
Mauve: Supplementary algorithm description

Aaron C. E. Darling

March 29, 2004

Appendix A: Description of the Multi-MUM search

algorithm

The multi-MUM search algorithm described herein is a seed-and-extend

method based on the method that can identify both multi-MUMs occurring

in all genomes under study in addition to those occurring only in subsets of

the genomes being searched. The multi-MUM search algorithm has time

complexity O(G2n + Gn logGn) where G is again the number of genomes

and n the length of the longest genome. Further, the random-access mem-

ory requirements are proportional to the number of multi-MUMs found, not

n, allowing it to efficiently tackle large data sets. O(Gn) disk space is used

to store sequentially accessed data structures.

The algorithm proceeds by constructing a sorted list of k-mers for each

genome g ∈ G. The sorted k-mer lists are then scanned to identify k-

mers that occur in two or more sequences but that occur at most once in

any sequence. If a multi-MUM that subsumes the k-mer match has not

yet been discovered, then the match seeds an extension in each genome

until a mismatch occurs. When a mismatch occurs an extension is seeded

1

in the subset of sequences that are still identical, but only if a subsuming

multi-MUM has not yet been discovered.

Given a match seed, a key feature of our algorithm is its ability to ef-

ficiently determine whether an existing multi-MUM subsumes the seed.

Mauve uses a hash table to track known matches. The hash function h(M)

for a match M yields a quantity we refer to as the generalized offset of

a match M . Using the notation of multi-MUMs introduced in the primary

manuscript, h(M) can be written as h(M) =
∑G
j=1 |M.Sj −M.S1|. In order

to mitigate the effects of potential hash collisions, each bucket of the hash

table uses a binary search tree to store matches.

For the purposes of time complexity analysis, the matching algorithm

can be deconstructed into four primary components: Sorted Mer List (SML)

construction, seed match identification, seed lookup in the known match

hash table, and seed extension. SML construction can be accomplished

in O(Gn) (linear) time using radix sort methods. Identifying seed matches

from the Sorted Mer Lists requires a single sequential scan through each

SML and is thus also O(Gn).

The seed lookup phase can be executed at most once for every multi-

MUM seed. Because there are Gn mers, the largest possible number of

unique mer-matches is Gn
2 . If all of these mer-matches were to hash to the

same bucket then a tree search and insertion would be required for every

seed match. Using a splay tree (Sleator and Tarjan, 1985), the amortized

time complexity for Gn tree lookups and insertions is O(Gn logGn).

The amount of match extension depends on the number and size of

multi-MUMs identified. Because we are identifying MUMs, each nucleotide

can be a part of at most 2 MUMs on the forward strand and 2 MUMs on

the reverse strand, for a total of 4 MUMs. Furthermore, it holds that any

2

nucleotide can be a part of at most 4 multi-MUMs with a given multiplic-

ity. Thus each nucleotide can be a part of 4G multi-MUMs, or just O(G)

multi-MUMs. For a given multiplicity m, the largest possible amount of ex-

tension work depends on the maximum possible number of matching mers

at that multiplicity: Gn
m . Further, each extension at a particular multiplicity m

requires m character comparisons. Thus the maximum number of charac-

ter comparisons for a given multiplicity is mGn
m or just Gn, and since there

are G multiplicity levels, the maximum number of comparisons to find all

multi-MUMs is G2n

By adding the contributions each of the algorithm’s four components

make toward the total running time, we arrive at Gn + Gn + Gn logGn +

G2n. In asymptotic notation, the Gn terms are subsumed by G2n, leav-

ing O(G2n + Gn logGn). It is important to note that although suffix tree

algorithms provide better asymptotic time complexity than our seed-and-

extend method, in practice our implementation is very fast and space ef-

ficient. Furthermore, the seed matching technique can be easily modified

to use weighted/spaced seeds, allowing inexact string matching not pos-

sible with suffix tree-like data structures in the same low asymptotic time

complexity.

Appendix B: Partitioning M into collinear subsets

As part of the anchor selection process, Mauve must partition the initial

set of multi-MUMs into collinear subsets. To do so, Mauve implements a

breakpoint analysis algorithm based on the description of breakpoints given

by Blanchette et al. (1997), We refer to the resulting collinear sets of multi-

MUMs as LCBs. An LCB can be defined formally as a maximal collinear

3

subset of the matches in M, or lcb ⊆ M where Mi is the ith multi-MUM

in the LCB. The MUMs that constitute an LCB must satisfy a total ordering

property such that Mi.Sj ≤ Mi+1.Sj holds for all i, 1 ≤ i ≤ |lcb| and all j,

1 ≤ j ≤ G.

Mauve uses a standard breakpoint determination algorithm to partition

the set of multi-MUMs into a set of LCBs. First, Mauve orders the multi-

MUMs in M on |Mi.S0|. Next, a monotonically increasing label between 1

and |M| is assigned to each MUM corresponding to the index of the MUM

in the ordering on |Mi.S0|. We will refer to the label of the ith multi-MUM as

Mi.label. Note that Mi.label ∈ IN. Next, the set of multi-MUMs is repeatedly

reordered based on |Mi.Sj | for j = 2...G. After each reordering, the set of

multi-MUMs are examined for breakpoints. A breakpoint exists between Mi

and Mi+1 if Mi.label + 1 6= Mi+1.label and both Mi and Mi+1 are in the

forward orientation, or if Mi.label − 1 6= Mi+1.label and both Mi and Mi+1

are in the reverse complement orientation. A breakpoint also exists if Mi is

in a different orientation than Mi+1 in sequence j, e.g. the sign of Mi.Sj is

different than the sign of Mi+1.Sj .

Finally, the multi-MUMs are re-ordered on M.label and the LCBs are

then any maximal length subsequence of multi-MUMs Mi...Mi+j that does

not contain any recorded breakpoints between multi-MUMs.

References

Blanchette, M., Bourque, G., and Sankoff, D. (1997). Breakpoint Phylogenies. Genome Inform Ser

Workshop Genome Inform, 8:25–34.

Sleator, D. D. and Tarjan, R. E. (1985). Self-adjusting binary search trees. J. ACM, 32(3):652–686.

4

