noncoding sites in conserved elements may be considerably higher for primates only,
for example, than for all vertebrates or all mammals (Boffelli et al., 2003). Similarly, our sets of highly
conserved elements (HCEs) are relative to the particular species we have considered. As the sequences of
more genomes become available, it will be possible to begin to address the issue of turnover of conserved

elements by running phastCons and programs like it on subsets of genomes, e.g., on just the primates.

5 Specification of Phylo-SCFGs for Folding Potential Scores

This section will provide a more detailed description of the two phylo-SCFGs (6, and 6,,5;,) used to calculate
the folding potential scores. We start by defining the notation used to specify the phylo-SCFGs. The reader
is referred to Durbin et al. (1998), Knudsen and Hein (1999), and Pedersen et al. (2004) for more information
on the methodology of SCFGs and phylo-SCFGs in particular.

An SCFG can be specified by a three-tuple § = (W, ¢, e), where W denotes a set of states, ¢t denotes a
set of transition probabilities, and e denotes a set of emission distributions. It is convenient for algorithmic
reasons to define a set of state types which determines the emission and transition properties of states.
We will here make use of the state types proposed for grammars describing RNA secondary structures
(Durbin et al., 1998a): pair-emitting (P), left-emitting (L), right-emitting (R), start (S), bifurcate (B), and
end (E). Each emitting state has an associated emission distribution. The pair-emitting state emits two
correlated symbols, while the left-emitting and the right-emitting states emit a single symbol. The emission
distributions of phylo-SCFGs are specified by a set of phylogenetic models. We will start below by defining

the transition graphs (given by W,t) of 65, and 6,5, and then will define their phylogenetic models.

5.1 The Transition Graphs

The transition graph of 65, is very similar to the transition graph of the phylo-SCFG employed by RNA-
decoder (Pedersen et al., 2004). It can be decomposed into three components: pairing, non-pairing, and
high-level. The pairing component contains a pair-emitting state and is capable of modeling arbitrary RNA
secondary structures (see right part of Figure S6). The non-pairing component contains a single left-emitting
state and can therefore only model non-pairing regions (see left part of figure S6). The high-level component
models the sequence of non-pairing and pairing regions (i.e. regions containing RNA secondary structure).

The high-level component is identical to the high-level sub-grammar used by RNA-decoder and therefore is
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not shown here.

The transition graph of 6,5, consists solely of the non-pairing component.

5.2 The Phylogenetic Models

The phylo-SCFGs have three emitting states: one pair-emitting (in the pairing component), and two left-
emitting (one in each of the pairing and non-pairing components). The two left-emitting states use the same
emission distribution. The phylo-SCFGs therefore only employ two phylogenetic models: a dinucleotide
model (%) in the pair emitting state and a single-nucleotide model (¢/*) in the two left-emitting states.
The phylogenetic models are specified by a four-tuple given by ¢ = (Q, 7, 7, 8) as explained for the phylo-
HMM used by phastCons. The two phylogenetic models use the same (pre-estimated) phylogenetic tree (i.e.,
the same tree topology and branch lengths).

The dinucleotide rate matrix is parameterized by the general-time reversible model (REV), but with
a number of added constraints to lower the number of free parameters: the rates of substitution to all
non-pairing dinucleotides (the following dinucleotides are pairing in RNA: A-U, U-A, G-C, C-G, G-U, and
U-G) are fixed at a constant value. A similar approach is taken with the equilibrium distribution: all non-
pairing dinucleotides are fixed at a small constant value (~10~?). This approach lowers the number of free
parameters in the parameterization of Q% and 7% from 134 to 19, and has the effect of making the rate of
substitution from pairing to non-pairing dinucleotides very low.

The substitution process of the single-nucleotide model is calculated as an average of the substitution
process observed in the left and right position of the dinucleotide model. This is done by calculating a left and
a right marginalized version of 7% as well as Q%" (Yang et al., 1998) and then defining 7 and Q* as the average
of these. This approach was chosen in order to remove any differences between the pairing component and
the non-pairing component apart from the characteristics unique to RNA secondary structures: correlation

between the bases as well as their substitution pattern in regions which form functional stems.

5.3 Algorithms
5.3.1 Parameter Estimation

The parameters of the phylo-SCFGs were estimated from a training set consisting of 150 multiz align-
ments (Blanchette et al., 2004) of sequences from eight species of vertebrates. Each alignment consists of a
phastCons conserved element overlapping a well-conserved functional RNA derived from the Rfam database
(Griffiths-Jones et al., 2003). The alignments were annotated with the RNA secondary structures given by
Rfam.
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Only the parameters of 0, need to be estimated, since 0,4, is defined as the non-pairing component of
0sp. The free parameters consist of: the set of state-transition probabilities, the rate matrix of 1%, and
the equilibrium frequencies of ¥*. 7 and (3, which specify the phylogenetic tree, are not treated as free
parameters, but given by the nonconserved phylogeny estimated by phastCons, which was scaled to reflect
the overall rate of substitution in the non-pairing regions of the training set. The free parameters were
estimated using two different maximum likelihood approaches. The transition probabilities were estimated
using the inside-outside algorithm (Durbin et al., 1998a). The rate matrix and the equilibrium frequencies

of P were estimated using the BFGS algorithm, as implemented in the OPT++ package (Meza, 1994).

5.3.2 Likelihood Calculations

The likelihood of an alignment = given a phylo-SCFG is the sum over all possible derivations from the
grammar which could lead to z. Each derivation corresponds to an annotation y of the alignment; the
likelihood can therefore be written: P(z|0) = 3_, P(x,y|0). The inside algorithm (Durbin et al., 1998a)
efficiently performs this summation. Only a single derivation is possible from the simple grammar of 6,,5p;
this derivation annotates every position as being non-pairing. A huge number of different derivations are
possible from 6, each corresponding to an annotation of an RNA secondary structure.

The folding potential score (FPS) of a given alignment x is defined as a log likelihood ratio between the
two models: s(x) = log P(x|0s,) — log P(x|0,sp). Little evolutionary information is present in alignments
when only few sequences are present and spurious RNA secondary structures will often be predicted in these
cases (Rivas and Eddy, 2000; Pedersen et al., 2004). Alignments are therefore assigned a partial annotation,
which forces positions with more than 50% gaps or missing data to be treated as non-pairing. The likelihood

then becomes a sum over all structures compatible with the given partial annotation.

6 Results of FPS Analysis

Sets of local alignments corresponding to the different classes of HCE elements were defined and their
distributions of FPSs were compared. The alignments correspond to tilings of the HCEs with overlapping
150bp long intervals (step size 50bp). Null sets of UTR elements were constructed for comparative purposes
(see Methods). Summary statistics of the FPS distributions and results of tests for statistical differences
between the distributions are presented below for both the vertebrate sets and the insect sets. Interpretation

of the results is given in the text of the article.
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6.1 Vertebrates

The mean, the median, and the score at the 95th percentile are calculated for each set (see first part of Table
S9). Summary statistics were also calculated for the reverse complements of the UTR sets (see second part
of Table S9). Note that all sets, apart from the intergenic, contain strand-specific alignments.

Presence of CpG islands in 5 UTRs has a big effect on their FPSs. UTR sets which exclude all alignments
overlapping a CpG-island (as defined by the CpG-island track of the UCSC human genome browser) were
therefore constructed and their summary statistics calculated (see Table S10).

Differences between the overall distributions of FPSs between the sets were measured (Wilcoxon rank
sum test). We specifically test if one distribution is right-shifted relative to another and thus has a stronger
signal for presence of functional RNA secondary structures. In order to fulfill the independence assumption
of the test, we divide each set into three subsets of non-overlapping alignments. (Because the 150bp windows
overlap by 50bp, sets consisting of every third window do not contain overlaps.) The comparison of two sets
(A and B) is therefore composed of three pair-wise comparisons of subsets (A; vs. By, As vs. Bg, and Az vs.
Bs3). These three subset tests are correlated; P-values reported in the main text are the least significant of
the three. The test results of comparisons between different HCE sets as well as between UTR HCE sets and
UTR null sets are reported in Table S11. Tests involving 5 UTR sets excluding CpG islands are reported
in Table S12.

A second series of tests was performed in which FPSs for vertebrate 3’ and 5" UTRs were compared to
FPSs for their reverse complements. Because RNA secondary structures are not completely strand symmetric
(G can pair with U, but C cannot pair with A), a significant difference between the distributions of FPSs for
the forward and reverse orientations should be observed in the presence of an enrichment for true structures.
This was tested for each of the four UTR sets (see Table S13). These tests supported the existence of a
strong enrichment for secondary structure in 3’ UTR HCEs, a lesser but still strong enrichment in 3’ UTRs
without HCEs, and a slight enrichment in 5 UTR HCEs (on the border of statistical significance). No
enrichment was seen in 5 UTRs without HCEs. Note that the order of the comparison is switched for the
CDS set, which has a significantly stronger signal for presence of functional RNA structures on the reverse

strand.

6.2 Insect

The summary statistic for the insect sets are given in Table S14. The results of the comparisons of FPS
distributions of different insect sets are given in Table S15. Note that neither the reverse complement sets

nor the UTR sets excluding CpG-islands were generated for the insects.
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Tables

Table S1: Summary of genomes and assemblies

Species Group UCSC assembly  Reference

H. sapiens vertebrate  hgl7 International Human Genome Sequencing Consortium, 2001
M. musculus vertebrate mmb Mouse Genome Sequencing Consortium, 2002

R. norvegicus vertebrate rn3 Rat Genome Sequencing Project Consortium, 2004

G. gallus vertebrate galGal2 International Chicken Genome Sequencing Consortium, 2004
F. rubripes vertebrate frl Aparicio et al., 2002

D. melanogaster insect dml Adams et al., 2000

D. yakuba insect droYakl (In prep.)

D. pseudoobscura  insect dp2 Richards et al., 2005

A. gambiae insect anoGam1 Holt et al., 2002

C. elegans worm ce2 C. elegans Sequencing Consortium, 1998

C. briggsae worm cbl Stein et al., 2003

S. cerevisiae yeast sacCerl http://www.yeastgenome.org

S. castelli yeast — Cliften et al., 2003

S. kluyver: yeast - Cliften et al., 2003

S. kudriavzevii yeast — Cliften et al., 2003

S. mikatae yeast — Kellis et al., 2003

S. bayanus yeast - Kellis et al., 2003

S. paradozus yeast - Kellis et al., 2003

Table S2: Summary of multiple alignments

Group n® Reference Genome  Aligned Genomes (Coverage)® Tot. Cov.°

vertebrate 5 H. sapiens M. musculus (35.4%), R. norvegicus (34.0%), G. gal- 40.0%
lus (3.5%), F. rubripes (1.6%)

insect 4 D. melanogaster  D. yakuba (85.1%), D. pseudoobscura (58.1%), A. gam- 86.9%
biae (14.6%)

worm 2 C. elegans  C. briggsae (43.8%) 43.8%

yeast 7 S. cerevisiae S. paradozus (96.6%), S. mikatae (93.0%), 96.6%

S.  kudriavzevii  (89.7%), S. bayanus (89.5%),
S. castelli (63.4%), S. kluyveri (56.1%)

“Number of species.
bGenomes aligned to reference genome and fraction of bases in reference genome covered by local alignments with

each one.
¢Fraction of bases in reference genome covered by alignments with at least one other genome.
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Table S3: Some Human Genes Overlapped by Highly Conserved Elements

Gene

N@

Lengths?

Regions Overlapped

Product®

NOVA1

ARHGAP5

PURA

ELAVLY

FOXG1

ZFHX1B

BCL11A
SYNCRIP

NIPBL

ATBF1

FMR1

UBE3A

CPEB2

FOXP2

SHH

MYC

PAX6

1

1

—_

24

4922

3738

3211

691-3117

2634

351-2476

740-2451
798-2369

644-2106

738-2030

593-1548

729-1261

745-1260

441-1056

793

789

435-733

CDS, 3’ UTR

CDS, 5" UTR

CDS, UTRs

CDS, UTRs

CDS, introns, UTRs

CDS, introns, 3’ UTR

CDS, introns, 3’ UTR
CDS, 3’ UTR

CDS, UTRs

CDS, introns, 3’ UTR

CDS, intron, 3’ UTR

CDS, 3’ UTR

3’ UTR

CDS, introns, UTRs

CDS, 3’ UTR

CDS, 3’ UTR

CDS, introns, 3’ UTR

RNA-binding protein, may regulate neuron-specific splic-
ing. Associated with breast, fallopian, and lung cancer.
Rho GTPase-activating protein. Negatively regulates RHO
GTPases, which mediate cytoskeleton changes by stimulat-
ing hydrolysis of bound GTP.

Sequence-specific DNA-binding protein, implicated in the
control of DNA replication and transcription. Associ-
ated with myelodysplastic syndrome and acute myeloge-
nous leukemia.

RNA-binding protein, binds to 3’ UTRs, may play a role
in neural development.

Forkhead transcription factor, may play a role in brain de-
velopment.

Zinc-finger /homeodomain protein, probable transcriptional
repressor, mutated in Hirschsprung disease syndrome.
Zinc-finger protein, associated with leukemia.
RNA-binding protein, involved in RNA processing and
transport. May modulate RNA-editing of APOB.
Probably plays a role in developmental regulation, also in-
volved in sister chromatid cohesion and probably places a
structural role in chromatin. Mutated in Cornelia de Lange
syndrome.

AT-motif-binding transcriptional activator of alpha-
fetoprotein (AFP) gene, multiple homeodomains and zinc
finger motifs.

RNA-binding protein, possibly involved in the transport
of mRNA from the nucleus to the cytoplasm. Mutated in
fragile X syndrome.

E3 ubiquitin-protein ligase, part of the ubiquitin protein
degradation system. Maternally inherited deletion of this
imprinted gene causes Angelman Syndrome.

Highly similar to CPEB, an mRNA-binding protein that
binds to the cytoplasmic polyadenylation element and mod-
ulates translational repression and mRNA localization.
CPEB1, CPEBS3, and CPEB/ also have HCEs in their 3’
UTRs.

Forkhead transcription factor, mutant in developmental
verbal dyspraxia, possible “speech gene.”

Signaling molecule homologous to the sonic hedgehog de-
velopment gene in Drosophila, which is critical in embryo-
genesis.

DNA-binding protein and transcriptional activator, in-
volved by translocation in the generation of Burkitt lym-
phoma.

Paired-box-containing transcription factor, expressed in de-
veloping nervous system and in developing eyes. Mutations
cause the ocular diseases aniridia and Peter’s anomaly.

“Number of HCEs overlapping gene.
*Lengths of HCEs in human (bp).

“Based on descriptions in RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq), SwissProt (http://us.expasy.org/sprot), and

OMIM (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=0OMIM). See these resources for primary references.
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Table S4: Selected Gene Ontology (GO) Categories of Insect, Worm, and Yeast Genes Overlapped by Highly
Conserved Elements (CDS only)

Group Term Description N exp.? obs.© P
GO:0000166 nucleotide binding 762  234.0 423  2.1e-51
GO:0007275  development 1214 372.8 575  3.6e-41
GO:0009653  morphogenesis 702  215.5 377 8.1e-41
GO:0009887  organogenesis 605 185.8 330 2.8e-37
GO:0007552 metamorphosis 281 86.2 161  4.4e-21
GO:0007399  neurogenesis 296 90.9 167  7.1e-21
GO:0016462  pyrophosphatase activity 290 89.0 164  1.2e-20
GO:0005515  protein binding 496  152.3 244  3.5e-19

insect GO:0007267  cell-cell signaling 131 40.2 82 3.le-14
GO:0007268  synaptic transmission 119 36.5 76 5.9e-14
GO:0030154  cell differentiation 237 72.7 125  6.0e-13
GO:0004672  protein kinase activity 223 68.4 119  7.7e-13
GO:0016310  phosphorylation 279 85.6 141  1.5e-12
GO:0007017  microtubule-based process 90 27.6 58  3.4e-11
GO:0048477  oogenesis 206 63.2 102 8.3e-09
GO:0030528  transcription regulator activity 324 99.5 148  4.9e-09
GO:0019953  sexual reproduction 300 92.1 133 2.7e-07
GO:0004386  helicase activity 78 23.9 44 2.0e-06
GO:0005244  voltage-gated ion channel activity 31 9.5 22 4.5e-06
GO0:0042302  structural constituent of cuticle 156 11.7 71 3.9e-39
GO:0006811 ion transport 603 45.3 113 5.6e-21
GO:0000166  nucleotide binding 1012 76.0 139 1.8e-13
GO:0006520 amino acid metabolism 111 8.3 27 3.1e-08

worm GO:0007155  cell adhesion 63 4.7 19  9.0e-08
GO:0006412  protein biosynthesis 290 21.7 48  1.3e-07
GO:0008158 hedgehog receptor activity 28 2.1 11 2.6e-06
GO0:0016787  hydrolase activity 1193 89.6 129  6.1e-06
GO0:0009451 RNA modification 37 2.7 11 5.6e-05
GO:0000166  nucleotide binding 619 98.1 251  9.7e-58
GO:0003735  structural constituent of ribosome 201 31.8 89 1.4e-22
GO:0004386  helicase activity 94 14.9 53  1.le-19
GO:0006520 amino acid metabolism 222 35.2 85  9.5e-17
GO:0016787  hydrolase activity 765  121.3 196  2.4e-14
GO:0006096  glycolysis 32 5.0 22 2.6e-11
yeast GO:0006006  glucose metabolism 75 11.8 32 2.3e-08
GO0:0016301  kinase activity 216 34.2 61  1.7e-06
GO:0003723 RNA binding 335 53.1 85  2.3e-06
GO:0000287 magnesium ion binding 86 13.6 31  3.3e-06
GO:0009451 RNA modification 85 13.4 30 7.8e-06
GO:0016310  phosphorylation 190 30.1 53  1.2e-05
GO:0006333  chromatin assembly or disassembly 32 5.0 15  3.5e-05

“Number of genes in background set assigned to category.

bExpected number of genes overlapped.

¢Observed number of genes overlapped.

dP-value. Values of less than 5e—5 can be considered significant (see Methods).
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Table S5: Predicted Conserved Elements and Estimated Parameters Under Four Different Estimation Meth-
ods

Group Method Total no.* Ave.len.® Cov.© CDS cov.? I v w v Lnin
MLE 561,103 2161 4.2% 63.8% 0.018 0.004 554 0.191 30.4

ot 55% 1,058,855 753 2.8% 56.8% 0.125 0.029 80 0.187 12.9
T 65%°C 1,157,180 1035 4.2% 66.1% 0.083 0.030 120 0265 16.0
75% 1,381,978 1675  81% 76.6% 0.043 0.031 23.0 0415 226

MLE 352,620 1731 48.3% 733% 0.018 0.019 56.1 0522 17.1

et 9% 502,974 92.9  36.9% 57.0% 0.050 0.029 20.0 0370 13.5
65% 467,232 120.6  44.5% 68.3% 0.036 0.031 281 0468 135

75% 427,815 156.9 53.1% 784% 0.025 0.039  40.0 0.610 12.7

MLE 71,419 258.8  18.4% 431% 0.017 0.014 586 0455 83.7

worm | 99% 108,588 181.2  19.6% 45.8% 0.037 0.033 27.0 0470 56.4
65% 98,415 268.9  26.4% 56.4% 0.019 0.031 53.0 0.620 60.6

75% 87,228 357.5  31.1% 62.5% 0.010 0.030 100.0 0.750 65.6

MLE 57,610 1341 63.6% 778% 0.021 0.034 471 0615 115

55% 71,726 78.8  46.5% 58.0% 0.067 0.023 150 0260 12.5

yeast  gro 62,640 107.9  55.6% 68.9% 0.043 0.029 23.0 0400 11.7
75% 62,754 1241 64.0% 781% 0.025 0.041 400 0.620 10.6

%Total number of predicted conserved elements; here and below, only elements passing synteny filters are considered (where
applicable)

b Average length of a predicted conserved element (bp)

¢Genome-wide coverage by predicted conserved elements

dCoverage of coding regions by predicted conserved elements. These numbers differ slightly from the coverage targets (55%,
65%, and 75%) because of the adjustment for alignment coverage in coding regions and because of the removal of nonsyntenic
predictions.

¢Slight differences with the numbers reported in the main text result from the use of only a portion of the genome in
parameter estimation (a random sample of 100 1Mb intervals).

Table S6: Conserved Elements Based on PhastCons Nonconserved Model (65% Coverage Target) vs. Ele-
ments Based on 4d Model

Group Method Total no.® Ave.len.? Cov.¢ CDS cov.? CDS frac.® H@.|Y,) Lmin

vort. 65% 1,157,180 1035  4.2% 66.1% 18.0% 0.611 16.0
4d 797,777 109.3  3.0% 64.2% 24.0% 0.854 11.0

oot 60% 167,232 1206 44.5% 63.3% 26.4% 0.725  13.5
4d 554,823 110.0  48.3% 75.0% 26.8% 1.032 95

worm 9% 98,415 268.9 26.4% 56.4% 54.9% 0.159  60.6
4d 195,062 188.0  36.6% 69.3% 48.7% 0.403 254

65% 62,640 107.9 55.6% 63.9% 86.1% 0.836  11.7

yeast 4d 94,615 86.8 67.6% 81.8% 84.1% 1.914 5.3

%Total number of predicted conserved elements; here and below, only elements passing synteny filters are considered
(where applicable)

b Average length of a predicted conserved element (bp)

¢Genome-wide coverage by predicted conserved elements

dCoverage of coding regions by predicted conserved elements.

¢Fraction of conserved elements in coding regions, at the base level
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Table S7: Estimated False-Positive Rates for PhastCons Under Three Parameter Estimation Methods (Non-
parameteric Test Based on 4d Sites)

Group 65% 5% MLE
vertebrate 0.00279% 0.00362 0.00005
insect 0.00286 0.01026 0.00152
worm 0.00000 0.00000 0.00000
yeast 0.00006 0.00042 0.00023

%False-positive rates at the base level; 0.00279
means that an average of 2.79 out of every 1,000
nonconserved bases were incorrectly predicted as
belonging to conserved elements.

Table S8: Expected Maximum Length of a Sequence of Nonconserved Sites Within a Predicted Conserved
Element (Lmax)

Group 65% 75% MLE
vertebrate 11.0 191 25.3
insect 11.5 12.0 15.3
worm 64.1 83.9 67.3
yeast 10.3 104  10.6
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Table S9: Summary Statistics for FPSs of HCE Subsets and UTR Null-Sets

original reverse complement
data set size® mean median 95%” mean median 95%°
3’ UTR HCE 5614 0.31 0.05  2.69 0.13 —-0.14  2.29
5 UTR HCE 689 —0.20 —-0.43 170 -0.24 —-0.51 1.74
3’ UTR null 35651 —0.17 —-0.41 2.09 —-0.29 —0.52 1.84
5 UTR null 6326 —0.20 —-044 211 -0.24 —-0.48 2.01
CDS HCE 16081 —0.33 —-0.59 1.60 — — —
intron HCE 10679 0.30 0.08 2.36 — — -

intergenic HCE 36594 0.19 0.00 2.15 - — -

Number of overlapping 150bp windows tested.
bScore at the 95th percentile.

Table S10: Summary Statistics for FPSs of UTR, Sets Excluding CpG Islands

original reverse complement
data set size mean median  95%°” mean median 95%°
3’ UTR HCE 5524 0.32 0.06 2.70 0.13 —-0.14 2.130
5 UTR HCE 319 —-0.18 —0.41 1.89 —0.32 —0.58 1.53
3’ UTR null 34846 —0.17 —0.40 2.09 -0.29 —0.52 1.84
5 UTR null 3453 —0.32 —0.58 1.93 —-0.34 —0.58 1.83

a

“Number of overlapping 150bp windows tested.
bScore at the 95th percentile.
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Figures

PhastCons Nonconserved
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—Q160 py sapiens

0188 H. sapiens 0.265
02t Q10L R norvegicus 0.198 P2 R norvegicus
0094 A1 musculus 0983y 1 musculus
C L 04 gallus C 0.339 G. gallus
0.664 F. rubripes 1150 F. rubripes
%ﬁD. melanogaster Lrl__n D. melanogaster
0.126 p, yakuba 0103 py yakuba
C L 039  p pseudoobscura C 0301 D. pseudoobscura
1.062 A. gambiae 1.357 A. gambiae
C. elegans C. elegans
I:C 0.614 C. briggsae |<: 1.069 C. briggsae
0135 § cerevisiae 0.110 0205 5 cerevisiae
0114 S paradoxus 0131 _mamdoxus
N S. mikatae 0122 0288 S. mikatae
0332 S. kudriavzevii 0,892 0256 S. kudriavzevii
0229 S bpayanus 0248 S bayanus
’7 0.575 S. castelli ’7 1.282 S. castelli
\’ 0.613 S. kluyveri k 1.278 S. kluyveri

Figure S1: Nonconserved phylogenies estimated by phastCons (left) compared to phylogenies estimated from
fourfold degenerate sites (right). Horizontal distances are to scale.
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Figure S2: Distributions of (A) lengths and (B) length-normalized log-odds scores (score/length) of vertebrate
conserved elements that primarily overlap (> 50% of bases) known CDSs, UTRs, introns or intergenic regions,
and ancestral repeats (ARs). The distributions for 5" and 3’ UTRs and for introns and intergenic regions
were essentially indistinguishable at this resolution. The entire distributions are not shown (the tails have

been truncated).
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Figure S3: Coverage of vertebrate conserved elements by feature type for various score classes. The numbers
1-10 indicate disjoint classes of equal numbers of conserved elements, ranging from the highest scoring 10%
of elements (1) to the lowest scoring 10% of elements (10). Subsets of class 1 consisting of the top-scoring
5000, 1000, and 100 elements are also shown.

35



MLE 65% CDS Coverage

1.2%

41.5% 3.8% 41.2%

Vertebrate 53%
2.6%
Insect . CDS
B 5 ur
B 3 umr
27.9% 27.7%
. other mRNA
l:l other trans
l:l intron
Worm . unannotated
60.2%
Yeast

Figure S4: Composition of predicted conserved elements for all four species groups under two parameter
estimation methods for 1 and v (y and w): maximum likelihood estimation (left column) and the method
described in the text, with a target of 65% coverage of coding regions by conserved elements.

36



55% 65% 75%

18.0% 10.8%
23.2% :
11% .
39.4% 42.0% 3.5% 2.4%
1.2% 44.7%
Vertebrate 36% 5.1%
5.3% 3
3%
2.5%
27.8% :

24.8%

26.4% 25.5%

39.2%

38.5%

Insect CDS

5'UTR

3'UTR

other mRNA

20.7%

other trans

intron

unannotated

BEC0CEENR

20.8%

0
3'2({?5% 0.1%

14.9%

0.3%

Yeast

Figure S5: Composition of predicted conserved elements for all four species groups with target CDS coverages
of 55%, 65%, and 75%.
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Figure S6: Transition graphs of the non-pairing component (left) and the pairing component (right) of the
phylo-SCFGs. The state types are given in parenthesis. The transition from the bifurcation state leads to
two states, a left (1) and a right (r), as indicated on the graph. See Pedersen et al. (2004) for more detail on
the interpretation of these graphs.
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