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ABSTRACT 

A major challenge for droplet-based single-cell sequencing technologies is distinguishing true cells from 

uninformative barcodes in datasets with disparate library sizes confounded by high technical noise (i.e. batch-

specific ambient RNA). We present dropkick, a fully automated software tool for quality control and filtering of 

single-cell RNA sequencing (scRNA-seq) data with a focus on excluding ambient barcodes and recovering real 

cells bordering the quality threshold. By automatically determining dataset-specific training labels based on 

predictive global heuristics, dropkick learns a gene-based representation of real cells and ambient noise, 

calculating a cell probability score for each barcode. Using simulated and real-world scRNA-seq data, we 

benchmarked dropkick against conventional thresholding approaches and EmptyDrops, a popular 

computational method, demonstrating greater recovery of rare cell types and exclusion of empty droplets and 

noisy, uninformative barcodes. We show for both low and high-background datasets that dropkick’s weakly 

supervised model reliably learns which genes are enriched in ambient barcodes and draws a multidimensional 

boundary that is more robust to dataset-specific variation than existing filtering approaches. dropkick provides 

a fast, automated tool for reproducible cell identification from scRNA-seq data that is critical to downstream 

analysis and compatible with popular single-cell Python packages. 

 

INTRODUCTION 

Single-cell RNA sequencing (scRNA-seq) allows for untargeted profiling of genome-scale expression in 

thousands of individual cells, providing insights into tissue heterogeneity and population dynamics. Droplet-

based platforms that involve microfluidic encapsulation of cells in water-oil emulsions (Klein, et al. 2015; 

Macosko, et al. 2015; Zheng, et al. 2017) have grown widely popular for their robustness and throughput. The 

use of barcoded poly-thymidine capture oligonucleotides provides information for assigning eventual 

sequencing reads to each droplet downstream of bulk library preparation. Due to the low cellular density 

required to avoid doublets (i.e., two or more cells captured in the same droplet), the vast majority of droplets 

are empty, ideally containing only tissue dissociation buffer and a barcoded RNA-capture bead with no cellular 

RNA. However, during the tissue dissociation process, cell death, lysis, and leakage result in the shedding of 

ambient mRNA into the supernatant solution, which is then captured as background in droplets containing 

individual cells and so-called “empty droplet” reactions. Ultimately, a droplet-based scRNA-seq dataset 
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contains up to hundreds of thousands of barcodes that correspond to these “empty droplets” which include 

sequenced material from ambient RNA alone. 

In order to prepare these data for downstream analysis, empty droplets and other uninformative barcodes with 

little to no molecular information must be removed. Often, computational biologists will define manual 

thresholds on global heuristics such as total counts of unique molecular identifiers (UMI) or the total number of 

genes detected in each barcode in order to isolate high-quality cells. While these hard cutoffs may generally 

yield expected cell populations and remove the bulk of populational noise in low-background samples, they are 

highly arbitrary, batch-specific, and generally biased against cell types with low RNA content or genetic 

diversity (Lun, et al. 2019). Furthermore, lenient thresholds often yield filtered datasets with populations of 

dead and dying cells or empty droplets with high ambient RNA content, especially in encapsulations with high 

background resulting from tissue-specific cell viability and dissociation protocols. These cell clusters may be 

gated out manually by the experienced single-cell biologist, but they will distort dimension-reduced 

embeddings and alter statistical testing for differential gene expression if left unchecked. 

Here we introduce dropkick, a fully automated machine learning software tool for data-driven filtering of 

droplet-based scRNA-seq data. dropkick provides a quality control (QC) module for initial evaluation of global 

distributions that define barcode populations (real cells vs. empty droplets) and quantifies the batch-specific 

ambient gene profile. The dropkick filtering module establishes initial thresholds on predictive global heuristics 

using an automated gradient-descent method, then trains a gene-based logistic regression model to assign 

confidence scores to all barcodes in the dataset. dropkick model coefficients are sparse and biologically 

informative, identifying a minimal number of gene features associated with empty droplets and low-quality cells 

in a weakly supervised fashion. The following study aims to show how dropkick outperforms basic threshold-

based filtering and a similar data-driven model (Lun, et al. 2019) in recovery of expected cell types and 

exclusion of empty droplets, with robustness and reproducibility across encapsulation platforms, samples, and 

varying degrees of noise from ambient RNA. 

 

RESULTS 

Evaluating dataset quality with the dropkick QC module: Global data quality and predominance of ambient 

RNA affect both reliable cell identification as well as downstream analyses including clustering, cell type 
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annotation, and trajectory inference in scRNA-seq data (Young and Behjati 2018; Fleming, et al. 2019; Yang, 

et al. 2020). Single-cell data with a low signal-to-noise ratio due to high ambient background can result in 

information loss that may ultimately confound cell type and cell state identification and related statistical 

analyses (Zhang, et al. 2019). For instance, a scRNA-seq encapsulation with a high degree of cell lysis can 

cause marker genes from abundant cell types to be present in the ambient RNA profile that contaminates all 

cell barcodes. In this scenario, global differences between cell populations would be diminished by the 

common detection of ambient noise, leading to loss of resolution in inference of cell identity and state. 

In order to quantify ambient contamination that reduces this batch-specific signal-to-noise ratio, we have 

developed a comprehensive quality control report for unfiltered, post-alignment UMI counts matrices. Figure 1 

provides an example dropkick QC report for a human T cell dataset encapsulated using the 10x Genomics 

Chromium platform (Zheng, et al. 2017). This sample is exemplary of a low-background dataset, as the cells 

isolated from human blood do not require dissociation that causes cell stress and lysis in other tissues 

(Supplementary Figure 1). Barcodes are ranked by total counts to yield a profile that describes the expected 

number of high-quality cells, empty droplets, and uninformative barcodes (Figure 1A; Fleming et al. 2019). The 

number of genes detected per barcode follows a similar distribution to total counts, which informs our choice of 

dropkick training thresholds in the following sections. The first plateau in the total counts profile of the T cell 

dataset indicates approximately 4,000 high-quality cells, followed by a sharp drop in the distribution (Figure 

1A). This drop-off in total UMI content signifies an estimated location for a manual cutoff as seen in the 10x 

CellRanger version 2 analysis software (Lun, et al. 2019). 

dropkick next defines a subset of ambient genes using the dropout rate, or the fraction of barcodes in which 

each gene is not detected. Ranking genes in ascending order by dropout rate (Figure 1B), dropkick labels 

those with dropout rates lower than the top ten as “ambient”. High-background datasets may have many (> 10) 

genes that are detected in nearly every barcode (dropout rate ≈ 0; Supplementary Figure 1). The dropkick 

definition of an ambient profile thus ensures that all relevant genes are included. The contribution of this 

ambient subset to the total counts of each barcode can then be calculated, shown as blue points in the 

dropkick QC report (Figure 1A). Similarly, an overlay of mitochondrial read percentage indicates dead or dying 

cells undergoing apoptosis (Tait and Green 2010). Indeed, the ambient and mitochondrial contributions to the 

empty droplets in the second plateau of the total counts log-rank curve is markedly higher than the first plateau 
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(Figure 1A). Another noteworthy observation is that dropkick defines an ambient profile that is distinct from the 

subset of mitochondrial genes. This is important for assessing cell quality in downstream clustering and 

dimension reduction, as any empty droplets that remain in the dataset post-filtering often cluster together in 

low-dimensional embeddings and can be highlighted by their enrichment in ambient genes. As stated 

previously, marker genes from abundant cell types may show up in the ambient gene set due to excessive 

lysis of these common cells during tissue preparation (Young and Behjati 2018; Fleming, et al. 2019; Yang, et 

al. 2020; Supplementary Figure 1). Accordingly, analysts should be cognizant of background expression levels 

that contaminate adjacent cell populations and confound cell type identification during subsequent analysis. 

 

 

As each scRNA-seq dataset has unique, batch-specific ambient RNA profiles and barcode distributions, the 

dropkick QC module allows for estimation of global data quality. Mouse colonic mucosa dissociated and 

encapsulated in parallel using inDrop and 10x Genomics platforms (Supplementary Figure 1) exemplifies high-

background scRNA-seq data, as indicated by elevated RNA levels in the second plateau of the total counts 

and genes curves. Moreover, marker genes Car1 and Muc2 from abundant colonocytes and goblet cells, 

respectively, are identified by dropkick as ambient genes for these data. This signifies lysis of common 

Figure 1. Evaluating dataset quality with the dropkick QC module. A) Profile of total counts (black trace) and 
genes (green points) detected per ranked barcode in the 4k pan-T cell dataset (10x Genomics). Percentage 
of mitochondrial (red) and ambient (blue) reads for each barcode included to denote quality along dataset 
profile. B) Profile of dropout rate per ranked gene. Ambient genes are identified by dropkick and used to 
calculate ambient percentage in A. 
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epithelial cell populations during tissue preparation and dissociation. Given the dropkick QC report, the user 

should thus expect background expression across all barcodes, which could prove pivotal to downstream 

processing and biological interpretation. Taken together, dropkick can estimate the number of high-quality cells 

in our dataset, determine average background noise from ambient RNA, and thus predict performance of 

filtering and ensuing analysis based on global data quality. 

Description of dropkick filtering method: dropkick uses weakly supervised machine learning to build a 

model of single-cell gene expression in order to score and classify barcodes as real cells or empty droplets 

within individual scRNA-seq datasets. To construct a training set for this model, dropkick begins by calculating 

batch-specific global metrics that are generally predictive of barcode quality, such as the total number of genes 

detected (n_genes; Figure 2A) which was chosen as the default training heuristic for dropkick by testing 

concordance with three alternative cell labels across 46 scRNA-seq samples (Supplementary Figure 2). A 

dataset similar to the 10x Genomics human T cell encapsulation (Figure 1) will exhibit a multimodal distribution 

of n_genes across all barcodes (Figure 2B) where the peaks of the distribution match the plateaus seen in the 

log-rank representation (Figure 2C). Next, dropkick performs multi-level thresholding on the n_genes histogram 

using Otsu’s method (Otsu 1979; Figure 2B,C). This automated gradient-descent technique divides the 

barcode distribution into three levels in this “heuristic space”: a lower level containing uninformative barcodes 

(which are thrown away), an upper level containing barcodes with very high cell probability based on n_genes, 

and an intermediate level that consists of both high-RNA empty droplets and relatively low-RNA cells. The 

upper and intermediate barcode populations are labeled as real cells and putative empty droplets, respectively, 

for initial dropkick model training. These weakly self-supervised labels based on threshold cutoffs in “heuristic 

space” are expected to be noisy, and the goal of the next step in the dropkick pipeline is to re-draw these 

rough boundaries in “gene space” using logistic regression in order to recover real cells from the intermediate 

barcode cohort while removing ambient barcodes from the upper plateau (Figure 2D,E). 

The logistic regression model employed by dropkick uses elastic net regularization (Zou and Hastie 2005), 

which balances feature selection and grouping by preserving or removing correlated genes from the model in 

concert. The motivation for choosing this regularization method is two-fold. First, the resulting model exists in 

“gene space”, maintaining the relative dimensionality of the dataset and providing biologically interpretable 

coefficients that describe barcode quality. Second, the model is penalized for complexity, which yields the 
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simplest model (sparse coefficients) that adjusts the noisy initial labels while compensating for expected 

collinearities and errors in measurement. 

 

 

Evaluating dropkick filtering performance with synthetic data: We tested dropkick filtering on single-cell 

data simulations that define both empty droplets and real cells, providing ground-truth labels for comparison to 

dropkick outputs (Fleming, et al. 2019). These synthetic datasets modeled ambient RNA noise in the cell 

populations to confound filtering, as seen in real-world datasets. We simulated both low (Figure 3A,B) and high 

(Figure 3C,D) background scenarios (see methods: Synthetic scRNA-seq data simulation).  

To demonstrate the utility of the dropkick model over one-dimensional thresholding and an analogous data-

driven filtering model, we ran dropkick, 10x Genomics CellRanger version 2 (CellRanger_2) and the 

EmptyDrops R package (Lun, et al. 2019) on ten iterations of low and high-background simulations. An 

example UMAP embedding of all barcodes kept by dropkick_label (dropkick score ≥ 0.5) and the two 

analogous methods shows that all three methods excluded empty droplets (assigned cluster 0 from the 

simulation), with a single false negative (FN) barcode highlighted in the EmptyDrops label set (Figure 3A). An 

Figure 2. Description of dropkick filtering method. A) Diagram of scRNA-seq counts matrix with initial cell 
confidence for each barcode based solely on total genes detected (n_genes), depicted by color (red = 
empty droplet, blue = real cell). B) Histogram showing the distribution of barcodes by their n_genes value. 
Black lines indicate automated thresholds for training the dropkick model. C) log(n_genes) vs. log(rank) 
representation of barcode distribution as in dropkick QC report (Figure 1A). Thresholds from B are 
superimposed. D) Thresholds in heuristic space (B-C) are used to define initial training labels for logistic 
regression. E) dropkick chooses an optimal regularization strength through cross-validation, then assigns 
cell probabilities and labels to all barcodes using the trained model in gene space. 
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UpSet plot (Figure 3B; Lex, et al. 2014) tabulating shared barcode sets across ten low-background simulations 

reveals nearly perfect specificity, sensitivity, and area under the receiver operating characteristic curve 

(AUROC) for all three methods in the low-background scenario (Supplementary Figure 3A,B,D; Supplementary 

Table 1; Supplementary Table 2). 

Conversely, the high-background simulations produced a large number of false positives (FP) in the 

CellRanger_2 and EmptyDrops labels (Figure 3C), as ambient barcodes with high RNA content lie above the 

total counts threshold identified by CellRanger and the inflection point used as a testing cutoff by EmptyDrops 

(Lun, et al. 2019). A UMAP embedding of an example high-background simulation reveals a large population of 

empty droplets (assigned cluster 0 by the simulation) that dropkick_label removes from the final dataset 

(Figure 3D). Accordingly, dropkick displayed overall specificity and AUROC of 0.9999 ± 0.0002 and 0.9998 ± 

0.0002 for the high-background simulations compared to 0.9910 ± 0.0018 and 0.9955 ± 0.0009 for 

CellRanger_2 and 0.9838 ± 0.0133 and 0.9917 ± 0.0071 for EmptyDrops, respectively (Supplementary Figure 

3E,F,H; Supplementary Table 1; Supplementary Table 2). 

We also compared outputs from the trained model (dropkick_label) to automated dropkick training labels 

(thresholding on n_genes) in both low- and high-background scenarios to further demonstrate the utility of 

dropkick’s machine learning model over heuristic cutoffs alone. Similar to CellRanger_2, the dropkick threshold 

performed favorably for the low background simulation, where real cells are separated distinctly from empty 

droplets in heuristic space – indicated by a sharp drop-off in total counts and genes in the dropkick QC log-

rank plot (Figure 3B, inset). This one-dimensional thresholding resulted in sensitivity, specificity, and AUROC 

of 0.9986 ± 0.0007, 0.997 ± 0.0006, and 0.9978 ± 0.0005, respectively for ten low-background simulations 

(Supplementary Figure 3C; Supplementary Table 1). The trained dropkick model, on the other hand, recovered 

all real cells (sensitivity 1.0), with a perfect average AUROC of 1.0 ± 0.0 (Supplementary Figure 3D; 

Supplementary Table 1). This modest improvement indicates the utility of the dropkick model for sensitively 

discerning real cells from ambient barcodes over simple heuristic thresholding, even in a relatively low-

background sample. In the high-background simulations, sensitivity of dropkick training labels fell to 0.8762 ± 

0.0092 with an average AUROC of 0.9074 ± 0.0043 (Supplementary Figure 3G; Supplementary Table 1). 

Following model training, dropkick’s sensitivity and AUROC once again improved to 0.9995 ± 0.0004 and 
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0.9998 ± 0.0002, respectively (Supplementary Figure 3H; Supplementary Table 1). These data further signify 

that the dropkick logistic regression model results in enhanced performance over one-dimensional heuristic 

thresholding, especially in the presence of high ambient noise in the training set. 
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Benchmarking dropkick performance on simulated high-background data: Next, we aimed to further 

confirm dropkick’s utility in filtering high-background data by simulating extremely high-ambient droplets to 

overlay on the 10x Genomics human PBMC dataset. This data is particularly clean and easy to filter in its raw 

state, as the suspended cells from human blood were minimally agitated prior to encapsulation. In order to 

imitate empty droplets with high mRNA content, we combined all reads in barcodes with less than 100 total 

UMI counts and used the resulting pseudo-bulk as weightings for a random generation of count vectors from a 

multinomial distribution with UMI sums between 10 and 5,000 total counts. We added 2,000 of these count 

vectors back to the original matrix, modeling high-background empty droplets (Figure 4A). Upon filtering with 

dropkick, CellRanger version 2, and EmptyDrops, a large subset of the simulated ambient barcodes remained 

in the latter two label sets, while discarded entirely by dropkick (Figure 4C,D). We jointly processed all 

barcodes kept by the three filtering tools using nonnegative matrix factorization (NMF; Kotliar, et al 2019) to 

define cell clusters and corresponding cell type metagene scores (Figure 4C; Supplementary Figure 4). 

dropkick recovered significantly more lymphoid progenitors, monocytes, and T and B cells than both 

EmptyDrops and CellRanger according to sc-UniFrac (Liu, et al. 2018) analysis, indicating that it successfully 

parsed the noise introduced by the simulated droplets (Figure 4D). dropkick also completely excluded Leiden 

cluster 1, the simulated barcodes with high NMF scores for usage 9, which contained high loadings for several 

ambient genes (Figure 4B,C; Supplementary Figure 4B). This result both confirmed the effectiveness of the 

pseudo-bulk multinomial simulation, and further established dropkick’s robustness in filtering high-background 

data. 

 

Figure 3. Evaluating dropkick filtering performance with synthetic data. A) UMAP embedding of all barcodes 
kept by dropkick_label, CellRanger_2 and EmptyDrops for an example low-background simulation. Points 
colored by each of the three filtering labels, as well as ground-truth clusters determined by the simulation 
and dropkick score (cell probability). Arrow highlights a single false negative (FN) barcode in the 
EmptyDrops label set for this replicate. B) UpSet plot showing mean size of shared barcode sets across 
dropkick_label, CellRanger_2, EmptyDrops, and true labels for ten simulations. Error bars represent 
standard deviation. Unique sets show false positive (FP) barcodes labeled by dropkick and false negative 
(FN) barcodes excluded by EmptyDrops. Inset shows log-rank representation of the low-background 
simulation in A. C) Same as in B, for ten high-background simulations. Inset shows log-rank representation 
of the high-background simulation in D. D) Same as in A, for an example high-background simulation. 
Arrow highlights cluster 0, designated as “empty droplets” by simulation (see methods: Synthetic scRNA-
seq data simulation).  
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Figure 4. Benchmarking dropkick performance on simulated high-background data. A) Log-rank total counts curve for the high-background 
PBMC simulation. The horizontal dashed line indicates the threshold below which ground-truth empty droplets were used to build simulated 
barcodes from a multinomial distribution (100 total counts). Gold rug plot indicates the location along the total counts curve of 2,000 simulated 
high-UMI droplets (see methods: High-background PBMC simulation). B) Genes in PBMC simulation ranked by dropout rate. Top 10 ambient 
genes are listed, defining ambient profile used to calculate percentage in A. C) UMAP embedding of all barcodes kept by dropkick_label, 
CellRanger_2 and EmptyDrops. Points colored by each of the three filtering labels, Leiden clusters determined by NMF analysis, dropkick score 
(cell probability), and select cell-type metagene usages from NMF. Top seven gene loadings for each NMF factor are printed on their respective 
plots, in axis order from top to bottom. Circled area shows independent cluster of simulated empty droplets. D) Table and bar graph enumerating 
the total number of barcodes detected by each algorithm in all NMF clusters. Significant cluster enrichment as determined by sc-UniFrac is 
denoted by brackets. 

 
C

old S
pring H

arbor Laboratory P
ress

 on F
ebruary 3, 2026 - P

ublished by 
genom

e.cshlp.org
D

ow
nloaded from

 

http://genome.cshlp.org/
http://www.cshlpress.com


dropkick recovers expected cell populations and eliminates low-quality barcodes in experimental data: 

To evaluate dropkick’s performance against existing scRNA-seq filtering algorithms with real-world data, we 

processed a human T cell dataset from 10x Genomics (Figure 1) and again compared default dropkick results 

(dropkick_label) to CellRanger version 2 and EmptyDrops. The final dropkick coefficients and chosen 

regularization strength (lambda; Figure 5A) reveal that the model is sparse – with nearly 98 % of all coefficient 

values equal to zero – offering an interpretable gene-based output. Without prior training or supervision, 

dropkick identified higher counts of mitochondrial genes, which are markers of cell death and poor barcode 

quality (Tait and Green 2010), as predictive of empty droplets (Figure 5A). To visualize heuristic distributions 

within the T cell dataset, the number of detected genes and the percentage of ambient counts per barcode are 

shown along with dropkick’s automatic training thresholds (Figure 5B). Uninformative barcodes below the lower 

n_genes threshold were discarded before model training and assigned a dropkick score of zero. Barcodes 

between the two thresholds were initially assigned a label indicating putative empty droplets, while those above 

the upper threshold were labeled as real cells for model training. The dropkick score overlay illustrates how 

dropkick re-drew label boundaries in gene space (Figure 5B). dropkick scores are noticeably lower for 

barcodes with high ambient RNA content, while some putative empty droplets with lower background are 

“rescued” and labeled as real cells by the trained dropkick model. It is important to note that this high-

dimensional boundary was learned by dropkick with no prior labeling of “ambient” transcripts. Rather, 

dropkick’s weakly-supervised algorithm excluded barcodes with high ambient content based solely on their 

transcriptional similarity to the least informative barcodes (lower n_genes) in the training set. 

We again jointly processed all barcodes kept by dropkick_label (dropkick score ≥ 0.5), CellRanger_2, and 

EmptyDrops using nonnegative matrix factorization (NMF; Kotliar, et al 2019) to define cell clusters, and sc-

UniFrac (Liu, et al. 2018) to determine population differences across labeled barcode sets. A UMAP 

embedding of these barcodes reveals a population of cells with high mitochondrial content that is mostly 

excluded by dropkick (Figure 5C). This area is enriched in clusters 3 and 5 from NMF analysis, which carry 

exclusively mitochondrial genes as their top differentially expressed features (Figure 5D). Based on sc-

UniFrac, these two clusters constitute the only statistically significant differences between EmptyDrops and 

dropkick (Figure 5E). These data indicate that dropkick recovers as many or more real cells in expected 
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populations than previous algorithms, while also identifying and excluding low-quality dead or dying cells with 

high mitochondrial RNA content. 

 

 

dropkick outperforms analogous methods on challenging datasets: To challenge the robustness of the 

model, we next used dropkick to filter real-world samples with more complex cell types and higher noise. 

Human colorectal carcinoma (3907_S2) and adjacent normal colonic mucosa (3907_S1) samples were 

dissociated and encapsulated using the inDrop scRNA-seq platform (Klein, et al. 2015). In contrast to the 10x 

Genomics pan-T cell dataset (Figure 1; Figure 5), these samples exhibited high levels of background, 

containing empty droplets with thousands of UMI counts detected per barcode and up to 40 % ambient RNA in 

Figure 5. dropkick recovers expected cell populations and eliminates low-quality barcodes in experimental 
data. A) Plot of coefficient values for 2,000 highly variable genes (top) and mean binomial deviance ± SEM 
(bottom) for five-fold cross-validation along the lambda regularization path defined by dropkick. Top and 
bottom three coefficients are shown, in axis order, along with total model sparsity representing the 
percentage of coefficients with values of zero (top). Chosen lambda value indicated by dashed vertical line. 
B) Joint plot showing scatter of percent ambient counts versus arcsinh-transformed genes detected per 
barcode, with histogram distributions plotted on margins. Initial dropkick thresholds defining the training set 
are shown as dashed vertical lines. Each point (barcode) is colored by its final dropkick score after model 
fitting. C) UMAP embedding of all barcodes kept by dropkick_label, CellRanger_2 and EmptyDrops. Points 
colored by each of the three filtering labels, as well as Leiden clusters determined by NMF analysis, 
dropkick score (cell probability), and percent counts mitochondrial. Circled area shows high mitochondrial 
enrichment in a population discarded by dropkick. D) Dot plot showing top differentially expressed genes for 
each NMF cluster. The size of each dot indicates the percentage of cells in the population with nonzero 
expression for the given gene, while the color indicates the average normalized expression value in that 
population. Bracketed genes indicate significantly enriched populations in EmptyDrops compared to 
dropkick_label as shown in E. E) Table and bar graph enumerating the total number of barcodes detected 
by each algorithm in all NMF clusters. Significant cluster enrichment as determined by sc-UniFrac is 
denoted by brackets. 
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expected cell barcodes (Supplementary Figure 6A,D). Because of this dominant ambient profile, infiltrating 

immune populations with lower mRNA content than epithelial cells can be lost among empty droplets. Indeed, 

CellRanger_2 and EmptyDrops show depletion in T cells (cluster 7) and macrophages (cluster 11) compared 

to dropkick (Figure 6A,B). Prevalence of high-RNA empty droplets also yields a population with low genetic 

diversity and mitochondrial gene enrichment (cluster 4; Figure 6A) that is kept by the one-dimensional 

thresholding of CellRanger_2 but discarded by dropkick. sc-UniFrac analysis confirmed that dropkick recovers 

significantly more cells from rare populations than both CellRanger_2 and EmptyDrops in this pair of high-

background datasets dominated by ambient RNA from dead and dying colonic epithelial cells (Figure 6C; 

Supplementary Figure 6). Meanwhile, dropkick also identified and removed significantly more dead cells 

(cluster 4) than both CellRanger_2 and EmptyDrops (Figure 6C) by designating mitochondrial and ambient 

genes as negative coefficients (Supplementary Figure 6B,E). 

dropkick filters reproducibly across scRNA-seq batches: We also applied dropkick to a combined human 

placenta dataset from six patients to show robustness of the model to batch-specific variation. dropkick learned 

the distribution of genes and ambient RNA specific to each dataset and filtered them accordingly 

(Supplementary Figure 7A), with a resulting AUROC of 0.9956 ± 0.0051 across all six replicates compared to 

EmptyDrops labels (Supplementary Table 3). We also performed two types of manual cell labeling as well as 

the CellBender remove-background model (Fleming, Marioni and Babadi 2019) to provide additional alternative 

filtering labels to compare to dropkick (Supplementary Figure 7B,D,E,F,G,H,J; see methods: CellRanger 2, 

EmptyDrops, CellBender, and manual filtering of real-world scRNA-seq datasets). The CellBender remove-

background package primarily aims to subtract ambient background from single-cell expression datasets rather 

than filter alone. This resulted in the addition of a large population of high-ambient barcodes unique from those 

labeled by dropkick, EmptyDrops, and CellRanger 2, warranting further assessment of the efficacy of 

background-removal methods in the context of consensus cell labels beyond the scope of this paper 

(Supplementary Figure 7B-E). 
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Figure 6. dropkick outperforms analogous methods on challenging datasets. A) UMAP embedding of all 
barcodes kept by dropkick_label (dropkick score ≥ 0.5), CellRanger_2 and EmptyDrops for human 
colorectal carcinoma inDrop samples. Points colored by each of the three filtering labels, as well as clusters 
determined by NMF analysis, dropkick score (cell probability), arcsinh-transformed total genes detected, 
percent counts mitochondrial, and original batch. 3907_S1 is normal human colonic mucosa and 3907_S2 
is colorectal carcinoma from the same patient. B) Dot plot showing top differentially expressed genes for 
each NMF cluster. The size of each dot indicates the percentage of cells in the population with nonzero 
expression for the given gene, while the color indicates the average expression value in that population. 
Bracketed genes indicate significantly enriched or depleted populations in dropkick compared to 
CellRanger_2 and/or EmptyDrops labels as shown in C. C) Table and bar graph enumerating the total 
number of barcodes detected by each algorithm in all NMF clusters for the combined dataset. Significant 
cluster enrichment as determined by sc-UniFrac is denoted by brackets. 
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Extending this analysis to a larger cohort of scRNA-seq samples from both 10x Genomics (n = 13) and inDrop 

(n = 33) encapsulation platforms, we see that dropkick is highly concordant with CellRanger version 2 (AUROC 

0.9656 ± 0.0271) and EmptyDrops (AUROC 0.9817 ± 0.012), suggesting global recovery of major cell 

populations (Supplementary Figure 8A,B,E,F; Supplementary Table 3; Supplementary Table 4). dropkick 

filtering for 33 inDrop samples yielded an AUROC of 0.9729 ± 0.0335 compared to manually curated labels 

using an inflection point cutoff followed by dimension-reduced cluster gating (Chen, et al. 2021, in review; 

Supplementary Figure 8C; Supplementary Table 6). For all 46 scRNA-seq samples, we also performed 

bivariate thresholding on total UMI counts and percent mitochondrial transcripts per droplet, mimicking another 

popular preprocessing technique. Again, dropkick’s AUROC averaged 0.9805 ± 0.0194, confirming the model’s 

utility for robust filtering across several unique datasets (Supplementary Figure 8D,H; Supplementary Table 5; 

Supplementary Table 6). Finally, we measured the total run time of dropkick, which was appreciably faster than 

both CellBender remove-background and the EmptyDrops R package on average, running to completion in 

40.56 ± 25.97 seconds across ten replicates of all 46 samples when utilizing five CPUs with dropkick’s built-in 

parallelization (Supplementary Figure 8J). 

 

DISCUSSION 

Barcode filtering is a key preprocessing step in analyzing droplet-based single-cell expression data. Reliable 

filtering is confounded by distributions of global heuristics such as total UMI counts, total genes, and ambient 

RNA that can be highly variable across batches and encapsulation platforms. We have developed dropkick, a 

fully automated machine learning software tool that assigns confidence scores and labels to barcodes from 

unfiltered scRNA-seq counts matrices. By automatically curating a training set using predictive heuristics and 

training a gene-based logistic regression model, dropkick ensures that ambient barcodes (“empty droplets”) 

are removed from the filtered dataset while recovering rare, low-RNA cell types that may be lost in ambient 

noise. We showed that unlike previous filtering approaches including one-dimensional thresholding 

(CellRanger 2) and a Dirichlet-multinomial model (EmptyDrops), dropkick is robust to the level of ambient RNA, 

performing favorably in both low and high-background scenarios across simulated and real-world datasets. 

Although we have demonstrated that dropkick is more robust to varying degrees of ambient background than 

existing filtering methods, the dropkick model is still limited by the input dataset. As stated previously (see 
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results: Evaluating dataset quality with dropkick QC module), the profile of ranked total counts/genes and the 

global contribution of ambient reads are vital to analysis of single-cell sequencing data, including cell filtering. 

Data with weak separation between high-quality cells and empty droplets (i.e. a unimodal distribution of 

n_genes lacking distinct plateaus in the log-rank curve) will perform poorly in inflection-point thresholding as 

well as data-driven models such as EmptyDrops and dropkick due to the similarity between theoretically “high-

confidence” barcodes and ambient background droplets. Moreover, datasets dominated by expression of 

ambient genes (> 40 % average ambient counts across all barcodes) will also perform poorly in automated 

filtering. While such data artifacts may be handled by dropkick’s heavy feature selection conferred by HVG 

calculation and elastic net regularization, there will also be circumstances that cause dropkick – as well as 

CellRanger and EmptyDrops – to return an over- or under-filtered dataset. Scenarios such as those described 

should be considered QC failures, and further analysis should not be performed. For this reason, the dropkick 

QC module is extremely beneficial in post-alignment evaluation of scRNA-seq data quality and should be 

applied to all datasets prior to filtering. 

The dropkick Python package provides a fast, user-friendly interface that integrates seamlessly with the 

SCANPY (Wolf, et al. 2018) single-cell analysis suite for ease of workflow implementation. dropkick is available 

for installation through the Python Package Index (pypi.org/project/dropkick/), and source code is hosted on 

GitHub (github.com/KenLauLab/dropkick). 

 

METHODS 

inDrop data generation: The human colorectal carcinoma inDrop data – deposited to the Gene Expression 

Omnibus (GEO) to accompany this manuscript (GSE158636) - were generated according to published 

protocols (Southard-Smith, et al. 2020; Banerjee et al., 2020). 

Quality control and ambient RNA quantification with the dropkick QC module: The dropkick QC module 

begins by calculating global heuristics per barcode (observation) and gene (variable) using the SCANPY (Wolf, 

Angerer, and Theis 2018) pp.calculate_qc_metrics function. These metrics are used to order barcodes by 

decreasing total counts (black curve in Figure 1A) and order genes by increasing dropout rate (Figure 1B). The 

nth gene ranked by dropout rate determines the cutoff for calling “ambient” genes, with n determined by the 

n_ambient parameter in the dropkick.qc_summary function. All genes with dropout rates less than or equal to 
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this threshold are labeled “ambient”. In a sample with many (> n) genes detected in all barcodes, this ensures 

that the entire ambient profile is identified. Through observation of samples used in this study, we set the 

default n_ambient = 10. To compile the dropkick QC summary report, the log-total counts versus log-ranked 

barcodes (Figure 1A black curve) are plotted along with total genes detected for each barcode (Figure 1A 

green points), percent counts from “ambient” genes in each barcode (Figure 1A blue points), and percent 

counts from mitochondrial genes in each barcode (Figure 1A red points). 

Labeling training set with the dropkick filtering module: The dropkick filtering module also begins by 

calculating global heuristics per barcode (observation) and gene (variable) using the SCANPY (Wolf, Angerer, 

and Theis 2018) pp.calculate_qc_metrics function. Next, training thresholds are calculated on the histogram of 

the chosen heuristic(s); arcsinh-transformed n_genes by default. dropkick then uses the scikit-image function 

filters.threshold_multiotsu to identify two local minima in the n_genes histogram that represent the transitions 

from uninformative barcodes to “empty droplets” and from “empty droplets” to real cells. These locations are 

also characterized by the two expected drop-offs in the total counts/genes profiles as shown in the dropkick 

QC report (Figure 1, Supplementary Figure 1). To label barcodes for dropkick model training, barcodes with 

fewer genes detected than the first multi-Otsu threshold are discarded due to their lack of molecular 

information. dropkick then labels barcodes below the second threshold as “empty”, and remaining barcodes 

above the second threshold as real cells for initial training. These inputs to the dropkick logistic regression 

model represent the “noisy” boundary in heuristic space that is to be replaced with a learned cell boundary in 

gene space. 

Training and optimizing the dropkick filtering model: The dropkick filtering model uses logistic regression 

with elastic net regularization (Zou and Hastie 2005), and is fit as described in Friedman, et al. 2010. The 

elastic net combines ridge and lasso (least absolute shrinkage and selection operator) penalties for optimal 

regularization of model coefficients. The ridge regression penalty pushes all coefficients toward zero while 

allowing multiple correlated predictors to borrow strength from one another, ideal for a scenario like scRNA-seq 

with several expected collinearities (Hoerl and Kennard 1970). The lasso penalty on the other hand, favors 

model sparsity, driving coefficients to zero and thus selecting informative features (Tibshirani 1996). The 

combined elastic net balances feature selection and grouping by preserving or removing correlated features 

from the model in concert (Zou and Hastie 2005). 
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The fraction � � �0,1� (alpha) represents the balance between the lasso and ridge penalties for the elastic net 

model. If � � 0, the regularization would be entirely ridge, while if � � 1, it would be entirely lasso. By default, 

dropkick fixes this alpha value at 0.1, but the user may alter this parameter or provide multiple alpha values to 

optimize through cross-validation (with lambda; explained below) at the expense of slightly longer 

computational time. All default dropkick results in this manuscript used � � 0.1, and we also ran dropkick on all 

46 samples with given alpha values [0.1, 0.25, 0.5, 0.75, 0.9]. Optimal values chosen by dropkick cross-

validation for this set of runs are shown in Supplementary Table 7. Only 9 of 46 models chose a value other 

than � � 0.1. 

For a desired length of “lambda path,” n (default n = 100 for dropkick), the model is fit n + 1 times, where the 

first pass determines the values of lambda (regularization strength) to test, and subsequent fits determine 

model performance using cross-validation (CV; default 5-fold for dropkick). Each fit involves selection of highly-

variable genes (HVGs; SCANPY pp.highly_variable_genes; default 2,000 for dropkick) from the training set. 

For both the first pass and the final model, the training set consists of all available barcodes, while training the 

model along the lambda path uses only the current training fold as to not bias model fitting with information 

from the test set. The lambda path is scored using mean deviance from the training labels for all cross-

validation folds. The largest value of lambda such that its mean CV deviance is less than or equal to one 

standard error above the minimum deviance is chosen as the final regularization strength for the model in 

order to further minimize overfitting. Finally, dropkick fits a logistic regression model using all training labels 

and the chosen lambda value and assigns cell probability (dropkick_score) to all barcodes. By default, the 

resulting dropkick_label is positive (1; real cell) for barcodes with dropkick_score ≥ 0.5, but the user may define 

a stricter or more lenient threshold for particular applications. 

Synthetic scRNA-seq data simulation: We used CellBender (Fleming, Marioni, and Babadi 2019) to build 

synthetic single-cell datasets. We generated a basic count matrix with 30,000 features (n_genes), 12,000 total 

droplets (including 3,000 n_cells and 9,000 n_empty), and 6 clusters. The default ratio between the cell size 

scale factor and the empty droplet size scale factor – d_cell at 10,000 and d_empty at 200 – created an 

unrealistic gap between the empty droplets and the real cells but built a foundation on which to produce more 

realistic simulations. By adjusting these parameters, we simulated two different scenarios with the number of 

features, total droplets, and clusters held constant. The first scenario modeled a “low background” dataset, with 
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a realistic n_genes and total counts profile and relatively low ambient RNA. We set the cell size scale factor 

(d_cell) to 10,000, and the empty droplet size scale factor (d_empty) to 1,000. These settings produced a small 

gap between the real cells and the empty droplets, yet still mimicked a low background droplet profile. We then 

modeled a “high background” scenario, which had much higher ambient RNA content. For this simulation we 

set d_cell to 10,000, and d_empty to 2,000. This simulation mimicked a real scRNA-seq dataset with a high 

ambient profile, as it had a smaller gap between real cells and empty droplets. Taken together, these 

simulations recapitulate real-world single-cell data and were tested by dropkick to compare their ground-truth 

labels to those determined by dropkick filtering. 

High-background PBMC simulation: To imitate empty droplets with high mRNA content over a relatively low-

background sample, we used the 10x Genomics 4k human PBMC dataset. Because this encapsulation was 

derived from suspended blood cells, there was negligible lysis and ambient contamination, and empty droplets 

are very clearly distinguished from real cells based on their mRNA content alone. Combining reads from the 

bottom 1,000 genes by dropout rate across all barcodes with less than 100 total UMIs, we normalized this 

pseudo-bulk as probabilistic weightings for a random generation of count vectors. We drew 2,000 random 

integers between 10 and 5,000 to determine the total number of counts for each simulated barcode, then drew 

that number of random integers from a multinomial distribution using the random.default_rng.multinomial 

function from the numpy Python package, with pvals equal to the weightings determined from the true empty 

droplet pseudo-bulk. We then added these 2,000 count vectors back to the original matrix, labeling them as 

“simulated” for downstream comparison (Figure 4A). 

CellRanger 2, EmptyDrops, CellBender, and manual filtering of real-world scRNA-seq datasets: 

CellRanger and EmptyDrops filtering algorithms were derived from Lun, et al. 2019, with CellRanger 2 

described by the function DefaultDrops (from the repository github.com/MarioniLab/EmptyDrops2017), and 

EmptyDrops by the EmptyDrops function within the DropletUtils R package (v1.8.0). All 10x datasets were 

processed as in Lun, et al. 2019 (github.com/MarioniLab/EmptyDrops2017). EmptyDrops was run for all inDrop 

datasets using the “inflection point” from CellRanger 2 analysis as the minimum non-ambient UMI threshold as 

in Lun, et al. 2019 (github.com/MarioniLab/EmptyDrops2017). 

Further investigation of user-defined parameters for both methods was performed by titrating the “lower” 

parameter, which describe the lower proportion of total barcodes to ignore when calculating the inflection point 
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for CellRanger 2, and the maximum total UMI counts under which all barcodes are considered ground-truth 

empty droplets for EmptyDrops. We compared dropkick scores to the resulting labels (Supplementary Figure 9; 

Supplementary Tables 8-11), noting that sub-optimal parameter values led to lower concordance than those in 

Supplementary Table 3 and Supplementary Table 4. 

CellBender remove-background, while primarily an ambient RNA subtraction model, also provides cell labels 

from raw scRNA-seq counts matrices (Fleming, Marioni, and Babadi 2019). With the caveat that CellBender 

likely retains more previously high-background droplets after regressing out ambient reads, CellBender was 

performed on 10x Genomics samples using the same expected cell number used for EmptyDrops in Lun, et al. 

2019, and concordance was tested with dropkick labels as before, showing a slightly lower average AUROC of 

0.9585 ± 0.0596 for 13 10x Genomics samples (Supplementary Figure 8G; Supplementary Table 5). 

Manual filtering was performed for each inDrop sample by initial thresholding beyond the inflection point 

detected in the first curve of the ranked barcodes profile (as in Figure 1A). Then, following standard dimension 

reduction and high-resolution Leiden clustering, clusters with low quality cells (high mitochondrial/ambient 

percentage, low total counts/genes) were manually gated out of the final dataset. These manually curated 

labels were used as an orthogonal “gold standard” for benchmarking automated thresholding methods 

(Supplementary Figure 2A) and final AUROC (Supplementary Figure 5D). Further description of this manual 

filtering method in Chen, et al. 2021 (in review).  

Bivariate thresholding was performed for all samples using total UMI counts and percent mitochondrial counts, 

keeping barcodes that have greater than or equal to the minimum total count threshold and less than 40 % 

mitochondrial reads.  

Supplementary Table 7 contains parameters used for each of the above methods on all 46 datasets. 

sc-UniFrac analysis of shared populations between dropkick, CellRanger 2, and EmptyDrops labels: In 

order to evaluate the preservation of expected cell clusters between dropkick and alternative labels, we 

employed sc-UniFrac (Liu, et al. 2018) to determine the global and populational differences between the label 

sets. We used nonnegative matrix factorization (NMF) to analyze the union of barcodes kept by dropkick_label, 

CellRanger_2, and EmptyDrops in order to reduce dimensions into cell identity and activity “metagenes” 

(Kotliar, et al. 2019). We then clustered this low-dimensional space using the Leiden algorithm (Traag, et al. 

2019) to define consensus cell populations for sc-UniFrac analysis. We then ran sc-UniFrac (v0.9.6) to 

 Cold Spring Harbor Laboratory Press on February 3, 2026 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 22

evaluate statistically significant cluster differences based on both cluster membership and gene expression 

hierarchies between clusters. The global sc-UniFrac distance quantified the overall similarity of hierarchical 

trees across barcode label sets. 

Dimension reduction, clustering, projection, and differential expression analysis: We used Consensus 

Nonnegative Matrix Factorization (cNMF; Kotliar, et al. 2019) for initial dimension reduction. The optimal 

number of factors, k, was determined by maximizing stability and minimizing error across all tested values after 

30 iterations of each. We then built a nearest-neighbors graph in SCANPY (pp.neighbors function) from the 

NMF usage scores for consensus factors in all cells, where we set n_neighbors to the square root of the total 

number of cells in the dataset. We then clustered cells with the Leiden algorithm (SCANPY tl.leiden function; 

Traag, Waltman, and Van Eck 2019) applied to this graph. Resulting clusters were used in sc-UniFrac 

analysis, differential expression, and visualization. We performed differential expression analysis using a 

Student’s t-test with Benjamini-Hochberg p-value correction for multiple testing (SCANPY 

tl.rank_genes_groups). To visualize datasets in 2D space, we ran partition-based graph abstraction (PAGA; 

Wolf, et al. 2019; SCANPY tl.paga) on this nearest-neighbors graph and associated Leiden clustering in order 

to create a simple representation of cluster similarity. Finally, a UMAP projection (McInnes and Healy 2018) 

seeded with these PAGA positions provided a two-dimensional embedding of all cells in the dataset (SCANPY 

tl.umap with init_pos=”paga”). 

 

DATA ACCESS 

All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene 

Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE158636. All 

publicly available datasets are listed in Supplementary Table 12. 

 

SOFTWARE AVAILABILITY 

The dropkick Python package is available for download via “pip” from the Python Package Index (PyPI) at 

https://pypi.org/project/dropkick/. Source code for the package is also available on GitHub at 

https://github.com/KenLauLab/dropkick. Scripts for reproducing analyses in this manuscript are hosted on 

GitHub at https://github.com/codyheiser/dropkick-manuscript. 
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