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Voxelation is a new method for acquisition of 3D gene expression patterns

in the brain. It employs high throughput analysis of spatially registered

voxels (cubes) to produce multiple volumetric maps of gene expression

analogous to the images reconstructed in biomedical imaging systems.

Using microarrays, 24 voxel images of coronal hemisections at the level of

the hippocampus of both the normal human brain and Alzheimer's disease

brain were acquired for 2,000 genes. The analysis revealed a common

network of co-regulated genes, and allowed identification of putative

control regions. In addition, singular value decomposition (SVD), a

mathematical method used to provide economical explanations of complex

data sets, produced images that distinguished between brain structures,

including cortex, caudate and hippocampus. The results suggest that

voxelation will be a useful approach for understanding how the genome

constructs the brain.

Important insights into gene networks in unicellular systems have been obtained

using high throughput multiplex gene expression methodologies, including

microarrays (Brown and Botstein 1999), gene chips (Lipshutz et al. 1999), and

SAGE (Velculescu et al. 1995). However, these powerful techniques have not yet

been applied to understanding how the genome constructs the three dimensional

(3D) structure of multicellular organisms. In contrast, tools exist for 3D imaging of

gene expression in the living organism, but at present, these methods only permit
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the examination of one, or at most, a few, genes at a time (Gambhir et al. 1999;

Herschman et al. 2000; Louie et al. 2000; Zacharias et al. 2000). Here, a method

called voxelation is described, which uses high throughput gene expression

analysis to produce volumetric expression maps for thousands of genes in

parallel. The method gets its name from the term voxel, which is used in

biomedical imaging to refer to a 3D image volume element. Voxelation is

conceptually simple, and entails the direct creation of voxels (cubes) in spatial

register with the brain, together with the application of high throughput gene

expression analytic techniques to RNA extracted from the voxels. The resulting

maps of gene expression are analogous to the images reconstructed in

biomedical imaging systems, such as CT and PET.

RESULTS

Coronal hemisections at the level of the hippocampus of a normal human brain

and an Alzheimer's disease brain were divided into 24 voxels (Fig. 1A) and

analyzed using 2,000 gene microarrays. To provide an overall survey of the data,

gene expression correlation matrices for both specimens were constructed (Fig.

1B). The genes in the normal matrix were parsimoniously clustered based on

minimization of a cost function related to K-means, resulting in a cluster number

of 5. The same gene order was used to construct the corresponding matrix for

the Alzheimer's hemisection. Strikingly, the matrices for both specimens were

very similar as judged using a Monte-Carlo simulation (p < 0.0001),
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demonstrating excellent reproducibility of the voxelation strategy. To gain further

insights into gene expression in healthy and diseased brain, a subset of the data

was extracted. This subset consisted of the genes in common between both the

normal and Alzheimer's hemisections, where the genes had a spatial expression

correlation coefficient of > 0.92 with at least one other gene in the same brain.

This procedure should identify networks of co-regulated genes in both brains.

Gene expression correlation matrices for the co-regulated subsets were created

(Fig. 1C and Table 1), with the normal matrix ordered using a similarity metric,

and the Alzheimer's matrix following suit. Similar to what was seen for the overall

data, there was a striking correspondence between the two matrices for the

normal and Alzheimer's hemisections. Again, this concordance was highly

significant, as judged using a Monte-Carlo simulation (p < 0.0001), implying that

the co-regulated networks of genes are independently maintained in both the

normal and Alzheimer's specimens.

To further examine replicability between, as well as within, the  hemisections, the

voxels were placed in ascending order (A2, B1, B2, ....), with the first member of

the series (A2) being counted as 1 (i.e. odd), the second (B1) as 2 (i.e. even),

etc. The data presented in Fig. 1C was then arbitrarily split into two parts for each

hemisection, consisting of even and odd numbered voxels. Based on the Monte-

Carlo strategy, there was highly significant similarity among the datasets (odd
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and even voxels), both between and within hemisections (p < 0.0001), further

demonstrating the reproducibility of voxelation (data not shown).

Interestingly, the correlation matrices of the co-regulated subset shown in Fig. 1C

revealed two mutually exclusive clusters. Cluster 1 (genes 1-14) was positively

correlated within itself, and negatively correlated with cluster 2 (genes 15-46),

and vice versa. The spatial map of gene expression variation across the voxels

for the selected subset of genes in both specimens is shown in Fig. 1D. The

figure demonstrates that although the mutually dependent network of spatially

co-regulated gene clusters is maintained within each brain, the expression

patterns are different in the Alzheimer's specimen compared to the normal,

particularly for cluster 1. There were some interesting biological relationships

within the co-regulated subset of genes. U5-100K (gene 4, cluster 1) and RNPS1

(gene 16, cluster 2), have highly negatively correlated spatial expression patterns

in both the normal and Alzheimer's hemisections, as indicated by their

membership in the two separate clusters. Both these genes encode proteins with

similar functions, U5-100kD being a U5 snRNA associated RNA helicase

(Laggerbauer et al. 1998; Teigelkamp et al. 1997), and RNPS1 an RNA binding

protein involved in alternative splicing (Loyer et al. 1998; Mayeda et al. 1999).

The connected functions of these genes may account for their negatively related

spatial expression patterns. A bioinformatics analysis found shared regulatory

regions between these genes (below). Another gene, MADD (gene 38, cluster 2),
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showed elevated expression in the hippocampus of the Alzheimer's hemisection

(voxels F2, G1, G2) compared to normal, and this gene is induced in the

hippocampus of hypoxic brains (Zhang et al. 1998).

In order to find control regions shared between the correlated and anti-correlated

genes of the subsets shown in Fig. 1C and 1D, a bioinformatics analysis was

performed to look for conserved non-coding sequences (Table 2 and Fig. 2).

Gene pairs were analyzed with gene expression correlation coefficients > 0.8 or

< -0.6. BLAST was used to find homologies, but not provide reliable estimates of

their statistical significance, since the algorithm employs asymptotic statistical

approximations, which are not accurate for shorter sequences. (Benson et al.

2000). The resulting homology regions were further scrutinized for transcription

factor binding sites using the TRANSFAC database (Wingender et al. 2000). The

homology search was confined to sequences 20 kb upstream, 20 kb downstream

and in all introns of the relevant genes. The analysis revealed a complex array of

potential control elements shared between genes, which may be responsible for

their expression pattern relationships. Some of the genes (5/9) had putative

control regions in the flanking or intron sequences of adjacent genes. In most of

these cases (4/5), orthologs of the co-regulated gene were found in the

Drosophila genome, and in all cases where a Drosophila ortholog existed (4/4),

analogous control regions were also found. However, in the Drosophila genome,

the putative regulatory regions were found in a distinct context: either in the
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flanking region or intron of a completely different neighboring gene. This

validated the likely relevance of the regulatory region in the original gene of

interest. In all cases, except for one (RNPS1 and U5-100K, homology block 2,

ggaaggatggt(g/a)tctcctg, respectively), the potential regulatory sequences

harbored known transcription factor binding sites. We predict that the one

exception may in the future be found to represent an as yet uncharacterized

binding site. Nevertheless, the significance of the potential regulatory sequences

must be confirmed experimentally.

In addition to global analyses of spatial gene expression in the normal and

Alzheimer's hemisections, significant (p < 10-7) gene expression differences

when averaged across the voxels were sought between the two specimens (Fig.

3A). To assess the replicability of the findings, equivalent voxels (voxel F1) from

the hippocampus of an additional normal and an additional Alzheimer's specimen

were also analyzed, using a 5,000 gene microarray with substantial overlap with

the 2,000 gene microarray. The F1 voxel was chosen for replication as it is part

of the hippocampus, which is strongly affected in Alzheimer's disease. A

scatterplot was constructed that compared the expression level differences

between normal and diseased specimens using those genes judged significantly

different across the entire hemisections and also present on the 5,000 gene

microarray (Fig. 3B). Despite the fact that the whole hemisections and the F1

voxels came from four entirely different individuals, the scatterplot analysis
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showed excellent replicability of gene expression differences (p = 0.0002)

between the normal and Alzheimer's disease groups. This data suggests that the

uncovered differences between the normal and Alzheimer's disease brains

represent real distinctions due to the disease process, and are not because of

the inevitable lack of precisely matched human samples.

A number of intriguing genes were found to be significantly different between the

normal and Alzheimer's disease hemisections (Fig. 3A and Table 3), involved in

such diverse areas as signal transduction (e.g. YWHAH, PTPRN2, RAP2A),

modulation of the cytoskeleton (e.g. ICAP-1A, PALLADIN), transcription (e.g.

DRAP1, TIF1α, NFATC3, TAF2F), and cholesterol synthesis (IDI1). There were

also two novel genes. Interestingly, it has been reported that the expression

within hippocampus and neocortex of one of the differentially expressed genes,

MAPK10, closely matches that of Alzheimer disease targeted neurons (Mohit et

al. 1995). The vast majority of the genes are more highly expressed in the normal

brain than the Alzheimer's brain (29/34). This is a highly significant deviation from

random (χ2 = 18.74, df = 1, p < 0.0001), and possibly reflects the considerable

neuronal cell death that occurs in Alzheimer's disease.

A graphic presentation of the spatial expression pattern across voxels for one of

the significantly differentially expressed genes, YWHAH, is shown in Fig. 3C for

both the normal and Alzheimer's hemisections. In Fig. 3D, a Bayesian approach
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to creation of expression images for YWHAH was employed, using a prior

assumption of nearest neighbor continuity. This resulted in smoothed expression

patterns over the voxels, which were then projected onto the relevant

neuroanatomy and reflected along the midline, giving bilateral symmetry.

Singular value decomposition (SVD) is a powerful method for economical

descriptions of complex data sets (Alter et al. 2000; Frackowiak et al. 1997;

Hendler and Shrager 1994). This statistical method reduces dimensionality, while

retaining the maximum possible fraction of the variance from the original data.

For example, when used in biomedical imaging, SVD analysis frequently explains

data sets on the basis of known functional and anatomical boundaries (e.g.

cortical vs. subcortical). In the context of gene expression patterns, it might be

expected that SVD would show which sets of genes ("vectors") account for the

major variations between the voxels, and hence which sets of genes play

important roles in setting up spatial patterns of differentiation in the brain. In

essence, the gene vectors would represent "votes" for the properties of the

various brain regions in which they are manifest. It should be noted that SVD

does not rely on preconceived notions or hypotheses, and is entirely data driven.

To see if SVD would illuminate the large amounts of data from the voxelation

studies of the normal and Alzheimer's hemisections, we performed an analysis

on the conjoint matrix resulting from the top 120 genes most strongly differentially

expressed between the samples (p ~ 0.05) (c.f. Fig. 3). The results of the SVD
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analysis are presented in Fig. 4. The first principal component (PC) was

uniformly expressed, and represents genes consistently differentially expressed

across all voxels. Analogously, the first PC in biomedical imaging studies is often

an average representation of the entire brain. The second PC is largely restricted

to cortex, the third to both the tail of the caudate and the hippocampus, and the

fourth to the insular cortex. This restriction to anatomical regions is remarkable

considering the two-fold uncertainty in the microarray data, the relatively crude

spatial maps (24 voxels), and the inevitability, given the nature of human

samples, that the two hemisections are not perfect controls for each other. With

increased resolution and more comprehensive gene surveys, voxelation may

ultimately reveal the molecular ontology of the brain, demonstrating which parts

of the brain are most closely related in terms of gene expression patterns to other

parts.

DISCUSSION

The investigations reported here demonstrate that employing spatial information

from whole organisms together with high throughput gene expression

methodologies will provide valuable additional insights not easily obtained from

studies of unicellular systems. Although the voxelation studies had limited spatial

resolution, useful data was obtained, and there are parallels with functional

imaging of the brain, which gives important insights despite the fact that the

voxels are inhomogeneous (Raichle 1998). The spatial information content of
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voxelation helped define control regions in networks of co-regulated genes, and

further insights were obtained from SVD. It should be emphasized that these

conclusions do not depend upon the assumption of precisely matched samples.

For example, the networks of co-regulated genes were clearly conserved

between the two hemisections across multiple voxels, despite the inevitable lack

of exact controls using human specimens. This lack notwithstanding, consistent

gene expression differences between normal and Alzheimer's disease brains

were found.

Despite the drawbacks of human studies, by definition these investigations have

the advantage of disease validity. In contrast, studies using mice can be

precisely and accurately controlled, and furthermore provide opportunities for the

use of genetically engineered animals. However, with mice there will always be

unresolved uncertainties over disease model validity (especially where the

etiology is unclear, e.g. the neuropsychiatric disorders such as schizophrenia). In

the longer term, perhaps the most information can be extracted by the judicious

combined use of both humans and mice, as well as other model systems. A

relevant point here is that the same volumetric resolution (voxel size), will yield

better relative resolution with larger brains. For example, identical voxel

dimensions will produce about a seven-fold higher relative resolution using the

rat brain compared to the mouse, because of the corresponding brain volumes of

these species.
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An important future task for voxelation will be to increase the amount of

information it provides, by miniaturization of voxel size to improve resolution and

also analysis of increased numbers of genes. The direct incorporation

methodology for probe labeling employed in this study is sufficiently sensitive to

allow construction of 13,000 voxel maps of the human brain. In principle, more

sensitive techniques, such as those using tyramide signal amplification, should

allow construction of 325,000 voxel images. By comparison, a modern CT or

PET scan of the human brain typically employs about 150,000 voxels. Because

of the much smaller size of the mouse brain, it is not feasible to use direct

incorporation for construction of spatial expression maps of single brains in this

organism. However, pooling spatially equivalent voxels will allow decreased

voxel size, and hence improved resolution, whilst still allowing recovery of

sufficient RNA for analysis. For individual mouse brains, tyramide signal

amplification will permit construction of 75 voxel maps. Real-time quantitative RT-

PCR is still more sensitive, and will allow construction of 6,000 voxel maps,

although automation and miniaturization will doubtless be required to harvest

such small voxels. Real-time quantitative RT-PCR has lower throughput than

microarrays, but the potential of PCR for automatability and scalability will

nevertheless allow such methods in combination with voxelation to surpass the

throughput of classical techniques, such as in situ hybridization.
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It will also be important to find ways to drive down costs. Although microarrays

are a relatively cheap tool on a per gene basis, voxelation will become

increasingly expensive as greater numbers of voxels are analyzed in the quest

for improved resolution in a variety of experimental situations. Furthermore, as

resolution is pushed ever higher, computational analysis will become an

important issue, due to the overwhelming amounts of data. However, assuming

Moore’s law continues to hold true, improvements in computing power should

allow data analysis to keep pace.

All of these goals, higher resolution, better analytic methodologies, higher

throughput and more powerful computational tools, will provide substantial

challenges. Ultimately, however, cross-species high resolution voxelation of

healthy and diseased brains is likely to provide better comprehension of the logic

of the genome, and how this program goes awry in disorders affecting the brain.

Such investigations will give important information on the genomic construction of

the brain as well as novel starting points for therapy.

METHODS

Voxelation procedure

The hemisections from both the normal and Alzheimer's brain were 8 mm thick,

and were from the left side at the level of the hippocampus, corresponding to

section 17 of the University of Maryland Brain and Tissue Bank protocol, method
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2 (Brain and Tissue Bank, University of Maryland). In each case, the voxelation

was performed using a 32 voxel template consisting of eight rows in the

superior/inferior axis (A to H, superior to inferior), and four columns in the medial

to lateral axis (1 to 4, medial to lateral). The two hemisections were of different

superior/inferior and medial/lateral dimensions, and therefore the voxelation

template of the Alzheimer's brain was linearly spatially deformed along these

axes relative to the normal brain, so that the same number of potential voxels

were present in both templates. Subsequent computational adjustment, based on

the anatomical topography of the two hemisections, allowed for complete gene

expression image registration. Because the brain hemisections were roughly

semicircular, whereas the voxelation template was rectangular, some voxels in

the templates were empty. A scheme was established a priori to deal with voxels

on the edge of the brain, whereby if the volume of biological material in the voxel

was less than 50% voxel volume, those voxels were pooled with adjacent voxels.

The following clockwise scheme was employed to pool voxels until a combination

over 50% was possible: first the subthreshold voxel was combined with the voxel

medially, then superiorly, then laterally, then inferiorly.  If an edge voxel

contained more biological material than 50% of the voxel volume, it was

considered a free-standing image element. The scheme resulted in the following

24 data voxels in common for the two hemisections: A2, B1, B2, B3, C1, C2, C3,

D1, D2, D3, D4, E1, E2, E3, E4, F1, F2, F3, F4, G1, G2, G3, H2, H3. The voxel

grid is shown in Fig. 1A. The normal brain was from a 49 yr male who died as a
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result of a car accident. The post-mortem interval was 9 h. The Alzheimer's brain

was Lewy body positive, and was from an 85 yr female who died from cardiac

complications. This individual had dementia with accompanying depression and

delusions, and was taking sertraline and haloperidol. The post-mortem interval

was 12 h. The normal F1 voxel was from a 22 yr male who died as a result of

atherosclerotic cardiovascular disease. The post-mortem interval was 4 h. The

Alzheimer's disease F1 voxel was from an 85 yr female, with well-formed neuritic

plaques and scattered neurofibrillary tangles. The case was classified as high

likelihood of Alzheimer's disease based on consensus recommendations

(National Institute on Aging 1997). The cause of death was respiratory failure and

the post-mortem interval 10 h.

Microarray analysis

For each voxel of the normal and Alzheimer's hemisections, 100 µg of Cy3

labeled voxel RNA and 100 µg of Cy5 labeled control RNA were co-hybridized to

a separate 2,000 gene microarray, as described (Eisen and Brown 1999). The

control RNA was used to facilitate interarray comparisons, and consisted of total

RNA from the normal hemisection reconstructed by combining proportionate

amounts of RNA from each voxel. For each gene, signal to noise ratio was 2.5-

fold above background for both the Cy3 and Cy5 channels. For the F1 voxels,

two experiments were performed in which labeled normal and Alzheimer's RNA

were directly compared by co-hybridization to separate 5,000 gene microarrays,
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but with the Cy3 and Cy5 dyes reversed for the second experiment. Gene

expression values were taken as the mean of the two experiments. Of the genes

present on the 2,000 gene microarray, 62% were also present on the 5,000 gene

microarray.

The microarray data was processed using two types of normalization procedures.

First, spatial trends existing in the data due to chip printing were removed by

non-linear transformation of the data sets.  The second normalization procedure

was designed to compensate for differences in the labeling and chemical

properties of the Cy3 and Cy5 dyes, by aligning the histograms of the dye signals

both within, as well as between, chips. The genes chosen for the microarrays

were a random selection of sequence verified known and novel cDNAs obtained

from Research Genetics. The genes are listed on the study web site (below).

Correlation matrix clustering

The genes in the omnibus normal correlation matrix of Fig. 1B were clustered

using an algorithm related to the K-means procedure (Sherlock 2000). The

algorithm was based on minimization of a cost function, C(K) = Σ(dist. within

clusters)2 + K2, where K is the number of clusters. As the number of clusters

goes up, the first term of the equation decreases, while the second increases,

and the C(K) is hence expected to show a minimum. The genes in the

Alzheimer's correlation matrix were placed in the same order as the normal. For
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the correlated subset matrices shown in Fig. 1C, the genes in the normal matrix

were ordered using a heirarchical clustering approach with a similarity metric

related to the centroid method (Milligan 1980). The first row of the matrix was

chosen to exhibit a strong contrast between the highest and lowest correlation

coefficient for that row. This row was denoted as the base vector, B, with respect

to which the remaining rows, R, were arranged in order of decreasing similarity,

using a metric consisting of Σi(Bi - R i)
2, where i = the elements of the rows. Once

the matrix for the normal brain was created, the matrix for the Alzheimer's brain

was created following the same order.

Monte-Carlo simulations

The Monte-Carlo simulation to assess the similarity of the normal and

Alzheimer's correlation matrices in Fig. 1B employed random permutation of the

columns of the matrices, and showed that the similarity was highly significant (p <

0.0001). For the simulation, the discrepancy between randomly selected pairs of

permuted matrices was quantitated using the Frobenius norm of the matrix

obtained by subtracting one permuted matrix from the other. The difference

between the mean of the resulting distribution and the Frobenius norm obtained

from the actual normal and Alzheimer's matrices was used to show significance.

The Monte-Carlo simulation to assess the similarity of the normal and

Alzheimer's correlation matrices in Fig. 1C also showed high significance. The

simulation employed random substitution of genes drawn from the entire 2,000
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gene dataset in the rows and columns of the matrices. Significance was

assessed using Frobenius norms, as described above.

Singular value decomposition

The conjoint matrix employed for SVD was obtained using the top 120 genes

most strongly differentially expressed between the normal and Alzheimer's

hemisections (p ~ 0.05). The matrices of m voxels x n genes for the normal and

Alzheimer's specimens were concatenated along the spatial dimension, giving a

matrix of size m x 2n. The concatenation procedure provided a common spatial

dimension for the data sets of both samples. When the number of genes in the

SVD analysis was limited to the 34 most significant (p < 10-7) differentially

expressed genes (Fig. 3) rather than the top 120, the spatial expression patterns

of the first and second PCs were preserved, while the patterns of the third and

fourth were altered. This observation implies superior robustness of the first and

second PCs, and it is typical of SVD that the first few PCs account for much of

the data.

Web site

All study results are available on a web site

(http://www.pharmacology.ucla.edu/smithlab/genome_research_data).
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Fig. 1. Correlated gene clusters. (A) Representation of the voxelation process on

a normal hemisection. Ca, tail of caudate nucleus; Cx, cortex; Hi, hippocampus;

Pu/GP, putamen/globus pallidus; Th, thalamus. (B) Gene expression correlation

matrices for the normal and Alzheimer's hemisections. The correlation of

expression levels across voxels between any two genes is read by looking along

the relevant row and column, and finding the intersection. The darkness of the

corresponding element gives the correlation between that pair of genes by

reference to the scales (right). The diagonals are the autocorrelations of the gene

expression patterns for each gene and are (and should be) equal to one. All

other correlations must be between 1 and -1. The genes are parsimoniously

ordered in the normal correlation matrix, giving five clusters. The order of genes

in the Alzheimer's matrix follows the normal. (C) Gene expression correlation

matrices for the subset of genes common to both specimens which display a

spatial expression correlation coefficient of > 0.92 with at least one other gene

within the same brain. The genes in the normal correlation matrix are ordered

using a similarity metric, and the order of genes in the Alzheimer's matrix is the

same as for the normal. Two mutually exclusive clusters of co-regulated genes

are present: cluster 1 (genes 1-14) and cluster 2 (genes 15-46). In both (B) and

(C), the similarity of the correlation matrices between the two specimens is highly

significant, as judged using a Monte-Carlo simulation. (D) Spatial gene

expression patterns for the subset of correlated genes. The voxels are laid out in

linear fashion forming the columns of the matrices, while the genes form the
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rows. The relative level of expression of a gene in any particular voxel can be

deduced by reference to the scales below. The two clusters of genes are

apparent, and although each cluster consists of highly correlated expression

patterns within both the normal and Alzheimer's hemisections, the patterns of

gene expression are different between the two hemisections.
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Fig. 2. Putative regulatory elements shared between groups of correlated and

anti-correlated genes. There were three groups of correlated (+) genes: (1)

RAB2, ABCA4, BAP1, RNPS1, (2) U5-100K, LRP6, (3) ECHS1, TBXAS1; and

three groups of anti-correlated (-) genes: (1) BAP1, MSX2 (2) RNPS1, U5-100K

(3) LRP6, TAF2F. The groups are indicated by square brackets. The regulatory

sequences responsible for correlated expression are shown as squares, those

responsible for anti-correlated expression are shown as diamonds. Genes are

indicated by UniGene symbol or name (UniGene Web Site). Exons are indicated

by short vertical lines. Lines delineate the relationships between the conserved

regulatory sequences. Multiple control regions frequently connected the genes.

Sometimes these control regions were found in introns or flanking regions of

adjacent genes. In that case, where there was a Drosophila ortholog of the

relevant gene, the control region was conserved in the Drosophila genome but in

a different context. Potential binding sites are: 1- OCT-1, 2 – HFH8, 3- TFIID, 4-

AP1, 5- IK2, 6- Sp1, 7- USF, 8- MYOD, 9- GKLF, 10 – IK1, 11- HFH3, 12- XFD1,

13- AP4.
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Fig. 3. Genes whose average expression across voxels is significantly different

in the normal compared to the Alzheimer's brain. (A) Graph showing mean

expression levels across the 24 voxels in the normal and Alzheimer's

hemisections on a logarithmic scale (log2) (± SEM). Normal: red, Alzheimer's:

blue. The genes are ranked from most (gene 1) to least significant (gene 36, p <

10-7). Two genes of the differentially expressed subset, PTPRN2 (genes 2 and 3,

upper row) and WASF1 (genes 2 and 3, lower row), were present as duplicate

spots on the microarrays, and give an independent assessment of within array

replicability. (B) Scatterplot comparing the mean expression differences between

the normal and Alzheimer's disease brains based on the hemisection data and

the replicate F1 voxel data. Expression differences are shown using the

logarithm (log2) of the gene expression ratios between the normal and diseased

specimens. The genes employed in the scatterplot are those judged significantly

(p < 10 -7) different when averaged across the whole hemisections and which are

also present on the 5,000 gene microarray used to analyze the replicate F1

voxels. A total of 27 genes resulted (YWHAH, PTPRN2, ARL6IP, ICAP-1A,

DRAP1, SMS, SEPW1, NFATC3, PSCD2, XPO1, ZNF142, PALLADIN, RAP2A,

BICD1, LOC51628, DSCR1L1, WASF1, RARS, CCS, TIF1α, PRKCB1, SALL2,

MAPK10, IDH3A, IDI1, TAF2F, DNCI1). There was a highly significant correlation

between the data from the hemisections and the F1 voxels (r = 0.65, F[1,25] =

18.34, p = 0.0002). The best fit using least squares linear regression is shown.

(C) An example of the spatial expression pattern of a gene (YWHAH) whose
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expression is significantly greater in the normal compared to the Alzheimer's

brain. The level of gene expression can be deduced by reference to the scale on

the right. (D) YWHAH expression patterns after smoothing over voxels using

imaging software, and projecting onto the relevant neuroanatomy. The resulting

images were reflected along the midline for the figure, giving bilateral symmetry.
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Fig. 4. SVD delineates anatomical regions of the brain. The conjoint matrix

resulting from the top 120 genes most strongly (p ~ 0.05) differentially expressed

between the normal and Alzheimer's hemisections was analyzed. The spatial

patterns resulting from the first, second, third and fourth PCs are shown.

Alongside are the first 30 members of the corresponding gene vectors. The

ordinate represents the contribution by the relevant gene to the variation of the

vector spatial pattern, while the abscissa represents the genes in decreasing

order of contribution. The genes are indicated by UniGene symbol or name.

Normal: red, Alzheimer's: blue. The first component is uniformly expressed over

the brain, and represents an image of average gene expression differences

between the samples. The second component is largely restricted to cortex, the

third to both the tail of the caudate and the hippocampus, and the fourth to the

insular cortex. The level of expression of the relevant gene vector in the spatial

patterns can be deduced by reference to the pseudocolor scale (right). Imaging

software smoothed the expression patterns over the voxels, and the hemisection

was reflected along the midline for the figure, giving bilateral symmetry.
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Table 1. Co-regulated genes
Gene
#

UniGene
symbol or
name

Function

1 MSX2 craniosynotosis-associated homeotic protein MSX2 – human Msh (Drosophila)
homeo box homolog 2

2 LRP6 low density lipoprotein receptor-related protein 6
3 TBXAS1 thromboxane A synthase 1 (platelet, cytochrome P450, subfamily V)
4 U5-100K U5 snRNP 100 kD protein
5 MCF2 MCF.2 cell line derived transforming sequence hypothetical protein
6 SGCD sarcoglycan, delta (35kD dystrophin-associated glycoprotein)
7 TSC501 kidney- and liver-specific gene
8 ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial
9 MTMR3 myotubularin related protein 3
10 VRL vanilloid receptor-like protein
11 LRP1 low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)
12 BPAG1 bullous pemphigoid antigen 1 (230/240kD) isoform 3
13 KIAA0382 Rho guanine exchange factor (GEF) 12
14 HSPE1 heat shock 10kD protein 1 (chaperonin 10)
15 ABCA4 ATP-binding cassette, sub-family A (ABC1), member 4
16 RNPS1 RNA-binding protein S1, serine-rich domain
17 BAP1 BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase)
18 UBL3 ubiquitin-like 3
19 RAB2 member RAS oncogene family
20 PRDX2 peroxiredoxin 2 - probable thioredoxin peroxidase
21 ALDOC aldolase C, fructose-bisphosphate
22 AIP aryl hydrocarbon receptor-interacting protein, immunophilin homolog ARA9
23 KIAA0365 KIAA0365 gene product
24 GCN5L2 GCN5 (general control of amino-acid synthesis, yeast, homolog)-like 2
25 HNRPA1 heterogeneous nuclear ribonucleoprotein A1
26 CTBP1 C-terminal binding protein 1, phosphoprotein CtBP
27 POLR2K polymerase (RNA) II (DNA directed) polypeptide K (7.0kD)
28 SMS spermine synthase
29 SPOCK sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican)
30 DCTN1 dynactin 1 (p150 isoform, Drosophila Glued homolog)
31 MAL mal, T-cell differentiation protein
32 DDIT3 DNA-damage-inducible transcript 3
33 RPL31 ribosomal protein L31
34 ITPR1 inositol 1,4,5-triphosphate receptor, type 1
35 KIAA0494 KIAA0494 gene product
36 RNF 10 ring finger protein 10
37 PON2 paraoxonase 2
38 MADD MAP-kinase activating death domain
39 PRCC papillary renal cell carcinoma (translocation-associated)
40 TAF2F TATA box binding protein (TBP)-associated factor, RNA polymerase II, F,

55kD
41 ABLIM actin binding double-zinc-finger LIM protein 1
42 AKAP1 kinase A anchor protein 1(PRKA)
43 DKFZP564M1

82
PBK1 protein

44 ILVBL acetolactate synthase
45 YWHAH tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,

eta polypeptide
46 KIAA0308 KIAA0308 protein
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Table 2. Potential regulatory sequences in co-regulated genes of normal and Alzheimer's hemisections

Gene paira Homology blocksb

RAB2 and ABCA4 (+)
RAB2
(8 exons)
Fly RAB2
(6 exons)/ 90%
ABCA4
(50 exons)
Fly ABCA4
(8 exons)/30%

cct[ccaaatattccaga]c (17/17)
1188bp 5' upstrm ATG
            aatattgcag (10/11)
12892bp 5' upstrm ATG
cct[ccaaatattccaga]c (17/17)
6865bp 5' upstrm ATG

[cttgtttctgaa]dtcatttagtaa (23/23)
3060bp 3' dstrm exon 1 (intron 1)

[cttgtttctgaa]dtaattcagtaa (21/23)
17313bp 5' upstrm ATG

tttgcaa[gttttaaaat]eact (20/20)
7268bp 3' dstrm exon 1 (intron 1)

tttgcaa[gttttaaaac]eact (19/20)
12300bp 5' upstrm ATG
tttgcaagcttt (11/12)
9642bp 5’ upstrm ATG

BAP1 and ABCA4 (+)
BAP1 (17 exons)
ABCA4 (50 exons)
Fly ABCA4 (8 exons)/30%

ggcagtgaggg[tttgactgg]f (20/20) (14151bp 5' upstrm ATG [4087bp 5’ upstrm ATG of HSPC226])
ggcagtcaggg[tttgactgg]f (19/20) (353bp 5' upstrm ATG [255bp 3’ dstrm start promoter, ABCA4])
   gcagtcaagttttga (13/15) (7664bp 3’ dstrm stop codon)

BAP1 and RNPS1 (+)
BAP1 (17 exons)
RNPS1 (7 exons)

c[tc(catccctgcc]gccaa)h (17/17) (257bp 3’ dstrm exon 11) (intron 11)
c[tc(catccctgcc]gccaa)h (17/17) (9153bp 5’ upstrm ATG[in intron 21, ABCA3])

MSX2 and BAP1 (-)
MSX2 (14 exons)
BAP1  (17 exons)

actatgg[g(ccaggtgc)ic]jttgc (21/21) (6150bp 3’ dstrm stop codon [in intron 4, ZNF151])
actatgg[g(ccaggtgc)ic]jatgc (20/21) (3574bp 3’ dstrm stop codon [in intron 14, FLJ13704fis])

RNPS1 and U5-100K (-)
RNPS1
(7 exons)

Fly RNPS1
(2 exons)/33%

U5-100K
(17 exons)

Fly U5-100K
(8 exons) 41%

tggag[gcaggga(cagaggg]katgct)lgt
(26/26) 13335bp 5’ upstrm ATG
[in intron 27, ABCA3]
    gaggcaggaatagag (13/15)
10266bp 3’ dstrm stop codon
[814bp 3’ dstrm stop codon, RPA1]
tggag[acagaga(cagaggg]katggt)lgt
(23/26) 2626bp upstrm ATG

ggaaggatggtgtctcctg
(19/19) 6684bp 5’ upstrm
ATG

ggaaggatggtatctcctg
(18/19)
675bp 5’ upstrm ATG
       aggatcatatctcc
(12/14)
17652bp 5’ upstrm ATG

gac[agcagggagcca]mgggg
(19/19) 8844bp 3’ dstrm stop
codon [in intron 9, E4F1]

gac[atcagggagcca]mgggg
(18/19) 10302bp 3’ dstrm stop
codon [in intron 1 CAL Bet3]
           cagggagtcagg (11/12)
     656bp 3’ dstrm stop codon

LRP6 and U5-100K (+)
LRP6 (26 exons)
U5-100K (17 exons)
FlyU5-100K (8 exons)/41%

gggt[(ggaagggaataa]nt)ogga (20/20) (4972bp 3’ dstrm stop codon)
gggt[(ggaagggaataa]nt)ogga (20/20) (10261bp 3’ dstrm stop codon [in intron 1, CAL Bet3 ])
               aagggtataatgg (12/13) (12661bp 5’ upstrm ATG)

TAF2F and LRP6 (-)
TAF2F (1 exon)
LRP6 (26 exons)
Fly LRP6 (6 exons)/32%

ct[atatgtt(cacttc]p,qtttaaatg)rtgc (26/26) (9542bp 5’ upstrm ATG)
ct[atatgtt[tacata]p,qtttaaatg)rtgc (23/26) (5612bp 3’ dstrm stop codon)
  t[atatggctaaata]p,qtttaaa (17/20) (5236bp 5’ upstrm ATG[836bp 3’ dstrm stop codon H3-like protein])

TBXAS1 and ECHS1 (+)
TBXAS1
(13 exons)
ECHS1
(7 exons)

Fly ECHS1
(3 exons)/77.6%

acac[cccagctgcc]scagca (19/19)
1318bp 3’ dstrm stop codon
acac[ccctgctgcc]scagca (18/19)
5989bp 3’ dstrm stop codon
[in intron 16, GCP2]
  cac[gcctgctgcc]scag (15/16)
1609bp 3’ dstrm stop codon

cac[cccagctgcc]scagcac (19/19)
1337bp 3’ dstrm stop codon
cac[ccctgctgcc]scagcac (18/19)
6051bp 3’ dstrm stop codon
[in intron 16, GCP2]
cac[gcctgctgcc]scag (15/16)
1609bp 3’ dstrm stop codon

a(+) correlated pair, (-) anti-correlated pair; % aa (amino acid) homology to human gene shown. bNucleotide matches shown in
parathentheses, mismatches in bold. Potential binding sites (core in capitals): cOCT-1 ccaaatATTCcagan, dHFH8 nctTGTTtctgaa,
eTFIID gtTTTAAAAt, fAP1 ttTGACtggnn, gIK2 tccaTCCCtgcc (anti-sense strand), hSp1 catcccTGCCccaa (anti-sense strand), iUSF
ccAGGTGc (anti-sense strand), jMYOD gccaGGTGcc (anti-sense strand), kGKLF acagagacagAGGG, lIK2 cagaGGGAtggt, mIK2
atcaGGGAgcca, nIK2 ggaaGGGAataa, oIK1 ggaaGGGAataat, pHFH3 ataTGTTtacata, qHFH8 ataTGTTtacata, rXFD1
tacataTTTAaatg (anti-sense strand), sAP4 ccctGCTGcc (anti-sense strand).
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Table 3. Genes differentially expressed in normal and Alzheimer's hemisections

Gene (and function)

Miscellaneous (12 genes)
IDI1 (isopentenyl-diphosphate δ isomerase) (cholesterol synthesis)
DNC1 (intermediate chain 1 of cytoplasmic dynein) (cytoplasmic transport)
KIAA0069 (ADP-ribosylation factor-like 6 interacting protein)
SMS (spermine synthase)
DSCR1L1 (thyroid hormone-responsive gene similar to Down syndrome critical region gene)
RARS (arginyl-tRNA synthetase)
PSCA (prostate stem cell antigen)
LIMS1 (LIM and senescent cell antigen-like domains 1)
BICD1 (Drosophila Bicaudal D homolog) (cytoskeletal mRNA sorting)
XPO1 (exportin 1) (export of proteins and RNA from the nucleus)
PSCD2 (Pleckstrin homology, Sec7 and coiled/coil domains 2, cytohesin-2)
RAB2 (G protein involved in secretion)

Transcription (8 genes)
DRAP1 (DR1-associated protein 1 -ve cofactor 2 α) (transcription repressor)
NFATC3 (nuclear factor of activated T-cells, 3) (transcription factor)
ZNF142 (zinc finger protein)
KIAA1041 (forkhead domain)
TIF1α (kinase and transcription silencing factor with a RING finger)
SALL2 (zinc finger protein and homolog of the Drosophila spalt gene)
TAF2F (TAFII55) (TATA box binding protein (TBP)-associated factor 2F)
NR1I3 (nuclear receptor subfamily 1, group I, member 3) (MB67, CAR-beta)

Signal transduction (5 genes)
YWHAH (14-3-3 eta chain) ( signal transduction)
PTPRN2 (receptor-type protein tyrosine phosphatase IA-2 beta) (signal transduction)
RAP2A (RAS oncogene family member) (signal transduction)
PRKCB1 (Protein kinase C, β1 subunit) (signal transduction)
MAPK10 (mitogen-activated protein kinase 10) (signal transduction)

Modulation cytoskeleton (3 genes)
ICAP-1A (β1 integrin cytoplasmic domain-associated protein)
KIAA0992 (palladin) (localized to stress fibers and cell adhesions)
WASF1 (Wiskott-Aldrich syndrome protein family, member 1) (WAVE)

Respiration (2 genes)
COX7B (cytochrome c oxidase subunit VIIb) (electron transport)
IDH3A (α subunit of mitochondrial NAD+ specific isocitrate dehydrogenase 3) (respiration)

Redox (2 genes)
SEPW1 (selenoprotein W1) (redox-related processes)
CCS copper chaperone for superoxide dismutase (interacts with SOD1)

Novel (2 genes)
LOC51235 (novel)
LOC51628 (novel)
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