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Voxelation is a new method for acquisition of 3D gene expression patterns
in the brain. It employs high throughput analysis of spatially registered
voxels (cubes) to produce multiple volumetric maps of gene expression
analogous to the images reconstructed in biomedical imaging systems.
Using microarrays, 24 voxel images of coronal hemisections at the level of
the hippocampus of both the normal human brain and Alzheimer's disease
brain were acquired for 2,000 genes. The analysis revealed a common
network of co-regulated genes, and allowed identification of putative
control regions. In addition, singular value decomposition (SVD), a
mathematical method used to provide economical explanations of complex
data sets, produced images that distinguished between brain structures,
including cortex, caudate and hippocampus. The results suggest that
voxelation will be a useful approach for understanding how the genome

constructs the brain.

Important insights into gene networks in unicellular systems have been obtained
using high throughput multiplex gene expression methodologies, including
microarrays (Brown and Botstein 1999), gene chips (Lipshutz et al. 1999), and
SAGE (Velculescu et al. 1995). However, these powerful techniques have not yet
been applied to understanding how the genome constructs the three dimensional
(3D) structure of multicellular organisms. In contrast, tools exist for 3D imaging of

gene expression in the living organism, but at present, these methods only permit
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the examination of one, or at most, a few, genes at a time (Gambhir et al. 1999;
Herschman et al. 2000; Louie et al. 2000; Zacharias et al. 2000). Here, a method
called voxelation is described, which uses high throughput gene expression
analysis to produce volumetric expression maps for thousands of genes in
parallel. The method gets its name from the term voxel, which is used in
biomedical imaging to refer to a 3D image volume element. Voxelation is
conceptually simple, and entails the direct creation of voxels (cubes) in spatial
register with the brain, together with the application of high throughput gene
expression analytic techniques to RNA extracted from the voxels. The resulting
maps of gene expression are analogous to the images reconstructed in

biomedical imaging systems, such as CT and PET.

RESULTS

Coronal hemisections at the level of the hippocampus of a normal human brain
and an Alzheimer's disease brain were divided into 24 voxels (Fig. 1A) and
analyzed using 2,000 gene microarrays. To provide an overall survey of the data,
gene expression correlation matrices for both specimens were constructed (Fig.
1B). The genes in the normal matrix were parsimoniously clustered based on
minimization of a cost function related to K-means, resulting in a cluster number
of 5. The same gene order was used to construct the corresponding matrix for
the Alzheimer's hemisection. Strikingly, the matrices for both specimens were

very similar as judged using a Monte-Carlo simulation (p < 0.0001),
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demonstrating excellent reproducibility of the voxelation strategy. To gain further
insights into gene expression in healthy and diseased brain, a subset of the data
was extracted. This subset consisted of the genes in common between both the
normal and Alzheimer's hemisections, where the genes had a spatial expression
correlation coefficient of > 0.92 with at least one other gene in the same brain.
This procedure should identify networks of co-regulated genes in both brains.
Gene expression correlation matrices for the co-regulated subsets were created
(Fig. 1C and Table 1), with the normal matrix ordered using a similarity metric,
and the Alzheimer's matrix following suit. Similar to what was seen for the overall
data, there was a striking correspondence between the two matrices for the
normal and Alzheimer's hemisections. Again, this concordance was highly
significant, as judged using a Monte-Carlo simulation (p < 0.0001), implying that
the co-regulated networks of genes are independently maintained in both the

normal and Alzheimer's specimens.

To further examine replicability between, as well as within, the hemisections, the
voxels were placed in ascending order (A2, B1, B2, ....), with the first member of
the series (A2) being counted as 1 (i.e. odd), the second (B1) as 2 (i.e. even),
etc. The data presented in Fig. 1C was then arbitrarily split into two parts for each
hemisection, consisting of even and odd numbered voxels. Based on the Monte-

Carlo strategy, there was highly significant similarity among the datasets (odd
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and even voxels), both between and within hemisections (p < 0.0001), further

demonstrating the reproducibility of voxelation (data not shown).

Interestingly, the correlation matrices of the co-regulated subset shown in Fig. 1C
revealed two mutually exclusive clusters. Cluster 1 (genes 1-14) was positively
correlated within itself, and negatively correlated with cluster 2 (genes 15-46),
and vice versa. The spatial map of gene expression variation across the voxels
for the selected subset of genes in both specimens is shown in Fig. 1D. The
figure demonstrates that although the mutually dependent network of spatially
co-regulated gene clusters is maintained within each brain, the expression
patterns are different in the Alzheimer's specimen compared to the normal,
particularly for cluster 1. There were some interesting biological relationships
within the co-regulated subset of genes. U5-100K (gene 4, cluster 1) and RNPS1
(gene 16, cluster 2), have highly negatively correlated spatial expression patterns
in both the normal and Alzheimer's hemisections, as indicated by their
membership in the two separate clusters. Both these genes encode proteins with
similar functions, U5-100kD being a U5 snRNA associated RNA helicase
(Laggerbauer et al. 1998; Teigelkamp et al. 1997), and RNPS1 an RNA binding
protein involved in alternative splicing (Loyer et al. 1998; Mayeda et al. 1999).
The connected functions of these genes may account for their negatively related
spatial expression patterns. A bioinformatics analysis found shared regulatory

regions between these genes (below). Another gene, MADD (gene 38, cluster 2),
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showed elevated expression in the hippocampus of the Alzheimer's hemisection
(voxels F2, G1, G2) compared to normal, and this gene is induced in the

hippocampus of hypoxic brains (Zhang et al. 1998).

In order to find control regions shared between the correlated and anti-correlated
genes of the subsets shown in Fig. 1C and 1D, a bioinformatics analysis was
performed to look for conserved non-coding sequences (Table 2 and Fig. 2).
Gene pairs were analyzed with gene expression correlation coefficients > 0.8 or
< -0.6. BLAST was used to find homologies, but not provide reliable estimates of
their statistical significance, since the algorithm employs asymptotic statistical
approximations, which are not accurate for shorter sequences. (Benson et al.
2000). The resulting homology regions were further scrutinized for transcription
factor binding sites using the TRANSFAC database (Wingender et al. 2000). The
homology search was confined to sequences 20 kb upstream, 20 kb downstream
and in all introns of the relevant genes. The analysis revealed a complex array of
potential control elements shared between genes, which may be responsible for
their expression pattern relationships. Some of the genes (5/9) had putative
control regions in the flanking or intron sequences of adjacent genes. In most of
these cases (4/5), orthologs of the co-regulated gene were found in the
Drosophila genome, and in all cases where a Drosophila ortholog existed (4/4),
analogous control regions were also found. However, in the Drosophila genome,

the putative regulatory regions were found in a distinct context: either in the
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flanking region or intron of a completely different neighboring gene. This
validated the likely relevance of the regulatory region in the original gene of
interest. In all cases, except for one (RNPS1 and U5-100K, homology block 2,
ggaaggatggt(g/a)tctcctg, respectively), the potential regulatory sequences
harbored known transcription factor binding sites. We predict that the one
exception may in the future be found to represent an as yet uncharacterized
binding site. Nevertheless, the significance of the potential regulatory sequences

must be confirmed experimentally.

In addition to global analyses of spatial gene expression in the normal and
Alzheimer's hemisections, significant (p < 107) gene expression differences
when averaged across the voxels were sought between the two specimens (Fig.
3A). To assess the replicability of the findings, equivalent voxels (voxel F1) from
the hippocampus of an additional normal and an additional Alzheimer's specimen
were also analyzed, using a 5,000 gene microarray with substantial overlap with
the 2,000 gene microarray. The F1 voxel was chosen for replication as it is part
of the hippocampus, which is strongly affected in Alzheimer's disease. A
scatterplot was constructed that compared the expression level differences
between normal and diseased specimens using those genes judged significantly
different across the entire hemisections and also present on the 5,000 gene
microarray (Fig. 3B). Despite the fact that the whole hemisections and the F1

voxels came from four entirely different individuals, the scatterplot analysis
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showed excellent replicability of gene expression differences (p = 0.0002)
between the normal and Alzheimer's disease groups. This data suggests that the
uncovered differences between the normal and Alzheimer's disease brains
represent real distinctions due to the disease process, and are not because of

the inevitable lack of precisely matched human samples.

A number of intriguing genes were found to be significantly different between the
normal and Alzheimer's disease hemisections (Fig. 3A and Table 3), involved in
such diverse areas as signal transduction (e.g. YWHAH, PTPRN2, RAP2A),
modulation of the cytoskeleton (e.g. ICAP-1A, PALLADIN), transcription (e.g.
DRAP1, TIFla, NFATC3, TAF2F), and cholesterol synthesis (IDI1). There were
also two novel genes. Interestingly, it has been reported that the expression
within hippocampus and neocortex of one of the differentially expressed genes,
MAPK10, closely matches that of Alzheimer disease targeted neurons (Mohit et
al. 1995). The vast majority of the genes are more highly expressed in the normal
brain than the Alzheimer's brain (29/34). This is a highly significant deviation from
random (c? = 18.74, df = 1, p < 0.0001), and possibly reflects the considerable

neuronal cell death that occurs in Alzheimer's disease.

A graphic presentation of the spatial expression pattern across voxels for one of

the significantly differentially expressed genes, YWHAH, is shown in Fig. 3C for

both the normal and Alzheimer's hemisections. In Fig. 3D, a Bayesian approach
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to creation of expression images for YWHAH was employed, using a prior
assumption of nearest neighbor continuity. This resulted in smoothed expression
patterns over the voxels, which were then projected onto the relevant

neuroanatomy and reflected along the midline, giving bilateral symmetry.

Singular value decomposition (SVD) is a powerful method for economical
descriptions of complex data sets (Alter et al. 2000; Frackowiak et al. 1997;
Hendler and Shrager 1994). This statistical method reduces dimensionality, while
retaining the maximum possible fraction of the variance from the original data.
For example, when used in biomedical imaging, SVD analysis frequently explains
data sets on the basis of known functional and anatomical boundaries (e.qg.
cortical vs. subcortical). In the context of gene expression patterns, it might be
expected that SVD would show which sets of genes ("vectors") account for the
major variations between the voxels, and hence which sets of genes play
important roles in setting up spatial patterns of differentiation in the brain. In
essence, the gene vectors would represent "votes" for the properties of the
various brain regions in which they are manifest. It should be noted that SVD
does not rely on preconceived notions or hypotheses, and is entirely data driven.
To see if SVD would illuminate the large amounts of data from the voxelation
studies of the normal and Alzheimer's hemisections, we performed an analysis
on the conjoint matrix resulting from the top 120 genes most strongly differentially

expressed between the samples (p ~ 0.05) (c.f. Fig. 3). The results of the SVD
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analysis are presented in Fig. 4. The first principal component (PC) was
uniformly expressed, and represents genes consistently differentially expressed
across all voxels. Analogously, the first PC in biomedical imaging studies is often
an average representation of the entire brain. The second PC is largely restricted
to cortex, the third to both the tail of the caudate and the hippocampus, and the
fourth to the insular cortex. This restriction to anatomical regions is remarkable
considering the two-fold uncertainty in the microarray data, the relatively crude
spatial maps (24 voxels), and the inevitability, given the nature of human
samples, that the two hemisections are not perfect controls for each other. With
increased resolution and more comprehensive gene surveys, voxelation may
ultimately reveal the molecular ontology of the brain, demonstrating which parts
of the brain are most closely related in terms of gene expression patterns to other

parts.

DISCUSSION

The investigations reported here demonstrate that employing spatial information
from whole organisms together with high throughput gene expression
methodologies will provide valuable additional insights not easily obtained from
studies of unicellular systems. Although the voxelation studies had limited spatial
resolution, useful data was obtained, and there are parallels with functional
imaging of the brain, which gives important insights despite the fact that the

voxels are inhomogeneous (Raichle 1998). The spatial information content of
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voxelation helped define control regions in networks of co-regulated genes, and
further insights were obtained from SVD. It should be emphasized that these
conclusions do not depend upon the assumption of precisely matched samples.
For example, the networks of co-regulated genes were clearly conserved
between the two hemisections across multiple voxels, despite the inevitable lack
of exact controls using human specimens. This lack notwithstanding, consistent
gene expression differences between normal and Alzheimer's disease brains

were found.

Despite the drawbacks of human studies, by definition these investigations have
the advantage of disease validity. In contrast, studies using mice can be
precisely and accurately controlled, and furthermore provide opportunities for the
use of genetically engineered animals. However, with mice there will always be
unresolved uncertainties over disease model validity (especially where the
etiology is unclear, e.g. the neuropsychiatric disorders such as schizophrenia). In
the longer term, perhaps the most information can be extracted by the judicious
combined use of both humans and mice, as well as other model systems. A
relevant point here is that the same volumetric resolution (voxel size), will yield
better relative resolution with larger brains. For example, identical voxel
dimensions will produce about a seven-fold higher relative resolution using the
rat brain compared to the mouse, because of the corresponding brain volumes of

these species.
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An important future task for voxelation will be to increase the amount of
information it provides, by miniaturization of voxel size to improve resolution and
also analysis of increased numbers of genes. The direct incorporation
methodology for probe labeling employed in this study is sufficiently sensitive to
allow construction of 13,000 voxel maps of the human brain. In principle, more
sensitive techniques, such as those using tyramide signal amplification, should
allow construction of 325,000 voxel images. By comparison, a modern CT or
PET scan of the human brain typically employs about 150,000 voxels. Because
of the much smaller size of the mouse brain, it is not feasible to use direct
incorporation for construction of spatial expression maps of single brains in this
organism. However, pooling spatially equivalent voxels will allow decreased
voxel size, and hence improved resolution, whilst still allowing recovery of
sufficient RNA for analysis. For individual mouse brains, tyramide signal
amplification will permit construction of 75 voxel maps. Real-time quantitative RT-
PCR is still more sensitive, and will allow construction of 6,000 voxel maps,
although automation and miniaturization will doubtless be required to harvest
such small voxels. Real-time quantitative RT-PCR has lower throughput than
microarrays, but the potential of PCR for automatability and scalability will
nevertheless allow such methods in combination with voxelation to surpass the

throughput of classical techniques, such as in situ hybridization.
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It will also be important to find ways to drive down costs. Although microarrays
are a relatively cheap tool on a per gene basis, voxelation will become
increasingly expensive as greater numbers of voxels are analyzed in the quest
for improved resolution in a variety of experimental situations. Furthermore, as
resolution is pushed ever higher, computational analysis will become an
important issue, due to the overwhelming amounts of data. However, assuming
Moore’s law continues to hold true, improvements in computing power should

allow data analysis to keep pace.

All of these goals, higher resolution, better analytic methodologies, higher
throughput and more powerful computational tools, will provide substantial
challenges. Ultimately, however, cross-species high resolution voxelation of
healthy and diseased brains is likely to provide better comprehension of the logic
of the genome, and how this program goes awry in disorders affecting the brain.
Such investigations will give important information on the genomic construction of

the brain as well as novel starting points for therapy.

METHODS

Voxelation procedure

The hemisections from both the normal and Alzheimer's brain were 8 mm thick,
and were from the left side at the level of the hippocampus, corresponding to

section 17 of the University of Maryland Brain and Tissue Bank protocol, method
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2 (Brain and Tissue Bank, University of Maryland). In each case, the voxelation
was performed using a 32 voxel template consisting of eight rows in the
superior/inferior axis (A to H, superior to inferior), and four columns in the medial
to lateral axis (1 to 4, medial to lateral). The two hemisections were of different
superior/inferior and medial/lateral dimensions, and therefore the voxelation
template of the Alzheimer's brain was linearly spatially deformed along these
axes relative to the normal brain, so that the same number of potential voxels
were present in both templates. Subsequent computational adjustment, based on
the anatomical topography of the two hemisections, allowed for complete gene
expression image registration. Because the brain hemisections were roughly
semicircular, whereas the voxelation template was rectangular, some voxels in
the templates were empty. A scheme was established a priori to deal with voxels
on the edge of the brain, whereby if the volume of biological material in the voxel
was less than 50% voxel volume, those voxels were pooled with adjacent voxels.
The following clockwise scheme was employed to pool voxels until a combination
over 50% was possible: first the subthreshold voxel was combined with the voxel
medially, then superiorly, then laterally, then inferiorly. If an edge voxel
contained more biological material than 50% of the voxel volume, it was
considered a free-standing image element. The scheme resulted in the following
24 data voxels in common for the two hemisections: A2, B1, B2, B3, C1, C2, C3,
D1, D2, D3, D4, E1, E2, E3, E4, F1, F2, F3, F4, G1, G2, G3, H2, H3. The voxel

grid is shown in Fig. 1A. The normal brain was from a 49 yr male who died as a
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result of a car accident. The post-mortem interval was 9 h. The Alzheimer's brain
was Lewy body positive, and was from an 85 yr female who died from cardiac
complications. This individual had dementia with accompanying depression and
delusions, and was taking sertraline and haloperidol. The post-mortem interval
was 12 h. The normal F1 voxel was from a 22 yr male who died as a result of
atherosclerotic cardiovascular disease. The post-mortem interval was 4 h. The
Alzheimer's disease F1 voxel was from an 85 yr female, with well-formed neuritic
plagues and scattered neurofibrillary tangles. The case was classified as high
likelihood of Alzheimer's disease based on consensus recommendations
(National Institute on Aging 1997). The cause of death was respiratory failure and

the post-mortem interval 10 h.

Microarray analysis

For each voxel of the normal and Alzheimer's hemisections, 100 ng of Cy3
labeled voxel RNA and 100 ng of Cy5 labeled control RNA were co-hybridized to
a separate 2,000 gene microarray, as described (Eisen and Brown 1999). The
control RNA was used to facilitate interarray comparisons, and consisted of total
RNA from the normal hemisection reconstructed by combining proportionate
amounts of RNA from each voxel. For each gene, signal to noise ratio was 2.5-
fold above background for both the Cy3 and Cy5 channels. For the F1 voxels,
two experiments were performed in which labeled normal and Alzheimer's RNA

were directly compared by co-hybridization to separate 5,000 gene microarrays,
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but with the Cy3 and Cy5 dyes reversed for the second experiment. Gene
expression values were taken as the mean of the two experiments. Of the genes
present on the 2,000 gene microarray, 62% were also present on the 5,000 gene

microarray.

The microarray data was processed using two types of normalization procedures.
First, spatial trends existing in the data due to chip printing were removed by
non-linear transformation of the data sets. The second normalization procedure
was designed to compensate for differences in the labeling and chemical
properties of the Cy3 and Cy5 dyes, by aligning the histograms of the dye signals
both within, as well as between, chips. The genes chosen for the microarrays
were a random selection of sequence verified known and novel cDNAs obtained

from Research Genetics. The genes are listed on the study web site (below).

Correlation matrix clustering

The genes in the omnibus normal correlation matrix of Fig. 1B were clustered
using an algorithm related to the K-means procedure (Sherlock 2000). The
algorithm was based on minimization of a cost function, C(K) = S(dist. within
clusters)® + K2, where K is the number of clusters. As the number of clusters
goes up, the first term of the equation decreases, while the second increases,
and the C(K) is hence expected to show a minimum. The genes in the

Alzheimer's correlation matrix were placed in the same order as the normal. For
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the correlated subset matrices shown in Fig. 1C, the genes in the normal matrix
were ordered using a heirarchical clustering approach with a similarity metric
related to the centroid method (Milligan 1980). The first row of the matrix was
chosen to exhibit a strong contrast between the highest and lowest correlation
coefficient for that row. This row was denoted as the base vector, B, with respect
to which the remaining rows, R, were arranged in order of decreasing similarity,
using a metric consisting of Si(B; - R;)?, where i = the elements of the rows. Once
the matrix for the normal brain was created, the matrix for the Alzheimer's brain

was created following the same order.

Monte-Carlo simulations

The Monte-Carlo simulation to assess the similarity of the normal and
Alzheimer's correlation matrices in Fig. 1B employed random permutation of the
columns of the matrices, and showed that the similarity was highly significant (p <
0.0001). For the simulation, the discrepancy between randomly selected pairs of
permuted matrices was quantitated using the Frobenius norm of the matrix
obtained by subtracting one permuted matrix from the other. The difference
between the mean of the resulting distribution and the Frobenius norm obtained
from the actual normal and Alzheimer's matrices was used to show significance.
The Monte-Carlo simulation to assess the similarity of the normal and
Alzheimer's correlation matrices in Fig. 1C also showed high significance. The

simulation employed random substitution of genes drawn from the entire 2,000
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gene dataset in the rows and columns of the matrices. Significance was

assessed using Frobenius norms, as described above.

Singular value decomposition

The conjoint matrix employed for SVD was obtained using the top 120 genes
most strongly differentially expressed between the normal and Alzheimer's
hemisections (p ~ 0.05). The matrices of m voxels x n genes for the normal and
Alzheimer's specimens were concatenated along the spatial dimension, giving a
matrix of size m x 2n. The concatenation procedure provided a common spatial
dimension for the data sets of both samples. When the number of genes in the
SVD analysis was limited to the 34 most significant (p < 107) differentially
expressed genes (Fig. 3) rather than the top 120, the spatial expression patterns
of the first and second PCs were preserved, while the patterns of the third and
fourth were altered. This observation implies superior robustness of the first and
second PCs, and it is typical of SVD that the first few PCs account for much of

the data.

Web site

All study results are available on a web site

(http://www.pharmacology.ucla.edu/smithlab/genome_research_data).
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Fig. 1. Correlated gene clusters. (A) Representation of the voxelation process on
a normal hemisection. Ca, tail of caudate nucleus; Cx, cortex; Hi, hippocampus;
Pu/GP, putamen/globus pallidus; Th, thalamus. (B) Gene expression correlation
matrices for the normal and Alzheimer's hemisections. The correlation of
expression levels across voxels between any two genes is read by looking along
the relevant row and column, and finding the intersection. The darkness of the
corresponding element gives the correlation between that pair of genes by
reference to the scales (right). The diagonals are the autocorrelations of the gene
expression patterns for each gene and are (and should be) equal to one. All
other correlations must be between 1 and -1. The genes are parsimoniously
ordered in the normal correlation matrix, giving five clusters. The order of genes
in the Alzheimer's matrix follows the normal. (C) Gene expression correlation
matrices for the subset of genes common to both specimens which display a
spatial expression correlation coefficient of > 0.92 with at least one other gene
within the same brain. The genes in the normal correlation matrix are ordered
using a similarity metric, and the order of genes in the Alzheimer's matrix is the
same as for the normal. Two mutually exclusive clusters of co-regulated genes
are present: cluster 1 (genes 1-14) and cluster 2 (genes 15-46). In both (B) and
(C), the similarity of the correlation matrices between the two specimens is highly
significant, as judged using a Monte-Carlo simulation. (D) Spatial gene
expression patterns for the subset of correlated genes. The voxels are laid out in

linear fashion forming the columns of the matrices, while the genes form the
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rows. The relative level of expression of a gene in any particular voxel can be
deduced by reference to the scales below. The two clusters of genes are
apparent, and although each cluster consists of highly correlated expression
patterns within both the normal and Alzheimer's hemisections, the patterns of

gene expression are different between the two hemisections.
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Fig. 2. Putative regulatory elements shared between groups of correlated and
anti-correlated genes. There were three groups of correlated (+) genes: (1)
RAB2, ABCA4, BAP1, RNPS1, (2) U5-100K, LRP6, (3) ECHS1, TBXAS1; and
three groups of anti-correlated (-) genes: (1) BAP1, MSX2 (2) RNPS1, U5-100K
(3) LRP6, TAF2F. The groups are indicated by square brackets. The regulatory
sequences responsible for correlated expression are shown as squares, those
responsible for anti-correlated expression are shown as diamonds. Genes are
indicated by UniGene symbol or name (UniGene Web Site). Exons are indicated
by short vertical lines. Lines delineate the relationships between the conserved
regulatory sequences. Multiple control regions frequently connected the genes.
Sometimes these control regions were found in introns or flanking regions of
adjacent genes. In that case, where there was a Drosophila ortholog of the
relevant gene, the control region was conserved in the Drosophila genome but in
a different context. Potential binding sites are: 1- OCT-1, 2 — HFHS8, 3- TFIID, 4-
AP1, 5- IK2, 6- Spl, 7- USF, 8- MYOD, 9- GKLF, 10 — IK1, 11- HFH3, 12- XFD1,

13- AP4.
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Fig. 3. Genes whose average expression across voxels is significantly different
in the normal compared to the Alzheimer's brain. (A) Graph showing mean
expression levels across the 24 voxels in the normal and Alzheimer's
hemisections on a logarithmic scale (log;) (+ SEM). Normal: red, Alzheimer's:
blue. The genes are ranked from most (gene 1) to least significant (gene 36, p <
10"). Two genes of the differentially expressed subset, PTPRN2 (genes 2 and 3,
upper row) and WASF1 (genes 2 and 3, lower row), were present as duplicate
spots on the microarrays, and give an independent assessment of within array
replicability. (B) Scatterplot comparing the mean expression differences between
the normal and Alzheimer's disease brains based on the hemisection data and
the replicate F1 voxel data. Expression differences are shown using the
logarithm (log,) of the gene expression ratios between the normal and diseased
specimens. The genes employed in the scatterplot are those judged significantly
(p < 107" different when averaged across the whole hemisections and which are
also present on the 5,000 gene microarray used to analyze the replicate F1
voxels. A total of 27 genes resulted (YWHAH, PTPRN2, ARL6IP, ICAP-1A,
DRAP1, SMS, SEPW1, NFATC3, PSCD2, XPO1, ZNF142, PALLADIN, RAP2A,
BICD1, LOC51628, DSCR1L1, WASF1, RARS, CCS, TIFla, PRKCB1, SALLZ,
MAPK10, IDH3A, IDI1, TAF2F, DNCI1). There was a highly significant correlation
between the data from the hemisections and the F1 voxels (r = 0.65, Fy125 =
18.34, p = 0.0002). The best fit using least squares linear regression is shown.

(C) An example of the spatial expression pattern of a gene (YWHAH) whose
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expression is significantly greater in the normal compared to the Alzheimer's
brain. The level of gene expression can be deduced by reference to the scale on
the right. (D) YWHAH expression patterns after smoothing over voxels using
imaging software, and projecting onto the relevant neuroanatomy. The resulting

images were reflected along the midline for the figure, giving bilateral symmetry.
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Fig. 4. SVD delineates anatomical regions of the brain. The conjoint matrix
resulting from the top 120 genes most strongly (p ~ 0.05) differentially expressed
between the normal and Alzheimer's hemisections was analyzed. The spatial
patterns resulting from the first, second, third and fourth PCs are shown.
Alongside are the first 30 members of the corresponding gene vectors. The
ordinate represents the contribution by the relevant gene to the variation of the
vector spatial pattern, while the abscissa represents the genes in decreasing
order of contribution. The genes are indicated by UniGene symbol or name.
Normal: red, Alzheimer's: blue. The first component is uniformly expressed over
the brain, and represents an image of average gene expression differences
between the samples. The second component is largely restricted to cortex, the
third to both the tail of the caudate and the hippocampus, and the fourth to the
insular cortex. The level of expression of the relevant gene vector in the spatial
patterns can be deduced by reference to the pseudocolor scale (right). Imaging
software smoothed the expression patterns over the voxels, and the hemisection

was reflected along the midline for the figure, giving bilateral symmetry.
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Table 1. Co-regulated genes

Gene UniGene Function
# symbol or
name

1 MSX2 craniosynotosis-associated homeotic protein MSX2 — human Msh (Drosophila)
homeo box homolog 2

2 LRP6 low density lipoprotein receptor-related protein 6

3 TBXAS1 thromboxane A synthase 1 (platelet, cytochrome P450, subfamily V)

4 U5-100K U5 snRNP 100 kD protein

5 MCF2 MCEF.2 cell line derived transforming sequence hypothetical protein

6 SGCD sarcoglycan, delta (35kD dystrophin-associated glycoprotein)

7 TSC501 kidney- and liver-specific gene

8 ECHS1 enoyl Coenzyme A hydratase, short chain, 1, mitochondrial

9 MTMR3 myotubularin related protein 3

10 VRL vanilloid receptor-like protein

11 LRP1 low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor)

12 BPAG1 bullous pemphigoid antigen 1 (230/240kD) isoform 3

13 KIAA0382 Rho guanine exchange factor (GEF) 12

14 HSPE1 heat shock 10kD protein 1 (chaperonin 10)

15 ABCA4 ATP-binding cassette, sub-family A (ABC1), member 4

16 RNPS1 RNA-binding protein S1, serine-rich domain

17 BAP1 BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase)

18 UBL3 ubiquitin-like 3

19 RAB2 member RAS oncogene family

20 PRDX2 peroxiredoxin 2 - probable thioredoxin peroxidase

21 ALDOC aldolase C, fructose-bisphosphate

22 AIP aryl hydrocarbon receptor-interacting protein, immunophilin homolog ARA9

23 KIAA0365 KIAA0365 gene product

24 GCN5L2 GCNS5 (general control of amino-acid synthesis, yeast, homolog)-like 2

25 HNRPA1 heterogeneous nuclear ribonucleoprotein A1

26 CTBP1 C-terminal binding protein 1, phosphoprotein CtBP

27 POLR2K polymerase (RNA) Il (DNA directed) polypeptide K (7.0kD)

28 SMS spermine synthase

29 SPOCK sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican)

30 DCTN1 dynactin 1 (p150 isoform, Drosophila Glued homolog)

31 MAL mal, T-cell differentiation protein

32 DDIT3 DNA-damage-inducible transcript 3

33 RPL31 ribosomal protein L31

34 ITPR1 inositol 1,4,5-triphosphate receptor, type 1

35 KIAA0494 KIAA0494 gene product

36 RNF 10 ring finger protein 10

37 PON2 paraoxonase 2

38 MADD MAP-kinase activating death domain

39 PRCC papillary renal cell carcinoma (translocation-associated)

40 TAF2F TATA box binding protein (TBP)-associated factor, RNA polymerase Il, F,
55kD

41 ABLIM actin binding double-zinc-finger LIM protein 1

42 AKAP1 kinase A anchor protein 1(PRKA)

43 DKFZP564M1  PBK1 protein

82

44 ILVBL acetolactate synthase

45 YWHAH tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein,
eta polypeptide

46 KIAA0308 KIAA0308 protein
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Table 2. Potential regulatory sequences in co-regulated genes of normal and Alzheimer's hemisections

Gene pair®

Homology blocks®

RAB2 and ABCA4 (+)
RAB2

(8 exons)

Fly RAB2

(6 exons)/ 90%
ABCA4

(50 exons)

Fly ABCA4

(8 exons)/30%

BAP1 and ABCA4 (+)
BAP1 (17 exons)

ABCA4 (50 exons)

Fly ABCA4 (8 exons)/30%

BAP1 and RNPS1 (+)
BAP1 (17 exons)
RNPS1 (7 exons)

MSX2 and BAPL1 (-)
MSX2 (14 exons)
BAP1 (17 exons)

RNPS1 and U5-100K (-)
RNPS1
(7 exons)

Fly RNPS1
(2 exons)/33%

U5-100K
(17 exons)

Fly U5-100K
(8 exons) 41%

LRP6 and U5-100K (+)
LRP6 (26 exons)

U5-100K (17 exons)
FlyU5-100K (8 exons)/41%

TAF2F and LRP6 (-)
TAF2F (1 exon)

LRP6 (26 exons)

Fly LRP6 (6 exons)/32%

TBXAS1 and ECHS1 (+)
TBXAS1

(13 exons)

ECHS1

(7 exons)

Fly ECHS1
(3 exons)/77.6%

cct{ccaaatattccagal® (17/17) [ctigittctgaa]’tcatttagtaa (23/23)

1188bp 5' upstrm ATG 3060bp 3' dstrm exon 1 (intron 1)
aatattgcag (10/11)

12892bp 5' upstrm ATG

cct{ccaaatattccagal® (17/17) [cttgtttctgaa]’taattcagtaa (21/23)

6865bp 5' upstrm ATG 17313bp 5' upstrm ATG

tttgcaa[gttttaaaat]act (20/20)
7268bp 3' dstrm exon 1 (intron 1)

tttgcaa[gttttaaaac]®act (19/20)
12300bp 5' upstrm ATG
tttgcaagcttt (11/12)

9642bp 5’ upstrm ATG

ggcagtgagggtttgactgg]’ (20/20) (14151bp 5' upstrm ATG [4087bp 5’ upstrm ATG of HSPC226])
ggcagtcaggg[tttgactgg]' (19/20) (353bp 5' upstrm ATG [255bp 3’ dstrm start promoter, ABCAA4])
gcagtcaagttttga (13/15) (7664bp 3’ dstrm stop codon)

c[tc(catccctgec)®ceaa)’ (17/17) (257bp 3' dstrm exon 11) (intron 11)
c[tc(catccctgec)’ceaa)” (17/17) (9153bp 5' upstrm ATGin intron 21, ABCA3])

actatgg[g(ccaggtgc)fc]’:ttgc (21/21) (6150bp 3’ dstrm stop codon [in intron 4, ZNF151])
actatgg[g(ccaggtgc)'clatge (20/21) (3574bp 3’ dstrm stop codon [in intron 14, FLJ13704fis])

tggag[gcaggga(cagagggl“atge)'gt  ggaaggatgggictectg gaclagcagggagcca] "gggg
(26/26) 13335bp 5’ upstrm ATG (19/19) 6684bp 5’ upstrm  (19/19) 8844bp 3’ dstrm stop
[inintron 27, ABCA3] ATG codon [in intron 9, E4F1]
gaggcaggaatagag (13/15)
10266bp 3’ dstrm stop codon
[814bp 3’ dstrm stop codon, RPA1]
tggag[acagaga(cagaggg]“atggt) gt ggaaggatggtatctcctg gac[atcagggagcca]"gggg
(23/26) 2626bp upstrm ATG (18/19) (18/19) 10302bp 3’ dstrm stop
675bp 5’ upstrm ATG codon [in intron 1 CAL Bet3]
aggatcatatctcc cagggagtcagg (11/12)
(12/14) 656bp 3’ dstrm stop codon

17652bp 5" upstrm ATG

ggot[(ggaagggaataa]t)°’gga (20/20) (4972bp 3’ dstrm stop codon)
ggot[(ggaagggaataa]t)°’gga (20/20) (10261bp 3’ dstrm stop codon [in intron 1, CAL Bet3 ])
aagggtataatgg (12/13) (12661bp 5’ upstrm ATG)

ct[atatgtt(cacttc]™ttaaatg)'tgc (26/26) (9542bp 5’ upstrm ATG)
ct[atatgtt[tacata]™‘tttaaatg)'tgc (23/26) (5612bp 3’ dstrm stop codon)
t[atatggctaaata]”‘titaaa (17/20) (5236bp 5’ upstrm ATG[836bp 3’ dstrm stop codon H3-like proteir

acac[cccagctgec]®cagea (19/19)

1318bp 3’ dstrm stop codon

acac|[ccctgetgec]®cagea (18/19)

5989bp 3’ dstrm stop codon

[in intron 16, GCP2]
cac[gcctgcetgec]®cag (15/16)

1609bp 3’ dstrm stop codon

cac[cccagctgec]®cageac (19/19)
1337bp 3’ dstrm stop codon
cac[ccetgetgec]®cageac (18/19)
6051bp 3’ dstrm stop codon

[in intron 16, GCP2]
cac[gcctgetgec]®cag (15/16)
1609bp 3’ dstrm stop codon

3(+) correlated pair, (-) anti-correlated pair; % aa (amino acid) homology to human gene shown. °Nucleotide matches shown in
parathentheses, mismatches in bold. Potential binding sites (core in capitals): “OCT-1 ccaaatATTCcagan, “HFH8 nctTGTTictgaa,
°TFIID gtTTTAAAAL, ‘AP1 ttTGACtggnn, 9IK2 tccaTCCCtgcc (anti-sense strand), "Sp1 catcccTGCCecaa (anti-sense strand), 'USF
ccAGGTGc (anti-sense strand), 'MYOD gccaGGTGee (anti-sense strand), “GKLF acagagacagAGGG, K2 cagaGGGAtggt, MK2
atcaGGGAgcca, "IK2 ggaaGGGAataa, °lK1 ggaaGGGAataat, PHFH3 ataTGTTtacata, “HFH8 ataTGTTtacata, 'XFD1
tacataTTTAaatg (anti-sense strand), *AP4 ccctGCTGcc (anti-sense strand).
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Table 3. Genes differentially expressed in normal and Alzheimer's hemisections

Gene (and function)

Miscellaneous (12 genes)

IDI1 (isopentenyl-diphosphate d isomerase) (cholesterol synthesis)

DNCL1 (intermediate chain 1 of cytoplasmic dynein) (cytoplasmic transport)
KIAA0069 (ADP-ribosylation factor-like 6 interacting protein)

SMS (spermine synthase)

DSCRI1L1 (thyroid hormone-responsive gene similar to Down syndrome critical region gene)

RARS (arginyl-tRNA synthetase)

PSCA (prostate stem cell antigen)

LIMS1 (LIM and senescent cell antigen-like domains 1)

BICD1 (Drosophila Bicaudal D homolog) (cytoskeletal mMRNA sorting)
XPOL1 (exportin 1) (export of proteins and RNA from the nucleus)

PSCD2 (Pleckstrin homology, Sec7 and coiled/coil domains 2, cytohesin-2)
RAB2 (G protein involved in secretion)

Transcription (8 genes)

DRAP1 (DR1-associated protein 1 -ve cofactor 2 a) (transcription repressor)
NFATC3 (nuclear factor of activated T-cells, 3) (transcription factor)
ZNF142 (zinc finger protein)

KIAA1041 (forkhead domain)

TIF1a (kinase and transcription silencing factor with a RING finger)

SALL2 (zinc finger protein and homolog of the Drosophila spalt gene)
TAF2F (TAFII55) (TATA box binding protein (TBP)-associated factor 2F)
NR1I3 (nuclear receptor subfamily 1, group I, member 3) (MB67, CAR-beta)

Signal transduction (5 genes)

YWHAH (14-3-3 eta chain) ( signal transduction)

PTPRN2 (receptor-type protein tyrosine phosphatase 1A-2 beta) (signal transduction)
RAP2A (RAS oncogene family member) (signal transduction)

PRKCBL1 (Protein kinase C, b1 subunit) (signal transduction)

MAPK10 (mitogen-activated protein kinase 10) (signal transduction)

Modulation cytoskeleton (3 genes)

ICAP-1A (bl integrin cytoplasmic domain-associated protein)
KIAA0992 (palladin) (localized to stress fibers and cell adhesions)
WASF1 (Wiskott-Aldrich syndrome protein family, member 1) (WAVE)

Respiration (2 genes)
COX7B (cytochrome c oxidase subunit VIIb) (electron transport)
IDH3A (a subunit of mitochondrial NAD+ specific isocitrate dehydrogenase 3) (respiration)

Redox (2 genes)
SEPW1 (selenoprotein W1) (redox-related processes)
CCS copper chaperone for superoxide dismutase (interacts with SOD1)

Novel (2 genes)
LOC51235 (novel)
LOC51628 (novel)

V.M. Brown et al.

32



woS00

Fig. 1

= g

TR

Normal

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8
-1

wo3S00

Alzheimer's

X =N X0)

200
600
1000
1400

1800 f

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8
-1

VX B=-K Xo)

Normal

500 1000 1500

Genes

Alzheimer's

200

G 600

n

N 1000

s 1400
1800

500 1000 1500
Genes

Alzheimer's

OwoOS0O0

76 -5-4-3-2-1012 3



RAB2-ABCA4-BAP1-RNPS1 (+)

>

ABCA4

Fly ABAC4
FLJ13704 fis MSX2 ZNF 151
5,6 « > «
s < > 7.8 7.8
HSPC226 BAP1 MSX2-BAP1 (-) ‘
> —> < — o]
E4F RNPS1-
ABCA3 U5-100K (-)
Fly RNSP1
Fly RPA1
L — U5-100K \ < CAL Bet3
U5-100K- Fly U5-100K
LRP6 (+) |
LRP6
H3-like protein Fly LRP6

—HHH— I HHHH 211,12 L — P TAF2F
—> <

GCP2
Fly ECHS1

LRP6-TAF2F (-)

13
TBXAS1

ECHS1-TBXAS1 (+)



A Relative expression B

. L X gapa w 4
3 X LOC51628 ©
2F YW£AH p'n:mz = sMs XP=O1 x 5
- X .
:) i x = = = - NF&TC3: i 5 : BI;D1 : 3 .
1k ARL6IP DF:m I = X ZNF142 Locsizss® X ) & L
- x i3 PSCD2 I KIAA1041 L 92
-2F PTPRN2 ICAP-1A SEPW1 PALLADIN S
-3F =
af d & 14
R L L L L L L L L L it
5 0 2 4 6 8 10 12 14 16 18 20 é
Gene S 0-
Relative expression »
3 L) DNCI g 1
2 [ DSCRIL1  wASF1 X PRKCB1 __ MAPK10 [L])] i3 % -
] X x [] g X K X ()
i PSCA Lims1 o |
of x T x x ¥ og0* . g 2 ’ .
i x L] [ X PHA  qppr m <
-1F z X TFila X x ]
RARS RAB2 cox78  NR1I3 c -3 T T T T T T
WASF1
-2 [ g [] 2 1 0 1 2 3 4 5
-3 0 2 4 6 8 10 12 14 16 18 20 Relative expression - hemisections
Gene
C YWHAH - normal YWHAH - Alzheimer's D YWHAH - normal YWHAH - Alzheimer's
0 ’ T \

I & mMm m U O W >
I & mMm m O O W >




PALLADI
L ALDOCO  RHEB2
ITPR1 DDIT3 PRDX2 DKFZP54M1

= HSPE1

XPO1

KIAA0717

L WLF2 sepwq PTPRN2 DCTN1 PRKCB1 RAGA  PTPRN2 NR113

- YWHAH

0 5 10 15 20 25 30

L sePw1 _ KIAAO365 _ HNRPA1
TPD52 HSPE1

KIAA1041

SMS TAFZFNAP1 L1

SHB
L2
DDIT3 ) UBL3 ZFP36 xPo1 NR1 '3_

0 5 10 15 20 25 30

NAP1L1 PALRADIN

TAF2F PRDX2 PTPRN2  JAK1
[1¢}

RAB7 HNRPA1 _ BAP1_ . XPO1 AP-1A

NFATC3 US-100K TIF1q BICD1 POLR2K GAS6
PRKCB1 DSCRL1 SRD5A1 RPL7A RHEB2

YWHAH

25 30

o
a
-
o
-
a
N
o





