

Review

k-mer approaches for biodiversity genomics

219^{OA}

Katharine M. Jenike, Lucía Campos-Domínguez, Marilou Boddé, José Cerca, Christina N. Hodson, Michael C. Schatz, and Kamil S. Jaron

Research

Characterization of the role of spatial proximity of DNA double-strand breaks in the formation of CRISPR-Cas9-induced large structural variations

231

Mikkel Dahl-Jessen, Thorkild Terkelsen, Rasmus O. Bak, and Uffe Birk Jensen

Aberrant homeodomain–DNA cooperative dimerization underlies distinct developmental defects in two dominant *CRX* retinopathy models

242^{OA}

Yiqiao Zheng, Gary D. Stormo, and Shiming Chen

Ultraviolet damage and repair maps in *Drosophila* reveal the impact of domain-specific changes in nucleosome repeat length on repair efficiency

257

Benjamin Morledge-Hampton, Kathiresan Selvam, Manish Chauhan, Alan G. Goodman, and John J. Wyrick

Timescale and genetic linkage explain the variable impact of defense systems on horizontal gene transfer

268^{OA}

Yang Liu, João Botelho, and Jaime Irazo

Methods

Identification of the shortest species-specific oligonucleotide sequences

279^{OA}

Ioannis Mouratidis, Maxwell A. Konnaris, Nikol Chantzi, Candace S.Y. Chan, Michail Patsakis, Kimonas Provatas, Austin Montgomery, Fotis A. Baltoumas, Congzhou M. Sha, Manvita Mareboina, Georgios A. Pavlopoulos, Dionysios V. Chartoumpakis, and Ilias Georgakopoulos-Soares

Interactive visualization and interpretation of pangenome graphs by linear reference–based coordinate projection and annotation integration

296^{OA}

Zepu Miao and Jia-Xing Yue

Combining DNA and protein alignments to improve genome annotation with LiftOn

311

Kuan-Hao Chao, Jakob M. Heinz, Celine Hoh, Alan Mao, Alaina Shumate, Mihaela Pertea, and Steven L. Salzberg

Proxy panels enable privacy-aware outsourcing of genotype imputation

326^{OA}

Degui Zhi, Xiaoqian Jiang, and Arif Harmanci

(continued)

Diffusion-based generation of gene regulatory networks from scRNA-seq data with DigNet Chuanyuan Wang and Zhi-Ping Liu	340 ^{OA}
Kernel-bounded clustering for spatial transcriptomics enables scalable discovery of complex spatial domains Hang Zhang, Yi Zhang, Kai Ming Ting, Jie Zhang, and Qiuran Zhao	355 ^{OA}
Probing the eukaryotic microbes of ruminants with a deep-learning classifier and comprehensive protein databases Ming Yan, Thea O. Andersen, Phillip B. Pope, and Zhongtang Yu	368

^{OA}Open Access paper

Cover Artificial intelligence (AI) and machine learning (ML), known for their ability to integrate high-dimensional features, have recently been applied to the field of cell-free DNA (cfDNA). Various AI and ML approaches in cfDNA-based diagnostics were recently reviewed. Here, a robot is the embodiment of AI and ML algorithms. The robot inspects blood plasma for puzzle pieces, which symbolize cfDNA fragments. Various cfDNA features, such as size, coverage, CpG methylation, and end motifs, are pictured on the puzzle pieces. The robot's right hand is assembling these puzzle pieces onto a humanoid hologram, on which a site of possible pathology (i.e., the liver) is highlighted, symbolizing the power of AI and ML in leveraging these cfDNA features for diagnostic applications. (Digital cover art by Chingyi Wai from an edited image of a robot and human body [<https://www.shutterstock.com>] using Adobe Photoshop and Illustrator, based on a concept from Adrian Tsui and Dennis Lo. [For details, see Tsui et al., pp. 1–19.])