Mauve: Supplementary algorithm description

Aaron C. E. Darling

March 29, 2004

Appendix A: Description of the Multi-MUM search

algorithm

The multi-MUM search algorithm described herein is a seed-and-extend
method based on the method that can identify both multi-MUMSs occurring
in all genomes under study in addition to those occurring only in subsets of
the genomes being searched. The multi-MUM search algorithm has time
complexity O(G?n + Gnlog Gn) where G is again the number of genomes
and n the length of the longest genome. Further, the random-access mem-
ory requirements are proportional to the number of multi-MUMs found, not
n, allowing it to efficiently tackle large data sets. O(Gn) disk space is used
to store sequentially accessed data structures.

The algorithm proceeds by constructing a sorted list of k-mers for each
genome g € G. The sorted k-mer lists are then scanned to identify k-
mers that occur in two or more sequences but that occur at most once in
any sequence. If a multi-MUM that subsumes the k-mer match has not
yet been discovered, then the match seeds an extension in each genome

until a mismatch occurs. When a mismatch occurs an extension is seeded

in the subset of sequences that are still identical, but only if a subsuming
multi-MUM has not yet been discovered.

Given a match seed, a key feature of our algorithm is its ability to ef-
ficiently determine whether an existing multi-MUM subsumes the seed.
Mauve uses a hash table to track known matches. The hash function h(M)
for a match M yields a quantity we refer to as the generalized offset of
a match M. Using the notation of multi-MUMs introduced in the primary
manuscript, h(M) can be written as h(M) = Zle |M.S; — M.Si|. In order
to mitigate the effects of potential hash collisions, each bucket of the hash
table uses a binary search tree to store matches.

For the purposes of time complexity analysis, the matching algorithm
can be deconstructed into four primary components: Sorted Mer List (SML)
construction, seed match identification, seed lookup in the known match
hash table, and seed extension. SML construction can be accomplished
in O(Gn) (linear) time using radix sort methods. Identifying seed matches
from the Sorted Mer Lists requires a single sequential scan through each
SML and is thus also O(Gn).

The seed lookup phase can be executed at most once for every multi-
MUM seed. Because there are Gn mers, the largest possible number of
unique mer-matches is % If all of these mer-matches were to hash to the
same bucket then a tree search and insertion would be required for every
seed match. Using a splay tree (Sleator and Tarjan, 1985), the amortized
time complexity for Gn tree lookups and insertions is O(Gnlog Gn).

The amount of match extension depends on the number and size of
multi-MUMs identified. Because we are identifying MUMSs, each nucleotide
can be a part of at most 2 MUMs on the forward strand and 2 MUMs on

the reverse strand, for a total of 4 MUMs. Furthermore, it holds that any

nucleotide can be a part of at most 4 multi-MUMs with a given multiplic-
ity. Thus each nucleotide can be a part of 4G multi-MUMSs, or just O(G)
multi-MUMs. For a given multiplicity m, the largest possible amount of ex-
tension work depends on the maximum possible number of matching mers
at that multiplicity: % Further, each extension at a particular multiplicity m
requires m character comparisons. Thus the maximum number of charac-
ter comparisons for a given multiplicity is m% or just Gn, and since there
are G multiplicity levels, the maximum number of comparisons to find all
multi-MUMs is G?n

By adding the contributions each of the algorithm’s four components
make toward the total running time, we arrive at Gn + Gn + Gnlog Gn +
G?n. In asymptotic notation, the Gn terms are subsumed by G?n, leav-
ing O(G?n + GnlogGn). It is important to note that although suffix tree
algorithms provide better asymptotic time complexity than our seed-and-
extend method, in practice our implementation is very fast and space ef-
ficient. Furthermore, the seed matching technique can be easily modified
to use weighted/spaced seeds, allowing inexact string matching not pos-
sible with suffix tree-like data structures in the same low asymptotic time

complexity.

Appendix B: Partitioning M into collinear subsets

As part of the anchor selection process, Mauve must partition the initial
set of multi-MUMs into collinear subsets. To do so, Mauve implements a
breakpoint analysis algorithm based on the description of breakpoints given
by Blanchette et al. (1997), We refer to the resulting collinear sets of multi-

MUMs as LCBs. An LCB can be defined formally as a maximal collinear

subset of the matches in M, or lcb € M where M is the it multi-MUM
in the LCB. The MUMs that constitute an LCB must satisfy a total ordering
property such that M;.S; < M;;.S; holds for all i, 1 < i < |icb| and all j,
1<j<G.

Mauve uses a standard breakpoint determination algorithm to partition
the set of multi-MUMSs into a set of LCBs. First, Mauve orders the multi-
MUMSs in M on |M;.Sp|. Next, a monotonically increasing label between 1
and |[M| is assigned to each MUM corresponding to the index of the MUM
in the ordering on |M;.Sy|. We will refer to the label of the i** multi-MUM as
M;.label. Note that M;.label € IN. Next, the set of multi-MUMSs is repeatedly
reordered based on |M;.S;| for j = 2...G. After each reordering, the set of
multi-MUMs are examined for breakpoints. A breakpoint exists between M;
and M;,q if M;.label + 1 # M, 1.label and both M; and M;, are in the
forward orientation, or if M;.label — 1 # M;,1.label and both M; and M,
are in the reverse complement orientation. A breakpoint also exists if M; is
in a different orientation than A, ; in sequence j, e.g. the sign of M;.S; is
different than the sign of M;;.S;.

Finally, the multi-MUMs are re-ordered on M.label and the LCBs are
then any maximal length subsequence of multi-MUMs M;...M; ; that does

not contain any recorded breakpoints between multi-MUMs.

References

Blanchette, M., Bourque, G., and Sankoff, D. (1997). Breakpoint Phylogenies. Genome Inform Ser

Workshop Genome Inform, 8:25-34.

Sleator, D. D. and Tarjan, R. E. (1985). Self-adjusting binary search trees. J. ACM, 32(3):652-686.

