

Review

Recent advances in methods to characterize archaic introgression in modern humans 239^{OA}

David Peede, Mayra M. Bañuelos, Jazeps Medina Tretmanis, Miriam Miyagi,
and Emilia Huerta-Sánchez

Research

Transcription and potential functions of a novel *XIST* isoform in male peripheral glia 257^{OA}

Kevin S. O'Leary, Meng-Yen Li, Kevyn Jackson, Lijie Shi, Elena Ezhkova, Bernice E. Morrow,
and Deyou Zheng

Transcriptomic landscape of transposable elements reveals *LTR7-PLAAT4* as a potential oncogene and therapeutic target in pancreatic adenocarcinoma 275^{OA}

Meilong Shi, Chuanqi Teng, Shan Zhang, Xiaobo He, Lingyun Xu, Fengxian Han, Rongqi Wen,
Ganjun Yu, Jingwen Liu, Yang Feng, Yanfeng Wu, Yan Ren, Gang Jin, and Jing Li

Landscape of microRNA and target expression variation and covariation in single mouse embryonic stem cells 291^{OA}

Marcel Tarbier, Sebastian D. Mackowiak, Vaishnavi Sekar, Franziska Bonath, Etka Yapar,
Bastian Fromm, Omid R. Faridani, Inna Biryukova, and Marc R. Friedländer

MHC in newts illuminates the evolutionary dynamics of complex regions in giant genomes 303

Wiesław Babik, Katarzyna Dudek, Gemma Palomar, Marzena Marszałek, Grzegorz Dubin,
Maximina H. Yun, and Małgorzata Migalska

Stable genome structures in living fossil fishes 318

Cheng Wang, Chase D. Brownstein, Wenjun Chen, Zufa Ding, Dan Yu, Yu Deng, Chenguang Feng,
Thomas J. Near, Shuping He, and Liandong Yang

Methods

The oligogenic inheritance test GCOD detects risk genes and their interactions in congenital heart defects 330^{OA}

Maureen Pittman, Kihyun Lee, Franco Felix, Yu Huang, Adrienne Lam, Mauro W. Costa,
Deepak Srivastava, and Katherine S. Pollard

Autoencoders for genomic variation analysis 348^{OA}

Margarita Geleta, Daniel Mas Montserrat, Xavier Giro-i-Nieto, and Alexander G. Ioannidis


A scalable computational framework for predicting gene expression from candidate *cis*-regulatory elements 361^{OA}

Qinhu Zhang, Sigu Wang, Zhipeng Li, Wenzheng Bao, Wenjian Liu, and De-Shuang Huang

(continued)

Quantifying pathological progression from single-cell transcriptomic data with scPSS Samin Rahman Khan, M Saifur Rahman, M. Sohel Rahman, and Md Abul Hassan Samee	375
scSHEFT enables multiomics label transfer from scRNA-seq to scATAC-seq through dual alignment Zhitao Huang, Ruiqing Zheng, Pengzhen Jia, Xuhua Yan, Jinmiao Chen, and Min Li	387
Partitioned multi-MUM finding for scalable pangenomics with MumemtoM Vikram S. Shivakumar and Ben Langmead	397
Strain-level metagenomic profiling using pangenome graphs with PanTax Wenhai Zhang, Yuansheng Liu, Guangyi Li, Jialu Xu, Enlian Chen, Alexander Schönhuth, and Xiao Luo	405 ^{OA}
Resource	
The SynMall resource for characterizing the functional impact of synonymous variation Chen Ye, Xiaoyan Li, Na Cheng, Yansen Su, and Junfeng Xia	421
Corrigendum	
Corrigendum: Machine learning identifies activation of RUNX/AP-1 as drivers of mesenchymal and fibrotic regulatory programs in gastric cancer Milad Razavi-Mohseni, Weitai Huang, Yu A. Guo, Dustin Shigaki, Shamaine Wei Ting Ho, Patrick Tan, Anders J. Skanderup, and Michael A. Beer	432

^{OA}Open Access paper

Cover Synonymous variants, which do not alter the encoded amino acid sequence, have long been regarded as neutral changes in the genome, much like a Trojan horse that appears harmless and is allowed to pass unchallenged into the city. However, accumulating evidence shows that these variants can induce hidden functional perturbations at multiple molecular levels, including DNA regulatory elements, RNA splicing, mRNA structure stability, translation kinetics, and gene expression. In this image, the outer shell of the Trojan horse symbolizes the apparent "silence" and perceived safety of synonymous mutations, while the intricate structures concealed within represent the latent and often overlooked pathogenic mechanisms they may harbor. The head of the horse visualizes the SynMall resource, which integrates multispecies data and diverse functional annotations. The design reflects the central contribution of SynMall: a systematic, multilayered annotation framework that reveals the biological consequences of synonymous variants that have traditionally been underestimated or ignored in genomic studies. (Cover art illustrated by Chen Ye using Procreate on an iPad, based on a concept by Chen Ye and Junfeng Xia. [For details, see Ye et al., pp. 421–431.]