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Chapter 1. BioPerlTutorial - a tutorial for bioperl

BioPerlTutorial - a tutorial for bioperl This document is available as HTML at
http://www.bioperl.org/Core/bptutorial.html and as ’bptutorial.pl’ in the Bioperl
distribution.

AUTHOR

Cared for by Peter Schattner <schattner@alum.mit.edu >

Copyright Peter Schattner

Contributions, additions and corrections have been made
to this document by the following individuals:

Jason Stajich
Heikki Lehvaslaiho
Brian Osborne
Hilmar Lapp
Chris Dagdigian

DESCRIPTION

This tutorial includes "snippets" of code and text from various
Bioperl documents including module documentation, example scripts
and "t" test scripts. You may distribute this tutorial under the
same terms as perl itself.

This document is written in Perl POD (plain old documentation)
format. You can run this file through your favorite pod translator
(pod2html, pod2man, pod2text, etc.) if you would like a more
convenient formatting.

Table of Contents
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III.2.1 Transforming sequence files (SeqIO)
III.2.2 Transforming alignment files (AlignIO)

III.3 Manipulating sequences
III.3.1 Manipulating sequence data with Seq methods (Seq)
III.3.2 Obtaining basic sequence statistics- MW, residue &codon fre-

quencies (SeqStats)
III.3.3 Identifying restriction enzyme sites (RestrictionEnzyme)
III.3.4 Identifying amino acid cleavage sites (Sigcleave)
III.3.5 Miscellaneous sequence utilities: OddCodes, SeqPattern
III.3.6 Sequence manipulation using the Bioperl EMBOSS interface
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III.4.1 Running BLAST locally (StandAloneBlast)
III.4.2 Running BLAST remotely (using RemoteBlast.pm)
III.4.3 Parsing BLAST and FASTA reports with Search and SearchIO
III.4.4 Parsing BLAST reports with BPlite, BPpsilite, BPbl2seq and Blast.pm
III.4.5 Parsing HMM reports (HMMER::Results)

III.5 Creating and manipulating sequence alignments
III.5.1 Aligning 2 sequences with Smith-Waterman (pSW)
III.5.2 Aligning 2 sequences with Blast using bl2seq and AlignIO
III.5.3 Aligning multiple sequences (Clustalw.pm, TCoffee.pm)
III.5.4 Manipulating and displaying alignments (SimpleAlign)

III.6 Searching for genes and other structures on genomic DNA
(Genscan, Sim4, ESTScan, MZEF, Grail, Genemark, EPCR)

III.7 Developing machine readable sequence annotations
III.7.1 Representing sequence annotations (Annotation, SeqFeature, RichSeq)
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III.7.3 Representing related sequences - mutations, polymorphisms etc (Al-
lele, SeqDiff)

III.7.4 Incorpotating quality data in sequence annotation (SeqWithQuality)
III.7.5 Sequence XML representations - generation and parsing (SeqIO::game)

III.8 Representing non-sequence data in Bioperl: structures, trees, maps, graph-
ics and bibliographic text

III.8.1 Using 3D structure objects and reading PDB files (Struc-
tureI, Structure::IO)

III.8.2 Tree objects and phylogenetic trees (Tree::Tree, TreeIO)
III.8.3 Map objects for manipulating genetic maps (Map::MapI, MapIO)
III.8.4 Bibliographic objects for querying bibliographic databases (Biblio)
III.8.5 Graphics objects for representing sequence objects as im-

ages (Graphics)

III.9 Bioperl alphabets
III.9.1 Extended DNA / RNA alphabet
III.9.2 Amino Acid alphabet

IV. Related projects - biocorba, biopython, biojava, EMBOSS, Ensembl, GFF, Gen-
quire

IV.1 Biocorba
IV.2 Biopython and biojava
IV.3 EMBOSS
IV.4 Ensembl and bioperl-db
IV.5 GFF format and Bio::DB::GFF*
IV.6 Genquire, the Annotation Workbench and bioperl-gui

V. Appendices
V.1 Finding out which methods are used by which Bioperl Objects
V.2 Tutorial Demo Scripts

I. Introduction

I.1 Overview

Bioperl is a collection of perl modules that facilitate the development of perl scripts
for bioinformatics applications. As such, it does not include ready to use programs in
the sense that many commercial packages and free web-based interfaces (eg Entrez,
SRS) do. On the other hand, bioperl does provide reusable perl modules that facil-
itate writing perl scripts for sequence manipulation, accessing of databases using a
range of data formats and execution and parsing of the results of various molecular
biology programs including Blast, clustalw, TCoffee, genscan, ESTscan and HMMER.
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Consequently, bioperl enables developing scripts that can analyze large quantities of
sequence data in ways that are typically difficult or impossible with web based sys-
tems.

In order to take advantage of bioperl, the user needs a basic understanding of the perl
programming language including an understanding of how to use perl references,
modules, objects and methods. If these concepts are unfamiliar the user is referred to
any of the various introductory / intermediate books on perl. (I’ve liked S. Holzmer’s
Perl Core Language, Coriolis Technology Press, for example). This tutorial is not in-
tended to teach the fundamentals of perl to those with little or no experience in the
perl language. On the other hand, advanced knowledge of perl - such as how to write
a perl object - is not required for successfully using bioperl.

Bioperl is open source software that is still under active development. The advan-
tages of open source software are well known. They include the ability to freely exam-
ine and modify source code and exemption from software licensing fees. However,
since open source software is typically developed by a large number of volunteer pro-
grammers, the resulting code is often not as clearly organized and its user interface
not as standardized as in a mature commercial product. In addition, in any project
under active development, documentation may not keep up with the development of
new features. Consequently the learning curve for actively developed, open source
source software is sometimes steep.

This tutorial is intended to ease the learning curve for new users of bioperl. To that
end the tutorial includes:

•

Descriptions of what bioinformatics tasks can be handled with bioperl

•

Directions on where to find the methods to accomplish these tasks within the biop-
erl package

•

Recommendations on where to go for additional information.

•

The POD documentation should contain runnable code in the SYNOPSIS section
which is meant to illustrate the use of a module and its methods.

Running the tutorial.pl script while going through this tutorial - or better yet, step-
ping through it with an interactive debugger - is a good way of learning bioperl.
The tutorial script is also a good place from which to cut-and-paste code for your
scripts(rather than using the code snippets in this tutorial). The tutorial script
should work on your machine - and if it doesn’t it would probably be a good idea to
find out why, before getting too involved with bioperl!
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This tutorial does not intend to be a comprehensive description of all the objects and
methods available in bioperl. For that the reader is directed to the documentation in-
cluded with each of the modules. A very useful interface for finding one’s way within
all the module documentation can be found at http://doc.bioperl.org/bioperl-live/.
This interface lists all bioperl modules and descriptions of all of their methods.

One potential problem in locating the correct documentation is that multiple meth-
ods in different modules may all share the same name. Moreover, because of perl’s
complex method of “inheritance”, it is not often clear which of the identically named
methods is being called by a given object. One way to resolve this question is by
using the software described in Appendix V.1.

For those who prefer more visual descriptions,
http://bioperl.org/Core/Latest/modules.html also offers links to
three PDF files which contain schematics that describe how many of the bioperl
objects related to one another.

In addition, a bioperl online course is available on the web at
http://www.pasteur.fr/recherche/unites/sis/formation/bioperl. The user is also
referred to numerous bioperl scripts in the scripts/ and examples/ directories (see
bioperl.pod for a description of all these scripts).

I.2 Software requirements

I.2.1 Minimal bioperl installation

For a “minimal” installation of bioperl, you will need to have perl itself installed as
well as the bioperl “core modules”. Bioperl has been tested primarily using perl 5.005
and perl 5.6. The minimal bioperl installation should still work under perl 5.004.
However, as increasing numbers of bioperl objects are using modules from CPAN
(see below), problems have been observed for bioperl running under perl 5.004. So
if you are having trouble running bioperl under perl 5.004, you should probably up-
grade your version of perl.

In addition to a current version of perl, the new user of bioperl is encouraged to have
access to, and familiarity with, an interactive perl debugger. Bioperl is a large collec-
tion of complex interacting software objects. Stepping through a script with an inter-
active debugger is a very helpful way of seeing what is happening in such a complex
software system - especially when the software is not behaving in the way that you
expect. The free graphical debugger ptkdb (available as Devel::ptkdb from CPAN) is
highly recommended. Active State, from http://www.activestate.com, offers a com-
mercial graphical debugger for windows systems. The standard perl distribution also
contains a powerful interactive debugger - though with a more cumbersome (com-
mand line) interface. The Perl tool Data::Dumper used with the syntax:

use Data::Dumper;
printer Dumper($seq);
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can also be helpful for obtaining debugging information on perl objects.

I.2.2 Complete installation

Taking full advantage of bioperl requires software beyond that for the minimal in-
stallation. This additional software includes perl modules from CPAN, bioperl perl
extensions, a bioperl xs-extension, and several standard compiled bioinformatics pro-
grams.

Perl - extensions

The following perl modules are available from bioperl,
http://bioperl.org/Core/external.shtml, or from CPAN,
http://www.perl.com/CPAN/, and are used by bioperl. The listing also indicates
what bioperl features will not be available if the corresponding CPAN module is not
downloaded. If these modules are not available (eg non-unix operating systems),
the remainder of bioperl should still function correctly.

For accessing remote databases you will need:

•

File-Temp-0.09

•

IO-String-1.01

For accessing Ace databases you will need:

•

AcePerl-1.68.

For remote blast searches you will need:

•

libwww-perl-5.48

•

Digest-MD5-2.12.

•

HTML-Parser-3.13
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•

libnet-1.0703

•

MIME-Base64-2.11

•

URI-1.09

•

IO-stringy-1.216

For xml parsing you will need:

•

libxml-perl-0.07

•

XML-Parser-2.30

•

XML-Twig-2.02

•

XML-Writer-0.4

•

Soap-Lite-0.52

•

XML-DOM-1.37

•

expat-1.95.1 from http://sourceforge.net/projects/expat/
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For more current and additional information on external modules required by biop-
erl, check http://bioperl.org/Core/external.shtml

Bioperl C extensions & external bioinformatics programs

Bioperl also uses several C programs for sequence alignment and local blast search-
ing. To use these features of bioperl you will need an ANSI C or Gnu C compiler as
well as the actual program available from sources such as:

for Smith-Waterman alignments- bioperl-ext-0.6 from
http://bioperl.org/Core/external.shtml

for clustalw alignments- ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/

for tcoffee alignments- http://igs-server.cnrs-
mrs.fr/~cnotred/Projects_home_page/t_coffee_home_page.html

for local blast searching- ftp://ftp.ncbi.nlm.nih.gov/blast/server/current_release/

for EMBOSS applications - http://www.hgmp.mrc.ac.uk/Software/EMBOSS/download.html

I.3 Installation

The actual installation of the various system components is accomplished in the stan-
dard manner:

•

Locate the package on the network

•

Download

•

Decompress (with gunzip or a similiar utility)

•

Remove the file archive (eg with tar -xvf)

•

Create a “makefile” (with “perl Makefile.PL” for perl modules or a supplied “in-
stall” or “configure” program for non-perl program

•

Run “make”, “make test” and “make install” This procedure must be repeated
for every CPAN module, bioperl-extension and external module to be installed. A
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helper module CPAN.pm is available from CPAN which automates the process for
installing the perl modules.

The CPAN module can also be used to install all of the modules listed above in a
single step as a “bundle” of modules, Bundle::BioPerl, eg

$>perl -MCPAN -e shell
cpan >install Bundle::BioPerl
<installation details.... >
cpan >install B/BI/BIRNEY/bioperl-1.0.tar.gz
<installation details.... >
cpan >quit

The disadvantage of this approach is that if there’s a problem installing any indi-
vidual module it may be a bit more difficult to address.

For the external programs (clustal, Tcoffee, ncbi-blast), there is an extra step:

•

Set the relevant environmental variable (CLUSTALDIR, TCOFFEEDIR or BLAST-
DIR) to the directory holding the executable in your startup file - eg in .bashrc. (For
running local blasts, it is also necessary that the name of local-blast database direc-
tory is known to bioperl. This will typically happen automatically, but in case of
difficulty, refer to the documentation in Bio)

The only likely complication (at least on unix systems) that may occur is if you are
unable to obtain system level writing privileges. For instructions on modifying the
installation in this case and for more details on the overall installation procedure,
see the README file in the bioperl distribution as well as the README files in the
external programs you want to use (eg bioperl-ext, clustalw, TCoffee, NCBI-blast).

I.4 Additional comments for non-unix users

Bioperl has mainly been developed and tested under various unix environments (in-
cluding Linux) and this tutorial is intended primarily for unix users. The minimal
installation of bioperl should work under other OS’s (NT, windows,Mac). However,
bioperl has not been widely tested under these OS’s.

Todd Richmond has written of his experiences with BioPerl on
MacOS 9 at http://bioperl.org/Core/mac-bioperl.html. There is
also a description of bioperl on windows by Jurgen Pletinckx at
http://www.bioperl.org/Core/windows-bioperl.html. (Note that currently these
documents describe release 0.7.x of bioperl.) Minimal bioperl does run without
problems on Mac OS X since it is a Unix system. However, external precompiled
programs (eg NCBI local Blast) and other useful auxiliary programs such as perl-TK
and ptkdb are in many cases not yet available under OS X.
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Steve Cannon has compiled installation notes and suggestions for Bioperl on OS X
online at http://www.tc.umn.edu/~cann0010/Bioperl_OSX_install.html.

Many bioperl features require the use of CPAN modules, compiled extensions or
external programs. These features will probably will not work under some or all
of these other operating systems. If a script attempts to access these features from
a non-unix OS, bioperl is designed to simply report that the desired capability is
not available. However, since the testing of bioperl in these environments has been
limited, the script may well crash in a less “graceful” manner.

II. Brief introduction to bioperl’s objects

The purpose of this tutorial is to get you using bioperl to solve real-life bioinformat-
ics problems as quickly as possible. The aim is not to explain the structure of biop-
erl objects or perl object-oriented programming in general. Indeed, the relationships
among the bioperl objects is not simple; however, understanding them in detail is
fortunately not necessary for successfully using the package.

Nevertheless, a little familiarity with the bioperl object “bestiary” can be very help-
ful even to the casual user of bioperl. For example there are (at least) seven different
“sequence objects” - Seq, PrimarySeq, LocatableSeq, LiveSeq, LargeSeq, SeqI, and Se-
qWithQuality. Understanding the relationships among these objects - and why there
are so many of them - will help you select the appropriate one to use in your script.

II.1 Sequence objects: (Seq, RichSeq, SeqWithQuality, PrimarySeq,
LocatableSeq, LiveSeq, LargeSeq, SeqI)

Seq is the central sequence object in bioperl. When in doubt this is probably the object
that you want to use to describe a DNA, RNA or protein sequence in bioperl. Most
common sequence manipulations can be performed with Seq. These capabilities are
described in sections III.3.1 and III.7.1, or in Bio.

Seq objects can be created explicitly (see section III.2.1 for an example). However
usually Seq objects will be created for you automatically when you read in a file con-
taining sequence data using the SeqIO object. This procedure is described in section
III.2.1. In addition to storing its identification labels and the sequence itself, a Seq ob-
ject can store multiple annotations and associated “sequence features”. This capabil-
ity can be very useful - especially in development of automated genome annotation
systems, see section III.7.1.

RichSeq objects store additional annotations beyond those used by standard Seq ob-
jects. If you are using sources with very rich sequence annotation, you may want to
consider using these objects which are described in section III.7.1. SeqWithQuality
objects are used to manipulate sequences with quality data, like those produced by
phred. These objects are described in section III.7.4, Bio, and in Bio.

On the other hand, if you need a script capable of simultaneously handling many
(hundreds or thousands) sequences at a time, then the overhead of adding annota-
tions to each sequence can be significant. For such applications, you will want to
use the PrimarySeq object. PrimarySeq is basically a “stripped down” version of Seq.
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It contains just the sequence data itself and a few identifying labels (id, accession
number, molecule type = dna, rna, or protein). For applications with hundreds or
thousands or sequences, using PrimarySeq objects can significantly speed up pro-
gram execution and decrease the amount of RAM the program requires. See Bio for
more details.

What is (for historical reasons) called a LocatableSeq object might be more appro-
priately called an “AlignedSeq” object. It is a Seq object which is part of a multi-
ple sequence alignment. It has “start” and “end” positions indicating from where
in a larger sequence it may have been extracted. It also may have “gap” symbols
corresponding to the alignment to which it belongs. It is used by the alignment ob-
ject SimpleAlign and other modules that use SimpleAlign objects (eg AlignIO.pm,
pSW.pm). In general you don’t have to worry about creating LocatableSeq objects
because they will be made for you automatically when you create an alignment (us-
ing pSW, Clustalw, Tcoffee or bl2seq) or when you input an alignment data file using
AlignIO. However if you need to input a sequence alignment by hand (eg to build
a SimpleAlign object), you will need to input the sequences as LocatableSeqs. Other
sources of information include Bio, Bio, Bio, and Bio.

A LargeSeq object is a special type of Seq object used for handling very long ( eg >
100 MB) sequences. If you need to manipulate such long sequences see section III.7.2
which describes LargeSeq objects, or Bio.

A LiveSeq object is another specialized object for storing sequence data. LiveSeq ad-
dresses the problem of features whose location on a sequence changes over time. This
can happen, for example, when sequence feature objects are used to store gene loca-
tions on newly sequenced genomes - locations which can change as higher quality
sequencing data becomes available. Although a LiveSeq object is not implemented in
the same way as a Seq object, LiveSeq does implement the SeqI interface (see below).
Consequently, most methods available for Seq objects will work fine with LiveSeq
objects. Section III.7.2 and Bio contain further discussion of LiveSeq objects.

SeqI objects are Seq “interface objects” (see section II.4 and Bio). They are used to
ensure bioperl’s compatibility with other software packages. SeqI and other interface
objects are not likely to be relevant to the casual bioperl user.

*** Having described these other types of sequence objects, the “bottom line” still is
that if you store your sequence data in Seq objects (which is where they’ll be if you
read them in with SeqIO), you will usually do just fine. ***

II.2 Alignment objects (SimpleAlign)

Early versions of bioperl used both UnivAln and SimpleAlign objects to represent
and manipulate alignments but as of v. 1.0 only SimpleAlign.pm is supported. This
module allows the user to convert between alignment formats as well as more sophis-
ticated operations, like extracting specific regions of the alignment and generating
consensus sequences. For more information see section III.5.4 and Bio.

II.3 Location objects
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A Location object is designed to be associated with a Sequence Feature object to indi-
cate where on a larger structure (eg a chromosome or contig) the feature can be found.
The reason why this simple concept has evolved in a collection of rather complicated
objects is that

1) Some objects have multiple locations or sub-locations (eg a gene’s exons may have
multiple start and stop locations) 2) In unfinished genomes, the precise locations of
features is not known with certainty.

Bioperl’s various Location objects address these complications. In addition there
are “CoordinatePolicy” objects that allow the user to specify how to measure the
“length” of a feature if its precise start and end coordinates are not know. In most
cases, you will not need to worry about these complications if you are using bioperl
to handle simple features with well-defined start and stop locations. However,
if you are using bioperl to annotate partially or unfinished genomes or to read
annotations of such genomes with bioperl, understanding the various Location
objects will be important. See the documentation of the various modules in the
Bio::Locations directory or Bio for more information.

II.4 Interface objects and implementation objects

Since release 0.6, bioperl has been moving to separate interface and implementation
objects. An interface is solely the definition of what methods one can call on an object,
without any knowledge of how it is implemented. An implementation is an actual,
working implementation of an object. In languages like Java, interface definition is
part of the language. In Perl, you have to roll your own.

In bioperl, the interface objects usually have names like Bio::MyObjectI, with the trail-
ing I indicating it is an interface object. The interface objects mainly provide docu-
mentation on what the interface is, and how to use it, without any implementations
(though there are some exceptions). Although interface objects are not of much direct
utility to the casual bioperl user, being aware of their existence is useful since they
are the basis to understanding how bioperl programs can communicate with other
bioinformatics projects such as Ensembl and the Annotation Workbench (see section
IV).

For more discussion of design and development issues please see the biodesign.pod
file.

III. Using bioperl

Bioperl provides software modules for many of the typical tasks of bioinformatics
programming. These include:

• Accessing sequence data from local and remote databases

• Transforming formats of database/ file records

• Manipulating individual sequences

• Searching for "similar" sequences

14
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• Creating and manipulating sequence alignments

• Searching for genes and other structures on genomic DNA

• Developing machine readable sequence annotations

The following sections describe how bioperl can help perform all of these tasks.

III.1 Accessing sequence data from local and remote databases

Much of bioperl is focused on sequence manipulation. However, before bioperl can
manipulate sequences, it needs to have access to sequence data. Now one can directly
enter data sequence data into a bioperl Seq object, eg:

$seq = Bio::Seq- >new(’-seq’= >’actgtggcgtcaact’,
’-desc’= >’Sample Bio::Seq object’,
’-display_id’ = > ’something’,
’-accession_number’ = > ’accnum’,
’-alphabet’ = > ’dna’ );

However, in most cases, it is preferable to access sequence data from some online data
file or database (Note that in common with conventional bioinformatics usage we
will call a “database” what might be more appropriately referred to as an “indexed
flat file”.) Bioperl supports accessing remote databases as well as developing indices
for setting up local databases.

III.1.1 Accessing remote databases (Bio::DB::GenBank, etc)

Accessing sequence data from the principal molecular biology databases is straight-
forward in bioperl. Data can be accessed by means of the sequence’s accession num-
ber or id. Batch mode access is also supported to facilitate the efficient retrieval of
multiple sequences. For retrieving data from genbank, for example, the code could
be as follows:

$gb = new Bio::DB::GenBank();
# this returns a Seq object :
$seq1 = $gb- >get_Seq_by_id(’MUSIGHBA1’);
# this returns a Seq object :
$seq2 = $gb- >get_Seq_by_acc(’AF303112’))
# this returns a SeqIO object :
$seqio = $gb- >get_Stream_by_batch([ qw(J00522 AF303112 2981014)]));

Bioperl currently supports sequence data retrieval from the genbank, genpept, Ref-
Seq, swissprot, and EMBL databases. See Bio, Bio, Bio, Bio and Bio for more infor-
mation. A user can also specify a different database mirror for a database - this is
especially relevent for the SwissProt resource where there are many ExPaSy mirrors.
There are also configuration options for specifying local proxy servers for those be-
hind firewalls.
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The retrieval of NCBI RefSeqs sequences is supported through a special module
called Bio::DB::RefSeq which actually queries an EBI server. Please see Bio before
using it as there are some caveats with RefSeq retrieval. RefSeq ids in Genbank
begin with “NT_”, “NC_”, “NG_”, “NM_”, “NP_”, “XM_”, “XR_”, or “XP_” (for
more information see http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html).
Bio::DB::GenBank can be used to retrieve entries corresponding to these ids but bear
in mind that these are not Genbank entries, strictly speaking. See Bio for special
details on retrieving entries beginning with “NT_”, these are specially formatted
“CONTIG” entries.

Bioperl also supports retrieval from a remote Ace database. This capability requires
the presence of the external AcePerl module. You need to download and install the
aceperl module from http://stein.cshl.org/AcePerl/.

An additional module is available for accessing remote databases, BioFetch, which
queries the dbfetch script at EBI. The available databases are EMBL, GenBank, or
SWALL, and the entries can be retrieved in different formats as objects or streams
(SeqIO objects), or as “tempfiles”. See Bio for the details.

III.1.2 Indexing and accessing local databases (Bio::Index::*,
bpindex.pl, bpfetch.pl, Bio::DB::*)

Alternately, bioperl permits indexing local sequence data files by means of the
Bio::Index or Bio::DB::Fasta objects. The following sequence data formats are
supported by Bio::Index: genbank, swissprot, pfam, embl and fasta. Once the set
of sequences have been indexed using Bio::Index, individual sequences can be
accessed using syntax very similar to that described above for accessing remote
databases. For example, if one wants to set up an indexed (flat-file) database of fasta
files, and later wants then to retrieve one file, one could write a scripts like:

# script 1: create the index
use Bio::Index::Fasta; # using fasta file format
$Index_File_Name = shift;
$inx = Bio::Index::Fasta- >new(

-filename = > $Index_File_Name,
-write_flag = > 1);

$inx- >make_index(@ARGV);

# script 2: retrieve some files
use Bio::Index::Fasta;
$Index_File_Name = shift;
$inx = Bio::Index::Fasta- >new($Index_File_Name);
foreach $id (@ARGV) {

$seq = $inx- >fetch($id); # Returns Bio::Seq object
# do something with the sequence

}
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To facilitate the creation and use of more complex or flexible indexing systems, the
bioperl distribution includes two sample scripts in the scripts/ directory, bpindex.pl
and bpfetch.pl. These scripts can be used as templates to develop customized local
data-file indexing systems.

Bioperl also supplies Bio::DB::Fasta as a means to index and query Fasta format files.
It’s similar in spirit to Bio::Index::Fasta but offers more methods, eg

use Bio::DB::Fasta;
$db = Bio::DB::Fasta- >new($file); # one file or many files
$seqstring = $db- >seq($id); # get a sequence as string
$seqobj = $db- >get_Seq_by_id($id); # get a PrimarySeq obj
$desc = $db- >header($id); # get the header, or description, line

This module also offers the user the ability to designate a specific string within
the fasta header as the desired id, such as the gi number within the string
“gi|4556644|gb|X45555” (use the -makeid option for this capability). See Bio for
more information on this fully-featured module.

III.2 Transforming formats of database/ file records

III.2.1 Transforming sequence files (SeqIO)

A common - and tedious - bioinformatics task is that of converting sequence data
among the many widely used data formats. Bioperl’s SeqIO object, however, makes
this chore a breeze. SeqIO can read a stream of sequences - located in a single or in
multiple files - in a number of formats: Fasta, EMBL, GenBank, Swissprot, PIR, GCG,
SCF, phd/phred, Ace, or raw (plain sequence). Once the sequence data has been read
in with SeqIO, it is available to bioperl in the form of Seq objects. Moreover, the Seq
objects can then be written to another file (again using SeqIO) in any of the supported
data formats making data converters simple to implement, for example:

use Bio::SeqIO;
$in = Bio::SeqIO- >new(’-file’ = > "inputfilename",

’-format’ = > ’Fasta’);
$out = Bio::SeqIO- >new(’-file’ = > " >outputfilename",

’-format’ = > ’EMBL’);
while ( my $seq = $in- >next_seq() ) {$out- >write_seq($seq); }

In addition, perl “tied filehandle” syntax is available to SeqIO, allowing you to use
the standard <> and print operations to read and write sequence objects, eg:

$in = Bio::SeqIO- >newFh(’-file’ = > "inputfilename" ,
’-format’ = > ’Fasta’);

$out = Bio::SeqIO- >newFh(’-format’ = > ’EMBL’);
print $out $_ while <$in >;
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If the “-format” argument isn’t used then Bioperl will guess the format based on the
file’s suffix in a case-insensitive manner. Here are the current interpretations:

Format Suffixes

fasta fasta|fast|seq|fa|fsa|nt|aa
genbank gb|gbank|genbank
scf scf
pir pir
embl embl|ebl|emb|dat
raw txt
gcg gcg
ace ace
bsml bsm|bsml
swiss swiss|sp
phd phd|phred

For more information see Bio.

III.2.2 Transforming alignment files (AlignIO)

Data files storing multiple sequence alignments also appear in varied formats.
AlignIO is the bioperl object for data conversion of alignment files. AlignIO
is patterned on the SeqIO object and shares most of SeqIO’s features. AlignIO
currently supports input in the following formats: fasta, mase, stockholm, prodom,
selex, bl2seq, clustalw, msf/gcg, water (from EMBOSS, see III.3.6), needle (from
EMBOSS, see III.3.6) and output in these formats: fasta, mase, selex, clustalw,
msf/gcg. One significant difference between AlignIO and SeqIO is that AlignIO
handles IO for only a single alignment at a time (SeqIO.pm handles IO for multiple
sequences in a single stream.) Syntax for AlignIO is almost identical to that of SeqIO:

use Bio::AlignIO;
$in = Bio::AlignIO- >new(’-file’ = > "inputfilename" ,

’-format’ = > ’fasta’);
$out = Bio::AlignIO- >new(’-file’ = > " >outputfilename",

’-format’ = > ’pfam’);
while ( my $aln = $in- >next_aln() ) { $out- >write_aln($aln); }

The only difference is that here, the returned object reference, $aln, is to a SimpleAlign
object rather than a Seq object.

AlignIO also supports the tied filehandle syntax described above for SeqIO. Note
that currently AlignIO is usable only with SimpleAlign alignment objects. See Bio
and section III.5.4 for more information.
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III.3 Manipulating sequences

Bioperl contains many modules with functions for sequence analysis. And if you
cannot find the function you want in bioperl you may be able to find it in EMBOSS,
which is accessible through bioperl (see III.3.6).

III.3.1 Manipulating sequence data with Seq methods

OK, so we know how to retrieve sequences and access them as Seq objects. Let’s see
how we can use the Seq objects to manipulate our sequence data and retrieve infor-
mation. Seq provides multiple methods for performing many common (and some
not-so-common) tasks of sequence manipulation and data retrieval. Here are some of
the most useful:

The following methods return strings

$seqobj- >display_id(); # the human read-able id of the sequence
$seqobj- >seq(); # string of sequence
$seqobj- >subseq(5,10); # part of the sequence as a string
$seqobj- >accession_number(); # when there, the accession number
$seqobj- >alphabet(); # one of ’dna’,’rna’,’protein’
$seqobj- >primary_id(); # a unique id for this sequence irregardless

# of its display_id or accession number
$seqobj- >desc() # a description of the sequence

It is worth mentioning that some of these values correspond to specific fields of given
formats. For example, the display_id method returns the LOCUS name of a Genbank
entry, the (\S+) following the > character in a Fasta file, the ID from a SwissProt file,
and so on. The desc() method will return the DEFINITION line of a Genbank file,
the line following the display_id in a Fasta file, and the DE field in a SwissProt file.

The following methods return an array of Bio::SeqFeature objects

$seqobj- >top_SeqFeatures # The ’top level’ sequence features
$seqobj- >all_SeqFeatures # All sequence features, including sub

# seq features

Sequence features will be discussed further in section III.7 on machine-readable se-
quence annotation. A general description of the object can be found in Bio, and a
description of related, top-level “annotation” is found in Bio.

The following methods returns new sequence objects, but do not transfer features
across:

$seqobj- >trunc(5,10) # truncation from 5 to 10 as new object
$seqobj- >revcom # reverse complements sequence
$seqobj- >translate # translation of the sequence
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Note that some methods return strings, some return arrays and some return refer-
ences to objects. See Bio for more information.

Many of these methods are self-explanatory. However, bioperl’s flexible translation
methods warrant further comment. Translation in bioinformatics can mean two
slightly different things:

1. Translating a nucleotide sequence from start to end.

2. Taking into account the constraints of real coding regions in mRNAs.

For historical reasons the bioperl implementation of translation does the first of these
tasks easily. Any sequence object which is not of type ’protein’ can be translated by
simply calling the method which returns a protein sequence object:

$translation1 = $my_seq_object- >translate;

However, the translate method can also be passed several optional parameters to
modify its behavior. For example, the first two arguments to “translate” can be used
to modify the characters used to represent stop (default ’*’) and unknown amino
acid (’X’). (These are normally best left untouched.) The third argument determines
the frame of the translation. The default frame is “0”. To get translations in the other
two forward frames, we would write:

$translation2 = $my_seq_object- >translate(undef,undef,1);
$translation3 = $my_seq_object- >translate(undef,undef,2);

The fourth argument to “translate” makes it possible to use alternative genetic
codes. There are currently 16 codon tables defined, including tables for ’Verterbate
Mitochondrial’, ’Bacterial’, ’Alternative Yeast Nuclear’ and ’Ciliate, Dasycladacean
and Hexamita Nuclear’ translation. These tables are located in the object
Bio::Tools::CodonTable which is used by the translate method. For example, for
mitochondrial translation:

$human_mitochondrial_translation =
$my_seq_object- >translate(undef,undef,undef, 2);

If we want to translate full coding regions (CDS) the way major nucleotide databanks
EMBL, GenBank and DDBJ do it, the translate method has to perform more tricks.
Specifically, ’translate’ needs to confirm that the sequence has appropriate start and
terminator codons at the beginning and the end of the sequence and that there are no
terminator codons present within the sequence. In addition, if the genetic code being
used has an atypical (non-ATG) start codon, the translate method needs to convert
the initial amino acid to methionine. These checks and conversions are triggered by
setting the fifth argument of the translate method to evaluate to “true”.
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If argument 5 is set to true and the criteria for a proper CDS are not met, the method,
by default, issues a warning. By setting the sixth argument to evaluate to “true”, one
can instead instruct the program to die if an improper CDS is found, e.g.

$protein_object =
$cds- >translate(undef,undef,undef,undef,1,’die_if_errors’);

See Bio for related details.

III.3.2 Obtaining basic sequence statistics- MW, residue & codon
frequencies(SeqStats, SeqWord)

In addition to the methods directly available in the Seq object, bioperl provides var-
ious “helper” objects to determine additional information about a sequence. For ex-
ample, SeqStats object provides methods for obtaining the molecular weight of the
sequence as well the number of occurrences of each of the component residues (bases
for a nucleic acid or amino acids for a protein.) For nucleic acids, SeqStats also returns
counts of the number of codons used. For example:

use SeqStats;
$seq_stats = Bio::Tools::SeqStats- >new($seqobj);
$weight = $seq_stats- >get_mol_wt();
$monomer_ref = $seq_stats- >count_monomers();
$codon_ref = $seq_stats- >count_codons(); # for nucleic acid sequence

Note: sometimes sequences will contain “ambiguous” codes. For this reason,
get_mol_wt() returns (a reference to) a two element array containing a greatest
lower bound and a least upper bound of the molecular weight.

The SeqWords object is similar to SeqStats and provides methods for calculating fre-
quencies of “words” (eg tetramers or hexamers) within the sequence. See Bio and Bio
for more information.

III.3.3 Identifying restriction enzyme sites (RestrictionEnzyme)

Another common sequence manipulation task for nucleic acid sequences is locating
restriction enzyme cutting sites. Bioperl provides the RestrictionEnzyme object for
this purpose. Bioperl’s standard RestrictionEnzyme object comes with data for more
than 150 different restriction enzymes. A list of the available enzymes can be accessed
using the available_list() method. For example to select all available enzymes
that with cutting patterns that are six bases long one would write:

$re = new Bio::Tools::RestrictionEnzyme(’-name’= >’EcoRI’);
@sixcutters = $re- >available_list(6);
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Once an appropriate enzyme has been selected, the sites for that enzyme on a given
nucleic acid sequence can be obtained using the cut_seq() method. The syntax for
performing this task is:

$re1 = new Bio::Tools::RestrictionEnzyme(-name= >’EcoRI’);
# $seqobj is the Seq object for the dna to be cut
@fragments = $re1- >cut_seq($seqobj);

Adding an enzyme not in the default list is easily accomplished:

$re2 = new Bio::Tools::RestrictionEnzyme(’-NAME’ = >’EcoRV--GAT^ATC’,
’-MAKE’ = >’custom’);

Once the custom enzyme object has been created, cut_seq() can be called in the
usual manner. See Bio for details.

III.3.4 Identifying amino acid cleavage sites (Sigcleave)

For amino acid sequences we may be interested to know whether the amino acid
sequence contains a cleavable “signal sequence” for directing the transport of the
protein within the cell. SigCleave is a program (originally part of the EGCG molecular
biology package) to predict signal sequences, and to identify the cleavage site.

The “threshold” setting controls the score reporting. If no value for threshold is
passed in by the user, the code defaults to a reporting value of 3.5. SigCleave will
only return score/position pairs which meet the threshold limit.

There are 2 accessor methods for this object. “signals” will return a perl hash con-
taining the sigcleave scores keyed by amino acid position. “pretty_print” returns a
formatted string similar to the output of the original sigcleave utility.

Syntax for using the modules is as follows:

use Bio::Tools::Sigcleave;
$sigcleave_object = new Bio::Tools::Sigcleave

(’-file’= >’sigtest.aa’,
’-threshold’= >’3.5’
’-desc’= >’test sigcleave protein seq’,
’-type’= >’AMINO

’);
%raw_results = $sigcleave_object- >signals;
$formatted_output = $sigcleave_object- >pretty_print;

Note that Sigcleave is passed a raw sequence (or file containing a sequence) rather
than a sequence object when it is created. Also note that the “type” in the Sigcleave
object is “amino” whereas in a Seq object it is “protein”. Please see Bio for details.
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III.3.5 Miscellaneous sequence utilities: OddCodes, SeqPattern

OddCodes:

For some purposes it’s useful to have a listing of an amino acid sequence showing
where the hydrophobic amino acids are located or where the positively charged ones
are. Bioperl provides this capability via the module Bio::Tools::OddCodes.

For example, to quickly see where the charged amino acids are located along the
sequence we perform:

use Bio::Tools::OddCodes;
$oddcode_obj = Bio::Tools::OddCodes- >new($amino_obj);
$output = $oddcode_obj- >charge();

The sequence will be transformed into a three-letter sequence (A,C,N) for negative
(acidic), positive (basic), and neutral amino acids. For example the ACDEFGH would
become NNAANNC.

For a more complete chemical description of the sequence one can call the chemi-
cal() method which turns sequence into one with an 8-letter chemical alphabet { A
(acidic), L (aliphatic), M (amide), R (aromatic), C (basic), H (hydroxyl), I (imino), S
(sulfur) }:

$output = $oddcode_obj- >chemical();

In this case the sample sequence ACDEFGH would become LSAARAC.

OddCodes also offers translation into alphabets showing alternate characteristics of
the amino acid sequence such as hydrophobicity, “functionality” or grouping using
Dayhoff’s definitions. See the documentation in Bio for further details.

SeqPattern:

The SeqPattern object is used to manipulate sequences that include perl “regular
expressions”. A key motivation for SeqPattern is to have a way of generating a re-
verse complement of a nucleic acid sequence pattern that includes ambiguous bases
and/or regular expressions. This capability leads to significant performance gains
when pattern matching on both the sense and anti-sense strands of a query sequence
are required. Typical syntax for using SeqPattern is shown below. For more informa-
tion, there are several interesting examples in the script seq_pattern.pl in the exam-
ples/ directory.

Use Bio::Tools::SeqPattern;
$pattern = ’(CCCCT)N{1,200}(agggg)N{1,200}(agggg)’;
$pattern_obj = new Bio::Tools::SeqPattern(’-SEQ’ = > $pattern,

’-TYPE’ = > ’dna’);
$pattern_obj2 = $pattern_obj- >revcom();
$pattern_obj- >revcom(1); # returns expanded rev complement pattern.
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More detail can be found in Bio.

III.3.6 Sequence manipulation using the Bioperl EMBOSS interface
(Tools::Run::EMBOSSApplication)

EMBOSS (European Molecular Biology Open Source Software) is an extensive col-
lection of sequence analysis programs written in the C programming language, from
http://www.uk.embnet.org/Software/EMBOSS. There are a number of algorithms
in EMBOSS that are not found in “Bioperl proper” (eg. calculating DNA melting
temperature, finding repeats, identifying prospective antigenic sites) so if you if you
cannot find the function you want in bioperl you might be able to find it in EMBOSS.

EMBOSS programs are usually called from the command line but bioperl provides a
Perl “wrapper” for EMBOSS function calls so that they can be executed from within a
Perl script. Of course, the EMBOSS package must be installed for the Bioperl wrapper
to function.

In the future, it is planned that Bioperl EMBOSS objects will return appropriate Biop-
erl objects to the calling script in addition to generating standard EMBOSS reports.
This functionality is being initially implemented with the EMBOSS sequence align-
ment programs, so that they will return SimpleAlign objects in a manner similar to
the way the Bioperl modules TCoffee.pm and Clustalw.pm work (see section III.5.4
for a discussion of SimpleAlign).

An example of the Bioperl EMBOSS wrapper where a file is returned would be:

$factory = new Bio::Factory::EMBOSS;
$compseqapp = $factory- >program(’compseq’);
%input = ( -word = > 4,

-sequence = > $seqObj,
-outfile = > $compseqoutfile );

$compseqapp- >run(\%input);
$seqio = Bio::SeqIO- >new( -file = > $compseqoutfile ); # etc...

Note that a Seq object was used as input. The EMBOSS object can also accept a file
name as input, eg

-sequence = > "inputfasta.fa"

Some EMBOSS programs will return strings, others will create files that can be read
directly using Bio::SeqIO (section III.2.1), as in the example above. It’s worth men-
tioning that the AlignIO module can use files from EMBOSS’s water and needle as
input (see III.2.2) to create AlignIO objects.

III.3.7 Sequence manipulation without creating Bioperl "objects"
(Perl.pm)
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Using the Bio::Perl.pm module, it is possible to manipulate sequence data in Bioperl
without explicitly creating Seq or SeqIO objects. This feature may ease the Bioperl
learning curve for new users unfamiliar or uncomfortable with using Perl objects.
However, only limited data manipulation are supported in this mode. In addition,
each method (i.e. function) that will be used by the script must be explicitly declared
in the initial “use directive”. For example a simple data format conversion and se-
quence manipulation could be performed as follows - note that no “new” methods
are called and that no Seq or SeqIO objects are created:

use Bio::Perl qw( get_sequence );
# get a sequence from a database (assummes internet connection)
$seq_object = get_sequence(’swissprot’,"ROA1_HUMAN");
# $seq_object is Bio::Seq object, so the following methods work
$seq_id = $seq_object- >display_id;
$seq_as_string = $seq_object- >seq();

For more details see Bio

III.4 Searching for "similar" sequences

One of the basic tasks in molecular biology is identifying sequences that are, in some
way, similar to a sequence of interest. The Blast programs, originally developed at
the NCBI, are widely used for identifying such sequences. Bioperl offers a number of
modules to facilitate running Blast as well as to parse the often voluminous reports
produced by Blast.

III.4.1 Running BLAST locally (StandAloneBlast)

There are several reasons why one might want to run the Blast programs locally -
speed, data security, immunity to network problems, being able to run large batch
runs etc. The NCBI provides a downloadable version of blast in a stand-alone format,
and running blast locally without any use of perl or bioperl is completely straight-
forward. However, there are situations where having a perl interface for running the
blast programs locally is convenient.

The module Bio::Tools::Run::StandAloneBlast offers the ability to wrap local calls to
blast from within perl. All of the currently available options of NCBI Blast (eg PSI-
BLAST, PHIBLAST, bl2seq) are available from within the bioperl StandAloneBlast
interface. Of course, to use StandAloneBlast, one needs to have installed locally ncbi-
blast as well as one or more blast-readable databases.

Basic usage of the StandAloneBlast.pm module is simple. Initially, a local blast “fac-
tory object” is created.

@params = (’program’ = > ’blastn’,
’database’ = > ’ecoli.nt’);

$factory = Bio::Tools::Run::StandAloneBlast- >new(@params);
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Any parameters not explicitly set will remain as the BLAST defaults. Once the fac-
tory has been created and the appropriate parameters set, one can call one of the sup-
ported blast executables. The input sequence(s) to these executables may be fasta
file(s), a Seq object or an array of Seq objects, eg

$input = Bio::Seq- >new(’-id’= >"test query",
’-seq’= >"ACTAAGTGGGGG");

$blast_report = $factory- >blastall($input);

The returned blast report will be in the form of a bioperl parsed-blast object. The
report object may be either a BPlite, BPpsilite, BPbl2seq or Blast object depending on
the type of blast search. The “raw” blast report is also available.

The syntax for running PHIBLAST, PSIBLAST and bl2seq searches via
StandAloneBlast is also straightforward. See Bio documentation for details. In
addition, the script standaloneblast.pl in the examples/ directory contains
descriptions of various possible applications of the StandAloneBlast object. This
script shows how the blast report object can access a blast parser directly, eg

while (my $sbjct = $blast_report- >nextSbjct){
while (my $hsp = $sbjct- >nextHSP){

print $hsp- >score . " " . $hsp- >subject- >seqname . "\n";
}

}

See the section III.4.4 on parsing BLAST reports with Bio::Tools::BPlite, below, or Bio
for details.

III.4.2 Running BLAST remotely (using RemoteBlast.pm)

Bioperl supports remote execution of blasts at NCBI by means of the RemoteBlast
object. (Note: remote execution of blasts is also possible using the bioperl
Bio::Tools::Blast object. However this Blast object is no longer supported and its
interface - especially for running Blasts is somewhat complicated. Consequently, the
user is advised to use the Bio::Tools::Run::RemoteBlast object for this purpose -
unless you really know what you’re doing!)

A skeleton script to run a remote blast might look as follows:

$remote_blast = Bio::Tools::Run::RemoteBlast- >new(
’-prog’ = > ’blastp’,’-data’ = > ’ecoli’,’-expect’ = > ’1e-10’ );

$r = $remote_blast- >submit_blast("t/data/ecolitst.fa");
while (@rids = $remote_blast- >each_rid ) {

foreach $rid ( @rids ) {$rc = $remote_blast- >retrieve_blast($rid);}}
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Note that the script has to be broken into two parts. The actual Blast submission and
the subsequent retrieval of the results. At times when the NCBI Blast is being heavily
used, the interval between when a Blast submission is made and when the results are
available can be substantial.

The object $rc would contain the blast report that could then be parsed with
Bio::Tools::BPlite or Bio::Tools::Blast. Note that to make this script actually useful,
one should add details such as checking return codes from the Blast to see if it
succeeded and and a “sleep” loop to wait between consecutive requests to the NCBI
server. See example 21 in the demonstration script in the appendix to see some
working code you could use, or Bio for details.

It should also be noted that the syntax for creating a remote blast factory is slightly
different from that used in creating StandAloneBlast, Clustalw, and T-Coffee facto-
ries. Specifically RemoteBlast requires parameters to be passed with a leading hy-
phen, as in ’-prog’ => ’blastp’, while the other programs do not pass parameters
with a leading hyphen.

III.4.3 Parsing BLAST and FASTA reports with Search and SearchIO

No matter how Blast searches are run (locally or remotely, with or without a perl
interface), they return large quantities of data that are tedious to sift through. Bioperl
offers several different objects - Search.pm / SearchIO.pm, BPlite.pm (along with its
minor modifications, BPpsilite and BPbl2seq) and Blast.pm for parsing Blast reports.
Search and SearchIO which are new in Bioperl 1.0 and are now the principal Bioperl
interfaces for Blast (and FASTA) report parsing are described in this section. The older
BPlite and Blast.pm objects are described in section III.4.4.

The Search and SearchIO modules provide a uniform interface for parsing sequence-
similarity-search reports generated by BLAST (in standard and BLAST XML for-
mats), PSIBLAST and FASTA. In the future, it is envisioned that the Search/SearchIO
syntax will be extended to provide a uniform interface to a wider range of report
parsers including parsers for HMMer and Genscan.

Parsing sequence-similarity reports with Search and SearchIO is straightforward.
Initially a SearchIO object specifies a file containing the report(s). The method
next_result reads the next report into a Search object in just the same way that the
next_seq method of SeqIO reads in the next sequence in a file into a Seq object.

Once a report (i.e. a Search object) has been read in and is available to the script, the
report’s overall attributes (e.g. the query) can be determined and its individual “hits”
can be accessed with the next_hit method. Individual high-scoring-pairs for each hit
can then be accessed with the next_hsp method. Except for the additional syntax
required to enable the reading of multiple reports in a single file, the remainder of
the Search/SearchIO parsing syntax is very similar to that of the BPlite and Blast.pm
objects it is intended to replace. Sample code to read a BLAST report might look like
this:

# Get the report
$searchio = new Bio::SearchIO (’-format’ = > ’blast’,

’-file’ = > $blast_report);
$result = $searchio- >next_result;
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# Get info about the entire report
$result- >database_name;
$algorithm_type = $result- >algorithm;

# get info about the first hit
$hit = $result- >next_hit;
$hit_name = $hit- >name ;

# get info about the first hsp of the first hit
$hsp = $hit- >next_hsp;
$hsp_start = $hsp- >query- >start;

For more details on parsing with Search/SearchIO see the next section on BPlite and
Blast.pm (which uses very similar syntax) as well as the Search and SearchIO docu-
mentation: Bio, Bio, Bio, Bio, and Bio.

There is also sample code is the searchio subdirectory of the Bio/examples directory
which illustrates the use of the Search parser.

III.4.4 Parsing BLAST reports with BPlite, BPpsilite, BPbl2seq and
Blast.pm

Bioperl’s older BLAST report parsers - BPlite, BPpsilite, BPbl2seq and Blast.pm - are
expected to be phased out over a period of time. Since a considerable amount of
legacy Bioperl scripts has been written which heavily use these objects, they are likely
to remain within Bioperl for some time.

Much of the user interface of BPlite (and to a lesser degree Blast.pm) is very similar to
that of Search. However accessing the next hit or HSP uses methods called next_Sbjct
and next_HSP, respectively - in contrast to Search’s next_hit and next_hsp.

BPlite (with its relatives BPpsilite and BPbl2seq) is less complex and easier to main-
tain than Blast.pm. Although it has fewer options and display modes than Blast.pm,
you will probably find that BPlite contains the functionality that you need, (unless
you need to do HSP tiling or to implement an arbitrary filter function in which case
you may want to use the Blast.pm parser.)

BPlite

The syntax for using BPlite is as follows where the method for retrieving hits is now
called “nextSbjct” (for “subject”), while the method for retrieving high-scoring-pairs
is called “nextHSP”:

use Bio::Tools::BPlite;
$report = new Bio::Tools::BPlite(-fh= >\*STDIN);
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$report- >query;
while(my $sbjct = $report- >nextSbjct) {

$sbjct- >name;
while (my $hsp = $sbjct- >nextHSP) { $hsp- >score; }

}

A complete description of the module can be found in Bio.

BPpsilite

BPpsilite and BPbl2seq are objects for parsing (multiple iteration) PSIBLAST reports
and Blast bl2seq reports, respectively. They are both minor variations on the BPlite
object. See Bio and Bio for details.

The syntax for parsing a multiple iteration PSIBLAST report is as shown below. The
only significant additions to BPlite are methods to determine the number of iterated
blasts and to access the results from each iteration. The results from each iteration are
parsed in the same manner as a (complete) BPlite object.

use Bio::Tools::BPpsilite;
$report = new Bio::Tools::BPpsilite(-fh= >\*STDIN);
$total_iterations = $report- >number_of_iterations;
$last_iteration = $report- >round($total_iterations)
while(my $sbjct = $last_iteration - >nextSbjct) {

$sbjct- >name;
while (my $hsp = $sbjct- >nextHSP) {$hsp- >score; }

}

See Bio for details.

BPbl2seq

BLAST bl2seq is a program for comparing and aligning two sequences using BLAST.
Although the report format is similar to that of a conventional BLAST, there are a
few differences. Consequently, the standard bioperl parsers Blast.pm and BPlite are
unable to read bl2seq reports directly. From the user’s perspective, one difference
between bl2seq and other blast reports is that the bl2seq report does not print out the
name of the first of the two aligned sequences. Consequently, BPbl2seq has no way
of identifying the name of one of the initial sequence unless it is explicitly passed to
constructor as a second argument as in:

use Bio::Tools::BPbl2seq;
$report = Bio::Tools::BPbl2seq- >new(-file = > "t/data/dblseq.out",

-queryname = > "ALEU_HORVU");
$hsp = $report- >next_feature;
$answer=$hsp- >score;

In addition, since there will only be (at most) one “subject” (hit) in a bl2seq report
one should use the method $report->next_feature, rather than $report->nextSbjct-
>nextHSP to obtain the next high scoring pair. See Bio for more details.
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Blast.pm

The parser contained within the Bio::Tools::Blast.pm module is the original Blast
parser developed for Bioperl. It is very full featured and has a large array of options
and output formats. Typical syntax for parsing a blast report with Blast.pm is:

use Bio::Tools::Blast;
$blast = Bio::Tools::Blast- >new(-file = >’t/data/blast.report’,

-signif = > 1e-5,
-parse = > 1,
-stats = > 1,
-check_all_hits = > 1, );

$blast- >display();
$num_hits = $blast- >num_hits;
@hits = $blast- >hits;
$frac1 = $hits[1]- >frac_identical;
@inds = $hits[1]- >hsp- >seq_inds( ’query’, ’iden’, 1 );

Here the method “hits” returns an object containing the names of the sequences
which produced a match and the “hsp” method returns a “high scoring pair” ob-
ject containing the actual sequence alignments that each of the hits produced.

A nice feature of the Blast.pm parser is being able to define an arbitrary “filter func-
tion” for use while parsing the Blast hits. With this feature, you can filter your results
to just save hits with specific pattern in their id fields (eg “homo sapiens”) or specific
sequence patterns in a returned high-scoring-pair or just about anything else that can
be found in the blast report record.

While the Blast object is parsing the report, each hit is checked by calling
&filter($hit). All hits that generate false return values from &filter are screened out
of the Blast object. Note that the Blast object will normally stop parsing after the first
non-significant hit or the first hit that does not pass the filter function. To force
the Blast object to check all hits, include a “ -check_all_hits => 1” parameter. For
example, to eliminate all hits with gaps or with less than 50% conserved residues
one could use the following filter function:

sub filter { $hit=shift;
return ($hit- >gaps == 0 and $hit- >frac_conserved > 0.5); }

and use it like this:

$blastObj = Bio::Tools::Blast- >new( ’-file’ = > ’/tmp/blast.out’,
’-parse’ = > 1,
’-check_all_hits’ = > 1,
’-filt_func’ = > \&filter );

Another useful feature of Blast.pm is “HSP tiling”. With HSP tiling, if a Blast hit has
more than one HSP, Blast.pm has the ability to merge overlapping HSPs into contigu-
ous blocks. This enables one to sum data across all HSPs without counting data from
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overlapping regions multiple times. HSP tiling is performed automatically when in-
voking methods that rely on tiled data such as frac_identical and frac_conserved. For
more information on HSP tiling see the documentation in Bio and Bio.

Unfortunately the flexibility of the Blast.pm parser comes at a cost of complexity. As
a result of this complexity and the fact that Blast.pm’s original developer is no longer
actively supporting the module, the Blast.pm parser has been difficult to maintain
and has not been upgraded to handle the output of the newer blast options such
as PSIBLAST and BL2SEQ. Consequently, the BPlite parser (described in the section
III.4.4) or the Search/SearchIO parsers (section III.4.3) are recommended for most
blast parsing within bioperl.

See Bio for more information.

III.4.5 Parsing HMM reports (HMMER::Results)

Blast is not the only sequence-similarity-searching program supported by bioperl.
HMMER is a Hidden Markov Model (HMM) program that (among other capabil-
ities) enables sequence similarity searching, from http://hmmer.wustl.edu. Bioperl
does not currently provide a perl interface for running HMMER. However, bioperl
does provide a HMMER report parser with the (perhaps not too descriptive) name
of Results.

Results can parse reports generated both by the HMMER program hmmsearch -
which searches a sequence database for sequences similar to those generated by a
given HMM - and the program hmmpfam - which searches a HMM database for
HMMs which match domains of a given sequence. For hmmsearch, a series of HM-
MER::Set objects are made, one for each sequence. For hmmpfam searches, only one
Set object is made. Sample usage for parsing a hmmsearch report might be:

use Bio::Tools::HMMER::Results;
$res = new Bio::Tools::HMMER::Results(-file = > ’output.hmm’,

-type = > ’hmmsearch’ );
foreach $seq ( $res- >each_Set ) {

print "Sequence bit score is ", $seq- >bits, "\n";
foreach $domain ( $seq- >each_Domain ) {

print " Domain start ", $domain- >start, " end ",
$domain- >end," score ",$domain- >bits,"\n";

}
}

Additional methods are described in Bio.

III.5 Creating and manipulating sequence alignments

Once one has identified a set of similar sequences, one often needs to create an align-
ment of those sequences. Bioperl offers several perl objects to facilitate sequence
alignment: pSW, Clustalw.pm, TCoffee.pm and the bl2seq option of StandAloneBlast.
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All of these objects take as arguments a reference to an array of (unaligned) Seq ob-
jects. All (except bl2seq) return a reference to a SimpleAlign object. bl2seq can also
produce a SimpleAlign object when it is combined with Bio::AlignIO (see section be-
low, III.5.2).

III.5.1 Aligning 2 sequences with Smith-Waterman (pSW)

The Smith-Waterman (SW) algorithm is the standard method for producing an opti-
mal alignment of two sequences. Bioperl supports the computation of SW alignments
via the pSW object. The SW algorithm itself is implemented in C and incorporated
into bioperl using an XS extension. This has significant efficiency advantages but
means that pSW will not work unless you have compiled the bioperl-ext package.
If you have compiled the bioperl-ext package, usage is simple, where the method
align_and_show displays the alignment while pairwise_alignment produces a (ref-
erence to) a SimpleAlign object.

use Bio::Tools::pSW;
$factory = new Bio::Tools::pSW( ’-matrix’ = > ’blosum62.bla’,

’-gap’ = > 12,
’-ext’ = > 2, );

$factory- >align_and_show($seq1, $seq2, STDOUT);
$aln = $factory- >pairwise_alignment($seq1, $seq2);

SW matrix, gap and extension parameters can be adjusted as shown. Bioperl comes
standard with blosum62 and gonnet250 matrices. Others can be added by the user.
For additional information on accessing the SW algorithm via pSW see the script
psw.pl in the examples/ directory and the documentation in Bio.

An alterative way to get Smith-Waterman alignments can come from the EMBOSS
program ’water’. This can produce an output file that bioperl can read in with the
AlignIO system

use Bio::AlignIO;
my $in = new Bio::AlignIO(-format = > ’emboss’, -file = > ’filename’);
my $aln = $in- >next_aln();

III.5.2 Aligning 2 sequences with Blast using bl2seq and AlignIO

As an alternative to Smith-Waterman, two sequences can also be aligned in Bioperl
using the bl2seq option of Blast within the StandAloneBlast object. To get an align-
ment - in the form of a SimpleAlign object - using bl2seq, you need to parse the bl2seq
report with the Bio::AlignIO file format reader as follows:

$factory = Bio::Tools::Run::StandAloneBlast- >new(’outfile’ = > ’bl2seq.out’);
$bl2seq_report = $factory- >bl2seq($seq1, $seq2);
# Use AlignIO.pm to create a SimpleAlign object from the bl2seq report
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$str = Bio::AlignIO- >new(’-file ’= >’ bl2seq.out’,
’-format’ = > ’bl2seq’);

$aln = $str- >next_aln();

III.5.3 Aligning multiple sequences (Clustalw.pm, TCoffee.pm)

For aligning multiple sequences (ie two or more), bioperl offers a perl interface to the
bioinformatics-standard clustalw and tcoffee programs. Clustalw has been a leading
program in global multiple sequence alignment (MSA) for several years. TCoffee is a
relatively recent program - derived from clustalw - which has been shown to produce
better results for local MSA.

To use these capabilities, the clustalw and/or tcoffee programs themselves need to be
installed on the host system. In addition, the environmental variables CLUSTALDIR
and TCOFFEEDIR need to be set to the directories containg the executables. See sec-
tion I.3 and the Bio and Bio for information on downloading and installing these
programs.

From the user’s perspective, the bioperl syntax for calling Clustalw.pm or TCof-
fee.pm is almost identical. The only differences are the names of the modules them-
selves appearing in the initial “use” and constructor statements and the names of the
some of the individual program options and parameters.

In either case, initially, a “factory object” must be created. The factory may be passed
most of the parameters or switches of the relevant program. In addition, alignment
parameters can be changed and/or examined after the factory has been created.
Any parameters not explicitly set will remain as the underlying program’s defaults.
Clustalw.pm/TCoffee.pm output is returned in the form of a SimpleAlign object. It
should be noted that some Clustalw and TCoffee parameters and features (such as
those corresponding to tree production) have not been implemented yet in the Perl
interface.

Once the factory has been created and the appropriate parameters set, one can call
the method align() to align a set of unaligned sequences, or profile_align() to
add one or more sequences or a second alignment to an initial alignment. Input to
align() consists of a set of unaligned sequences in the form of the name of file con-
taining the sequences or a reference to an array of Seq objects. Typical syntax is shown
below. (We illustrate with Clustalw.pm, but the same syntax - except for the module
name - would work for TCoffee.pm)

use Bio::Tools::Run::Alignment::Clustalw;
@params = (’ktuple’ = > 2, ’matrix’ = > ’BLOSUM’);
$factory = Bio::Tools::Run::Alignment::Clustalw- >new(@params);
$ktuple = 3;
$factory- >ktuple($ktuple); # change the parameter before executing
$seq_array_ref = \@seq_array;

# where @seq_array is an array of Bio::Seq objects
$aln = $factory- >align($seq_array_ref);
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Clustalw.pm/TCoffee.pm can also align two (sub)alignments to each other or add a
sequence to a previously created alignment by using the profile_align method. For
further details on the required syntax and options for the profile_align method, the
user is referred to Bio and Bio. The user is also encouraged to examine the script
clustalw.pl in the examples/ directory.

III.5.4 Manipulating / displaying alignments (SimpleAlign)

As described in section II.2, bioperl previously included two alignment objects,
SimpleAlign and UnivAln, but UnivAln.pm is not supported as of v. 1.0.
SimpleAlign objects are produced by bioperl alignment creation objects (eg
Clustalw.pm, BLAST’s bl2seq, and pSW) and they can read and write multiple
alignment formats via AlignIO.

Some of the manipulations possible with SimpleALign include:

•

slice(): Obtaining an alignment “slice”, that is, a subalignment inclusive of spec-
ified start and end columns. Sequences with no residues in the slice are excluded
from the new alignment and a warning is printed.

•

column_from_residue_number(): Finding column in an alignment where a spec-
ified residue of a specified sequence is located.

•

consensus_string(): Making a consensus string. This method includes an op-
tional threshold parameter, so that positions in the alignment with lower percent-
identity than the threshold are marked by “?”’s in the consensus

•

percentage_identity(): A fast method for calculating the average percentage
identity of the alignment

•

consensus_iupac(): Making a consensus using IUPAC ambiguity codes from
DNA and RNA.

Skeleton code for using some of these features is shown below. More detailed, work-
ing code is in Demo example 14 and in align_on_codons.pl in the scripts directory.
Additional documentation on methods can be found in Bio and Bio.

use Bio::SimpleAlign;
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$aln = Bio::SimpleAlign- >new(’t/data/testaln.dna’);
$threshold_percent = 60;
$consensus_with_threshold = $aln- >consensus_string($threshold_percent);
$iupac_consensus = $aln- >consensus_iupac(); # dna/rna alignments only
$percent_ident = $aln- >percentage_identity;
$seqname = ’1433_LYCES’;
$pos = $aln- >column_from_residue_number($seqname, 14);

III.6 Searching for genes and other structures on genomic DNA
(Genscan, Sim4, Grail, Genemark, ESTScan, MZEF, EPCR)

Automated searching for putative genes, coding sequences, sequence-tagged-sites
(STS’s) and other functional units in genomic and expressed sequence tag (EST) data
has become very important as the available quantity of sequence data has rapidly
increased. Many feature searching programs currently exist. Each produces reports
containing predictions that must be read manually or parsed by automated report
readers.

Parsers for six widely used gene prediction programs - Genscan, Sim4, Genemark,
Grail, ESTScan and MZEF - are currently available or under active development in
bioperl. The interfaces for the four parsers are similar. We illustrate the usage for
Genscan and Sim4 here. The syntax is relatively self-explanatory; see Bio, Bio, Bio,
Bio, Bio, and Bio for further details.

use Bio::Tools::Genscan;
$genscan = Bio::Tools::Genscan- >new(-file = > ’result.genscan’);
# $gene is an instance of Bio::Tools::Prediction::Gene
# $gene- >exons() returns an array of Bio::Tools::Prediction::Exon objects
while($gene = $genscan- >next_prediction())

{ @exon_arr = $gene- >exons(); }
$genscan- >close();

See Bio and Bio for more details.

use Bio::Tools::Sim4::Results;
$sim4 = new Bio::Tools::Sim4::Results(-file = > ’t/data/sim4.rev’,

-estisfirst = > 0);
# $exonset is-a Bio::SeqFeature::Generic with Bio::Tools::Sim4::Exons
# as sub features
$exonset = $sim4- >next_exonset;
@exons = $exonset- >sub_SeqFeature();
# $exon is-a Bio::SeqFeature::FeaturePair
$exon = 1;
$exonstart = $exons[$exon]- >start();
$estname = $exons[$exon]- >est_hit()- >seqname();
$sim4- >close();
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See Bio and Bio for more information.

A parser for the ePCR program is also available. The ePCR program identifies poten-
tial PCR-based sequence tagged sites (STSs) For more details see the documentation
in Bio. A sample skeleton script for parsing an ePCR report and using the data to
annotate a genomic sequence might look like this:

use Bio::Tools::EPCR;
use Bio::SeqIO;
$parser = new Bio::Tools::EPCR(-file = > ’seq1.epcr’);
$seqio = new Bio::SeqIO(-format = > ’fasta’, -file = > ’seq1.fa’);
$seq = $seqio- >next_seq;
while( $feat = $parser- >next_feature ) {

# add EPCR annotation to a sequence
$seq- >add_SeqFeature($feat);}

III.7 Developing machine readable sequence annotations

Historically, annotations for sequence data have been entered and read manually in
flat-file or relational databases with relatively little concern for machine readability.
More recent projects - such as EBI’s Ensembl project and the efforts to develop an
XML molecular biology data specification - have begun to address this limitation.
Because of its strengths in text processing and regular-expression handling, perl is
a natural choice for the computer language to be used for this task. And bioperl of-
fers numerous tools to facilitate this process - several of which are described in the
following sub-sections.

III.7.1 Representing sequence annotations (Annotation,SeqFeature)

As of the 0.7 release of bioperl, the fundamental sequence object, Seq, can have mul-
tiple sequence feature (SeqFeature) objects - eg Gene, Exon, Promoter objects - associ-
ated with it. A Seq object can also have an Annotation object (used to store database
links, literature references and comments) associated with it. Creating a new SeqFea-
ture and Annotation and associating it with a Seq is accomplished with syntax like:

$feat = new Bio::SeqFeature::Generic(’-start’ = > 40,
’-end’ = > 80,
’-strand’ = > 1,
’-primary’ = > ’exon’,
’-source’ = > ’internal’ );

$seqobj- >add_SeqFeature($feat); # Add the SeqFeature to the parent
$seqobj- >annotation(new Bio::Annotation

(’-description’ = > ’desc-here’));

Once the features and annotations have been associated with the Seq, they can be
with retrieved, eg:
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@topfeatures = $seqobj- >top_SeqFeatures(); # just top level, or
@allfeatures = $seqobj- >all_SeqFeatures(); # descend into sub features
$ann = $seqobj- >annotation(); # annotation object

The individual components of a SeqFeature can also be set or retrieved with methods
including:

# attributes which return numbers
$feat- >start # start position
$feat- >end # end position

$feat- >strand # 1 means forward, -1 reverse, 0 not relevant

# attributes which return strings
$feat- >primary_tag # the main ’name’ of the sequence feature,

# eg, ’exon’
$feat- >source_tag # where the feature comes from, eg’BLAST’

# attributes which return Bio::PrimarySeq objects
$feat- >seq # the sequence between start,end
$feat- >entire_seq # the entire sequence

# other useful methods include
$feat- >overlap($other) # do SeqFeature $feat and SeqFeature $other overlap?
$feat- >contains($other) # is $other completely within $feat?
$feat- >equals($other) # do $feat and $other completely agree?
$feat- >sub_SeqFeatures # create/access an array of subsequence fea-

tures

See Bio and Bio as starting points for further exploration, and see the scripts/gff2ps.pl
script.

In general, storing and retrieving feature information should be straightforward.
However, one potential trap relates to features whose location is either “split” - as
in a multi-exon gene - or “fuzzy” - as when genomic coordinates are not yet known
with certainty. In these cases, the SeqFeature objects need to be built with one of the
alternate Location objects described in Section II.3.

If more detailed annotation than available in Seq objects is required, the RichSeq ob-
ject may be used. It is applicable in particular to database sequences (EMBL, GenBank
and Swissprot) with detailed annotations. Sample usage might be:
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@secondary = $richseq- >get_secondary_accessions;
$division = $richseq- >division;
@dates = $richseq- >get_dates;
$seq_version = $richseq- >seq_version;

See Bio for more details.

III.7.2 Representing and large and/or changing sequences
(LiveSeq,LargeSeq)

This interface extends the Bio::SeqI interface to give additional functionality to se-
quences with richer data sources, in particular from database sequences (EMBL, Gen-
Bank and Swissprot).

Very large sequences and/or data files with sequences that are frequently being up-
dated present special problems to automated sequence-annotation storage and re-
trieval projects. Bioperl’s LargeSeq and LiveSeq objects are designed to address these
two situations.

LargeSeq

A LargeSeq object is a SeqI compliant object that stores a sequence as a series of files
in a temporary directory (see sect II.1 or Bio for a definition of SeqI objects). The aim
is to enable storing very large sequences (eg, > 100MBases) without running out of
memory and, at the same time, preserving the familiar bioperl Seq object interface.
As a result, from the users perspective, using a LargeSeq object is almost identical to
using a Seq object. The principal difference is in the format used in the SeqIO calls.
Another difference is that the user must remember to only read in small chunks of
the sequence at one time. These differences are illustrated in the following code:

$seqio = new Bio::SeqIO(’-format’= >’largefasta’,
’-file’ = >’t/data/genomic-seq.fasta’);

$pseq = $seqio- >next_seq();
$plength = $pseq- >length();
$last_4 = $pseq- >subseq($plength-3,$plength); # this is OK

# On the other hand, the next statement would
# probably cause the machine to run out of memory
# $lots_of_data = $pseq- >seq(); # NOT OK for a large LargeSeq object

LiveSeq

The LiveSeq object addresses the need for a sequence object capable of handling se-
quence data that may be changing over time. In such a sequence, the precise loca-
tions of features along the sequence may change. LiveSeq deals with this issue by
re-implementing the sequence object internally as a “double linked chain.” Each el-
ement of the chain is connected to other two elements (the PREVious and the NEXT
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one). There is no absolute position (like in an array), hence if positions are important,
they need to be computed (methods are provided). Otherwise it’s easy to keep track
of the elements with their “LABELs”. There is one LABEL (think of it as a pointer)
to each ELEMENT. The labels won’t change after insertions or deletions of the chain.
So it’s always possible to retrieve an element even if the chain has been modified by
successive insertions or deletions.

Although the implementation of the LiveSeq object is novel, its bioperl user interface
is unchanged since LiveSeq implements a PrimarySeqI interface (recall PrimarySeq
is the subset of Seq without annotations or SeqFeatures - see section II.1 or Bio). Con-
sequently syntax for using LiveSeq objects is familiar although a modified version of
SeqIO called Bio::LiveSeq::IO::Bioperl needs to be used to actually load the data, eg:

$loader=Bio::LiveSeq::IO::BioPerl- >load(’-db’= >"EMBL",
’-file’= >"t/data/factor7.embl");

$gene=$loader- >gene2liveseq(’-gene_name’ = > "factor7");
$id = $gene- >get_DNA- >display_id ;
$maxstart = $gene- >maxtranscript- >start;

See Bio for more details.

Creating, maintaining and querying of LiveSeq genes is quite memory and processor
intensive. Consequently, any additional information relating to mutational changes
in a gene need to be stored separately from the sequence data itself. The next section
describes the mutation and polymorphism objects used to accomplish this.

III.7.3 Representing related sequences - mutations, polymorphisms etc
(Allele, SeqDiff)

The Mutation object allows for a basic description of a sequence change in the DNA
sequence of a gene. The Mutator object takes in mutations, applies them to a LiveSeq
gene and returns a set of Bio::Variation objects describing the net effect of the muta-
tion on the gene at the DNA, RNA and protein level.

The objects in Bio::Variation and Bio::LiveSeq directory were originally designed for
the “Computational Mutation Expression Toolkit” project at European Bioinformat-
ics Institute (EBI). The result of using them to mutate a gene is a holder object, ’SeqD-
iff’, that can be printed out or queried for specific information. For example, to find
out if restriction enzyme changes caused by a mutation are exactly the same in DNA
and RNA sequences, we can write:

use Bio::LiveSeq::IO::BioPerl;
use Bio::LiveSeq::Mutator;
use Bio::LiveSeq::Mutation;

$loader = Bio::LiveSeq::IO::BioPerl- >load(’-file’ = > "$filename");
$gene = $loader- >gene2liveseq(’-gene_name’ = > $gene_name);
$mutation = new Bio::LiveSeq::Mutation (’-seq’ = >’G’,
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’-pos’ = > 100 );
$mutate = Bio::LiveSeq::Mutator- >new(’-gene’ = > $gene,

’-numbering’ = > "coding" );
$mutate- >add_Mutation($mutation);
$seqdiff = $mutate- >change_gene();
$DNA_re_changes = $seqdiff- >DNAMutation- >restriction_changes;
$RNA_re_changes = $seqdiff- >RNAChange->restriction_changes;
$DNA_re_changes eq $RNA_re_changes or print "Different!\n";

For a complete working script, see the change_gene.pl script in the examples direc-
tory. For more details on the use of these objects see Bio and Bio as well as the orig-
inal documentation for the “Computational Mutation Expression Toolkit” project at
http://www.ebi.ac.uk/mutations/toolkit/.

III.7.4 Incorpotating quality data in sequence annotation
(SeqWithQuality)

SeqWithQuality objects are used to describe sequences with very specific annotations
- that is, data quality annotaions. Data quality information is important for docu-
menting the reliability of base “calls” in newly sequenced or otherwise questionable
sequence data. The quality data is contained within a Bio::Seq::PrimaryQual object.
Syntax for using SeqWithQuality objects is as follows:

# first, make a PrimarySeq object
$seqobj = Bio::PrimarySeq- >new

( -seq = > ’atcgatcg’, -id = > ’GeneFragment-12’,
-accession_number = > ’X78121’, -alphabet = > ’dna’);

# now make a PrimaryQual object
$qualobj = Bio::Seq::PrimaryQual- >new

( -qual = > ’10 20 30 40 50 50 20 10’, -id = > ’GeneFragment-
12’,

-accession_number = > ’X78121’, -alphabet = > ’dna’);
# now make the SeqWithQuality object
$swqobj = Bio::Seq::SeqQithQuality- >new

( -seq = > $seqobj, -qual = > $qualobj);
# Now we access the sequence with quality object
$swqobj- >id(); # the id of the SeqWithQuality object may not match the

# id of the sequence or of the quality
$swqobj- >seq(); # the sequence of the SeqWithQuality object
$swqobj- >qual(); # the quality of the SeqWithQuality object

A SeqWithQuality object is created automatically when phred output, a *phd file, is
read by Seqio, eg

$seqio = Bio::SeqIO- >new(-file= >"my.phd",-format= >"phd");
# or just ’Bio::SeqIO- >new(-file= >"my.phd")’
$seqWithQualObj = $seqio- >next_seq;
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See Bio for a detailed description of the methods, Bio, and Bio.

III.7.5 Sequence XML representations - generation and parsing
(SeqIO::game, SeqIO::bsml)

The previous subsections have described tools for automated sequence annotation
by the creation of an “object layer” on top of a traditional database structure. XML
takes a somewhat different approach. In XML, the data structure is unmodified, but
machine readability is facilitated by using a data-record syntax with special flags and
controlled vocabulary.

Bioperl supports a set of XML flags and vocabulary words for molecular biology -
called bioxml - detailed at http://www.bioxml.org/dtds/current/. The idea is that
any bioxml features can be turned into bioperl Seq annotations. Conversely Seq object
features and annotations can be converted to XML so that they become available
to any other systems that are XML (and bioxml) compliant. Typical usage is shown
below. No special syntax is required by the user. Note that some Seq annotation will
be lost when using bioxml in this manner since in its current implementation bioxml
does not support all the annotation information available in Seq objects.

$str = Bio::SeqIO- >new(’-file’= > ’t/data/test.game’,
’-format’ = > ’game’);

$seq = $str- >next_primary_seq();
$id = $seq- >id;
@feats = $seq- >all_SeqFeatures();
$first_primary_tag = $feats[0]- >primary_tag;

Additional XML formats to describe sequences and their annotations have been cre-
ated. BSML and AGAVE are two additional formats that have been created in the last
year. Bioperl currently only supports BSML through the SeqIO system at this time.
Usage is similar to other SeqIO parsing.

$str = Bio::SeqIO- >new(’-file’= > ’bsmlfile.xml’,
’-format’ = > ’bsml’);

$seq = $str- >next_primary_seq();
$id = $seq- >id;
@feats = $seq- >all_SeqFeatures();
$first_primary_tag = $feats[0]- >primary_tag;

III.8 Representing non-sequence data in Bioperl: structures, trees and
maps

Though bioperl has its roots in describing and searching nucleotide and protein se-
quences it has also branched out into related fields of study, such as protein structure,
phylogenetic trees and genetic maps.
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III.8.1 Using 3D structure objects and reading PDB files (StructureI,
Structure::IO)

A StructureIO object can be created from one or more 3D structures represented in
Protein Data Bank, or pdb, format (see http://www.rcsb.org/pdb for details).

StructureIO objects allow access to a variety of related Bio:Structure objects. An Entry
object consist of one or more Model objects, which in turn consist of one or more
Chain objects. A Chain is composed of Residue objects, which in turn consist of Atom
objects. There’s a wealth of methods, here are just a few:

$structio = Bio::Structure::IO- >new( -file = > "1XYZ.pdb");
$struc = $structio- >next_structure; # returns an Entry object
$ann = $struc- >annotation; # returns a Bio::Annotation object
$pseq = $struc- >seqres; # returns a PrimarySeq object, thus
$pseq- >subseq(1,20); # returns a sequence string
@atoms = $struc- >get_atoms($res); # Atom objects, given a Residue
@xyz = $atom- >xyz; # the 3D coordinates of the atom

These lines show how one has access to a number of related objects and methods. For
examples of typical usage of these modules, see the scripts in the examples/structure
subdirectory. Also see Bio, Bio, Bio, Bio, Bio, and Bio for more information.

III.8.2 Tree objects and phylogenetic trees (Tree::Tree, TreeIO)

Bioperl Tree objects can store data for all kinds of computer trees and are intended
especially for phylogenetic trees. Nodes and branches of trees can be individually
manipulated. The TreeIO object is used for stream I/O of tree objects. Currently only
phylip/newick tree format is supported. Sample code might be:

$treeio = new Bio::TreeIO( -format = > ’newick’, -file = > $treefile);
$tree = $treeio- >next_tree; # get the tree
@nodes = $tree- >get_nodes; # get all the nodes
$tree- >get_root_node()- >each_Descendent(); # get descendents of root node

See Bio and Bio for details.

III.8.3 Map objects for manipulating genetic maps (Map::MapI, MapIO)

Bioperl map objects can be used to describe any type of biological map data including
genetic maps, STS maps etc. Map I/O is performed with the MapIO object which
works in a similar manner to the SeqIO, SearchIO and similar I/O objects described
previously. In principle, Map I/O with various map data formats can be performed.
However currently only “mapmaker” format is supported. Manipulation of genetic
map data with Bioperl Map objects might look like this:
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$mapio = new Bio::MapIO( ’-format’ = > ’mapmaker’, ’-file’ = > $mapfile);
$map = $mapio- >next_map; # get a map
$maptype = $map- >type ;
foreach $marker ( $map- >each_element ) {

$marker_name = $marker- >name ; # get the name of each map marker
}

See Bio and Bio for more information.

III.8.4 Bibliographic objects for querying bibliographic databases
(Biblio)

Bio::Biblio objects are used to query bibliographic databases, such as MEDLINE.
The associated modules are built to work with OpenBQS-compatible databases (see
http://industry.ebi.ac.uk/openBQS). A Bio::Biblio object can execute a query like:

my $collection = $biblio- >find (’brazma’, ’authors’);
while ( $collection- >has_next ) {

print $collection- >get_next;
}

See Bio or the examples/biblio.pl script for details.

III.8.5 Graphics objects for representing sequence objects as images (Graphics)

A user may want to represent Seq objects and their SeqFeatures graphically. The
Bio::Graphics::* modules use Perl’s GD.pm module to create a PNG or GIF image
given the SeqFeatures (Section III.7.1) contained within a Seq object.

These modules contain numerous methods to dictate the sizes, colors, labels, and
line formats within the image. See Bio, Bio, or the scripts/render_sequence.pl script
for more information.

The Genquire application also provides ways to graphically represent Seq objects (see
Section IV.6).

III.9 Bioperl alphabets

Bioperl modules use the standard extended single-letter genetic alphabets to repre-
sent nucleotide and amino acid sequences.

In addition to the standard alphabet, the following symbols are also acceptable in a
biosequence:

? (a missing nucleotide or amino acid)
- (gap in sequence)
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III.9.1 Extended DNA / RNA alphabet

(includes symbols for nucleotide ambiguity)
------------------------------------------
Symbol Meaning Nucleic Acid
------------------------------------------

A A Adenine
C C Cytosine
G G Guanine
T T Thymine
U U Uracil
M A or C
R A or G
W A or T
S C or G
Y C or T
K G or T
V A or C or G
H A or C or T
D A or G or T
B C or G or T
X G or A or T or C
N G or A or T or C

IUPAC-IUB SYMBOLS FOR NUCLEOTIDE NOMENCLATURE:
Cornish-Bowden (1985) Nucl. Acids Res. 13: 3021-3030.

III.9.2 Amino Acid alphabet

------------------------------------------
Symbol Meaning
------------------------------------------
A Alanine
B Aspartic Acid, Asparagine
C Cystine
D Aspartic Acid
E Glutamic Acid
F Phenylalanine
G Glycine
H Histidine
I Isoleucine
K Lysine
L Leucine
M Methionine
N Asparagine
P Proline
Q Glutamine
R Arginine
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S Serine
T Threonine
V Valine
W Tryptophan
X Unknown
Y Tyrosine
Z Glutamic Acid, Glutamine
* Terminator

IUPAC-IUP AMINO ACID SYMBOLS:
Biochem J. 1984 Apr 15; 219(2): 345-373
Eur J Biochem. 1993 Apr 1; 213(1): 2

IV. Related projects - biocorba, biopython, biojava, Ensembl, Genquire
/AnnotationWorkbench / bioperl-gui

There are several “sister projects” to bioperl currently under development. These in-
clude biocorba, biopython, biojava, EMBOSS, Ensembl, and Genquire / Annotation
Workbench (which includes Bioperl-gui). These are all large complex projects and
describing them in detail here will not be attempted. However a brief introduction
seems appropriate since, in the future, they may each provide significant added util-
ity to the bioperl user.

IV.1 Biocorba

Interface objects have facilitated interoperability between bioperl and other
perl packages such as Ensembl and the Annotation Workbench. However,
interoperability between bioperl and packages written in other languages requires
additional support software. CORBA is one such framework for interlanguage
support, and the biocorba project is currently implementing a CORBA interface for
bioperl. With biocorba, objects written within bioperl will be able to communicate
with objects written in biopython and biojava (see the next subsection). For
more information, see the biocorba project website at http://biocorba.org/.
The Bioperl BioCORBA server and client bindings are available in the
bioperl-corba-server and bioperl-corba-client bioperl CVS repositories respecitively.
(see http://cvs.bioperl.org for more information).

IV.2 Biopython and biojava

Biopython and biojava are open source projects with very similar goals to bioperl.
However their code is implemented in python and java, respectively. With the de-
velopment of interface objects and biocorba, it is possible to write java or python
objects which can be accessed by a bioperl script, or to call bioperl objects from java
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or python code. Since biopython and biojava are more recent projects than bioperl,
most effort to date has been to port bioperl functionality to biopython and biojava
rather than the other way around. However, in the future, some bioinformatics tasks
may prove to be more effectively implemented in java or python in which case being
able to call them from within bioperl will become more important. For more infor-
mation, go to the biojava http://biojava.org/ and biopython http://biopython.org/
websites.

IV.3 EMBOSS

EMBOSS is another open source project with similar goals to bioperl. However EM-
BOSS code is implemented in C and has been designed for standalone execution
on the Unix command line, rather than for incorporation into a user script or pro-
gram. EMBOSS includes a wide array of useful bioinformatics functions similar to
those of the GCG package after which it was designed. A bioperl interface to the
EMBOSS functions has been partially completed. When this interface is complete, it
will be possible to access EMBOSS functions as though they were bioperl objects (in
a manner similar to how the StandAloneBlast bioperl module enables access to per-
forming Blast searches within bioperl). For more information on EMBOSS, refer to
http://www.hgmp.mrc.ac.uk/Software/EMBOSS/. The principal bioperl interface
object to EMBOSS is described in Bio.

IV.4 Ensembl and bioperl-db

Ensembl is an ambitious automated-genome-annotation project at EBI. Much of En-
sembl’s code is based on bioperl, and Ensembl developers, in turn, have contributed
significant pieces of code to bioperl. In particular, the bioperl code for automated se-
quence annotation has been largely contributed by Ensembl developers. Describing
Ensembl and its capabilities is far beyond the scope of this tutorial The interested
reader is referred to the Ensembl website at http://www.ensembl.org/.

Bioperl-db is a relatively new project intended to transfer some of
Ensembl’s capability of integrating bioperl syntax with a standalone
Mysql database (http://www.mysql.com) to the bioperl code-base. More
details on bioperl-db can be found in the bioperl-db CVS directory at
http://cvs.bioperl.org/cgi-bin/viewcvs/viewcvs.cgi/bioperl-db/?cvsroot=bioperl.
It is worth mentioning that most of the bioperl objects mentioned above map
directly to tables in the bioperl-db schema. Therefore object data such as sequences,
their features, and annotations can be easily loaded into the databases, as in

$loader- >store($newid,$seqobj)

Similarly one can query the database in a variety of ways and retrieve arrays of Seq
objects. See biodatabases.pod, Bio, Bio, and Bio for examples.
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IV.5 GFF format and Bio::DB::GFF*

The Bio::DB::GFF module provides access to relational databases constructed from
data files in GFF format. This file type is well suited to sequence annotation because
it allows the ability to describe entries in terms of parent-child relationships (see
http://www.sanger.ac.uk/software/GFF for details). Like bioperl-db, above, the
current implementation uses mysql (http://www.mysql.com).

The module accesses not only by id but by annotation type and position or range.
Those who would like to explore bioperl as a means to overlay nucleotide sequence,
protein sequence, features, and annotations should take a close look at Bioand the
load_gff.pl, bulk_load_gff.pl, gadfly_to_gff.pl, and sgd_to_gff.pl scripts in the
scripts/Bio-DB-GFF directory.

IV.6 Genquire, the Annotation Workbench and bioperl-gui

The Annotation Workbench and Genquire were developed at the Plant
Biotechnology Institute of the National Research Council of Canada. This
is an integrated graphical suite of tools in Perl for examining a sequence,
predicting gene structure, and creating annotations. Information about
Genquire is available at http://bioinformatics.org/project/?group_id=99.
With Genquire and bioperl-gui one can display a Bioperl Seq object
graphically. You can download the current version of the gui software
from the bioperl-gui CVS directory at http://cvs.bioperl.org/cgi-
bin/viewcvs/viewcvs.cgi/bioperl-gui/?cvsroot=bioperl. You will also need
Tcl/Tk.

V.1 Appendix: Finding out which methods are used by which Bioperl
Objects

At numerous places in the tutorial, the reader is directed to the “documentation in-
cluded with each of the modules.” As was mentioned in the introduction, it is some-
times not easy in perl to determine the appropriate documentation to look for, be-
cause objects inherit methods from other objects (and the relevant documentation
will be stored in the object from which the method was inherited.)

For example, say you wanted to find documentation on the “parse” method of the ob-
ject Genscan.pm. You would not find this documentation in the code for Genscan.pm,
but rather in the code for AnalysisResult.pm from which Genscan.pm inherits the
parse method!

So how would you know to look in AnalysisResult.pm for this documentation? The
easy way is to use the special function “option 100” in the bptutorial script. Specifi-
cally if you run:

> perl -w bptutorial.pl 100 Bio::Tools::Genscan

you will receive the following output:
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***Methods for Object Bio::Tools::Genscan ********

Methods taken from package Bio::Root::IO
catfile close gensym new qualify qualify_to_ref
rmtree tempdir tempfile ungensym

Methods taken from package Bio::Root::RootI
DESTROY stack_trace stack_trace_dump throw verbose warn

Methods taken from package Bio::SeqAnalysisParserI
carp confess croak next_feature

Methods taken from package Bio::Tools::AnalysisResult
analysis_date analysis_method analysis_method_version analysis_query anal-

ysis_subject parse

Methods taken from package Bio::Tools::Genscan
next_prediction

From this output, it is clear exactly from which object each method of
Genscan.pm is taken, and, in particular that “parse” is taken from the package
Bio::Tools::AnalysisResult.

With this approach you can easily determine the source of any method in any bioperl
object.

V.2 Appendix: Tutorial demo scripts

The following scripts demonstrate many of the features of bioperl. To run all the
demos run:

> perl -w bptutorial.pl 0

To run a subset of the scripts do

> perl -w bptutorial.pl
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and use the displayed help screen.
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